首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nickel sulfides are regarded as promising anode materials for advanced rechargeable lithium‐ion batteries due to their high theoretical capacity. However, capacity fade arising from significant volume changes during operation greatly limits their practical applications. Herein, confined NiSx@C yolk–shell microboxes are constructed to address volume changes and confine the active material in the internal void space. Having benefited from the yolk–shell structure design, the prepared NiSx@C yolk–shell microboxes display excellent electrochemical performance in lithium‐ion batteries. Particularly, it delivers impressive cycle stability (460 mAh g?1 after 2000 cycles at 1 A g?1) and superior rate performance (225 mAh g?1 at 20 A g?1). Furthermore, the lithium storage mechanism is ascertained with in situ synchrotron high‐energy X‐ray diffractions and in situ electrochemical impedance spectra. This unique confined yolk–shell structure may open up new strategies to create other advanced electrode materials for high performance electrochemical storage systems.  相似文献   

2.
Fiber‐shaped rechargeable batteries hold promise as the next‐generation energy storage devices for wearable electronics. However, their application is severely hindered by the difficulty in fabrication of robust fiber‐like electrodes with promising electrochemical performance. Herein, yolk–shell NiS2 nanoparticles embedded in porous carbon fibers (NiS2?PCF) are successfully fabricated and developed as high‐performance fiber electrodes for sodium storage. Benefiting from the robust embedded structure, 3D porous and conductive carbon network, and yolk–shell NiS2 nanoparticles, the as‐prepared NiS2?PCF fiber electrode achieves a high reversible capacity of about 679 mA h g?1 at 0.1 C, outstanding rate capability (245 mA h g?1 at 10 C), and ultrastable cycle performance with 76% capacity retention over 5000 cycles at 5 C. Notably, a flexible fiber‐shaped sodium battery is assembled, and high reversible capacity is kept at different bending states. This work offers a new electrode‐design paradigm toward novel carbon fiber electrodes embedded with transition metal oxides/sulfides/phosphides for application in flexible energy storage devices.  相似文献   

3.
Smart hybridization of active materials into tailored electrode structure is highly important for developing advanced electrochemical energy storage devices. With the help of sandwiched design, herein a powerful strategy is developed to fabricate three‐layer sandwiched composite core/shell arrays via combined hydrothermal and polymerization approaches. In such a unique architecture, wrinkled MoSe2 nanosheets are sandwiched by vertical graphene (VG) core and N‐doped carbon (N‐C) shell forming sandwiched core/shell arrays. Interesting advantages including high electrical conductivity, strong mechanical stability, and large porosity are combined in the self‐supported VG/MoSe2/N‐C sandwiched arrays. As a preliminary test, the sodium ion storage properties of VG/MoSe2/N‐C sandwiched arrays are characterized and demonstrated with high capacity (540 mA h g?1), enhanced high rate capability, and long‐term cycling stability (298 mA h g?1 at 2.0 A g?1 after 1000 cycles). The sandwiched core/shell structure plays positive roles in the enhancement of electrochemical performances due to dual conductive carbon networks, good volume accommodation, and highly porous structure with fast ion diffusion. The directional electrode design protocol provides a general method for synthesis of high‐performance ternary core/shell electrodes.  相似文献   

4.
The performance of lithium and sodium‐ion batteries is partly determined by the microstructures of the active materials and anodes. Much attention has been paid to the construction of various nanostructured active materials, with emphasis on optimizing the electronic and ionic transport kinetics, and structural stability. However, less attention has been given to the functionalization of electrode microstructure to enhance performance. Therefore, it is significant to study the effect of optimized microstructures of both active materials and electrodes on the performance of batteries. In this work, porous MoS2/carbon spheres anchored on 3D interconnected multiwall carbon nanotube networks (MoS2/C‐MWCNT) are built as sodium‐ion battery anodes to synergistically facilitate the sodium‐ion storage process. The optimized MoS2/C‐MWCNT possesses favorable features, namely few‐layered, defect‐rich, and interlayer‐expanded MoS2 with abundant mesopores/macropores and carbon incorporation. Notably, the presence of 3D MWCNT network plays a critical role to further improve interparticle and intraparticle conductivity, sodium‐ion diffusion, and structural stability on the electrode level. As a result, the electrochemical performance of optimized MoS2/C‐MWCNT is significantly improved. This study suggests that rational design of microstructures on both active material and electrode levels simultaneously might be a useful strategy for designing high performance sodium‐ion batteries.  相似文献   

5.
Sodium‐ion batteries (NIBs) have attracted more and more attention as economic alternatives for lithium‐ion batteries (LIBs). Sodium super ionic conductor (NASICON) structure materials, known for high conductivity and chemical diffusion coefficient of Na+ (≈10?14 cm2 s?1), are promising electrode materials for NIBs. However, NASICON structure materials often suffer from low electrical conductivity (<10?4 S cm?1), which hinders their electrochemical performance. Here high performance sodium storage performance in Na3V2(PO4)3 (NVP) is realized by optimizing nanostructure and rational surface engineering. A N, B codoped carbon coated three‐dimensional (3D) flower‐like Na3V2(PO4)3 composite (NVP@C‐BN) is designed to enable fast ions/electrons transport, high‐surface controlled energy storage, long‐term structural integrity, and high‐rate cycling. The conductive 3D interconnected porous structure of NVP@C‐BN greatly releases mechanical stress from Na+ extraction/insertion. In addition, extrinsic defects and active sites introduced by the codoping heteroatoms (N, B) both enhance Na+ and e? diffusion. The NVP@C‐BN displays excellent electrochemical performance as the cathode, delivering reversible capacity of 70% theoretical capacity at 100 C after 2000 cycles. When used as anode, the NVP@C‐BN also shows super long cycle life (38 mA h g?1 at 20 C after 5000 cycles). The design provides a novel approach to open up possibilities for designing high‐power NIBs.  相似文献   

6.
As the theoretical limit of intercalation material‐based lithium‐ion batteries is approached, alternative chemistries based on conversion reactions are presently considered. The conversion of sulfur is particularly appealing as it is associated with a theoretical gravimetric energy density up to 2510 Wh kg?1. In this paper, three different carbon‐iron disulfide‐sulfur (C‐FeS2‐S) composites are proposed as alternative positive electrode materials for all‐solid‐state lithium‐sulfur batteries. These are synthesized through a facile, low‐cost, single‐step ball‐milling procedure. It is found that the crystalline structure (evaluated by X‐ray diffraction) and the morphology of the composites (evaluated by scanning electron microscopy) are greatly influenced by the FeS2:S ratio. Li/LiI‐Li3PS4/C‐FeS2‐S solid‐state cells are tested under galvanostatic conditions, while differential capacity plots are used to discuss the peculiar electrochemical features of these novel materials. These cells deliver capacities as high as 1200 mAh g(FeS2+S)?1 at the intermediate loading of 1 mg cm?2 (1.2 mAh cm?2), and up to 3.55 mAh cm?2 for active material loadings as high as 5 mg cm?2 at 20 °C. Such an excellent performance, rarely reported for (sulfur/metal sulfide)‐based, all solid‐state cells, makes these composites highly promising for real application where high positive electrode loadings are required.  相似文献   

7.
Ultrathin few‐layer materials have attracted intensive research attention because of their distinctive and unique properties. Few‐layer GeP (FL‐GP) is potentially interesting for application in electronics and optoelectronics because of its appropriate band gap and good stability under ambient conditions. Nevertheless, it is a challenge to achieve ultrathin few‐layer or single layer GeP from exfoliation of bulk crystals. Here, a lithiation‐assisted chemical exfoliation technique is employed to achieve FL‐GP, in which the interlayer spacing can be efficiently enlarged after a preliminary lithium ion intercalation, allowing the bulk crystal to be readily exfoliated in a following ultrasonication. As a result, ultrathin FL‐GP is obtained. In a demonstration, the FL‐GP/reduced graphene oxide (rGO) demonstrates remarkable sodium storage performance. The FL‐GP with a two‐dimensional structure shortens the ion transport pathways and alleviates the volume variation during sodiation. Meanwhile, the rGO in the composite improves the conductivity of the whole electrode. The as‐prepared FL‐GP/rGO electrode exhibits a high capacity of 504.2 mAh g?1 at 100 mA g?1, remarkable rate performance, and superior cycling stability in the half cells. FL‐GP/rGO//Na3V2(PO4)3 full cells are also assembled and demonstrated satisfactory electrochemical performance, indicating potential application of the as‐prepared anode materials.  相似文献   

8.
2D nanomaterials provide numerous fascinating properties, such as abundant active surfaces and open ion diffusion channels, which enable fast transport and storage of lithium ions and beyond. However, decreased active surfaces, prolonged ion transport pathway, and sluggish ion transport kinetics caused by self‐restacking of 2D nanomaterials during electrode assembly remain a major challenge to build high‐performance energy storage devices with simultaneously maximized energy and power density as well as long cycle life. To address the above challenge, porosity (or hole) engineering in 2D nanomaterials has become a promising strategy to enable porous 2D nanomaterials with synergetic features combining both 2D nanomaterials and porous architectures. Herein, recent important progress on porous/holey 2D nanomaterials for electrochemical energy storage is reviewed, starting with the introduction of synthetic strategies of porous/holey 2D nanomaterials, followed by critical discussion of design rule and their advantageous features. Thereafter, representative work on porous/holey 2D nanomaterials for electrochemical capacitors, lithium‐ion and sodium‐ion batteries, and other emerging battery technologies (lithium‐sulfur and metal‐air batteries) are presented. The article concludes with perspectives on the future directions for porous/holey 2D nanomaterial in energy storage and conversion applications.  相似文献   

9.
Li2S is one of the most promising cathode materials for Li‐ion batteries because of its high theoretical capacity and compatibility with Li‐metal‐free anode materials. However, the poor conductivity and electrochemical reactivity lead to low initial capacity and severe capacity decay. In this communication, a nitrogen and phosphorus codoped carbon (N,P–C) framework derived from phytic acid doped polyaniline hydrogel is designed to support Li2S nanoparticles as a binder‐free cathode for Li–S battery. The porous 3D architecture of N and P codoped carbon provides continuous electron pathways and hierarchically porous channels for Li ion transport. Phosphorus doping can also suppress the shuttle effect through strong interaction between sulfur and the carbon framework, resulting in high Coulombic efficiency. Meanwhile, P doping in the carbon framework plays an important role in improving the reaction kinetics, as it may help catalyze the redox reactions of sulfur species to reduce electrochemical polarization, and enhance the ionic conductivity of Li2S. As a result, the Li2S/N,P–C composite electrode delivers a stable capacity of 700 mA h g?1 with average Coulombic efficiency of 99.4% over 100 cycles at 0.1C and an areal capacity as high as 2 mA h cm?2 at 0.5C.  相似文献   

10.
To achieve the high energy densities demanded by emerging technologies, lithium battery electrodes need to approach the volumetric and specific capacity limits of their electrochemically active constituents, which requires minimization of the inactive components of the electrode. However, a reduction in the percentage of inactive conductive additives limits charge transport within the battery electrode, which results in compromised electrochemical performance. Here, an electrode design that achieves efficient electron and lithium‐ion transport kinetics at exceptionally low conductive additive levels and industrially relevant active material areal loadings is introduced. Using a scalable Pickering emulsion approach, Ni‐rich LiNi0.8Co0.15Al0.05O2 (NCA) cathode powders are conformally coated using only 0.5 wt% of solution‐processed graphene, resulting in an electrical conductivity that is comparable to 5 wt% carbon black. Moreover, the conformal graphene coating mitigates degradation at the cathode surface, thus providing improved electrochemical cycle life. The morphology of the electrodes also facilitates rapid lithium‐ion transport kinetics, which provides superlative rate capability. Overall, this electrode design concurrently approaches theoretical volumetric and specific capacity limits without tradeoffs in cycle life, rate capability, or active material areal loading.  相似文献   

11.
Sulfur represents one of the most promising cathode materials for next‐generation batteries; however, the widely observed polysulfide dissolution/shuttling phenomenon in metal–sulfur redox chemistries has severely restricted their applications. Here it is demonstrated that when pairing the sulfur electrode with the iron metal anode, the inherent insolubility of iron sulfides renders the shuttling‐free nature of the Fe–S electrochemical reactions. Consequently, the sulfur electrode exhibits promising performance for Fe2+ storage, where a high capacity of ≈1050 mAh g?1, low polarization of ≈0.16 V as well as stable cycling of 150 cycles are realized. The Fe–S redox mechanism is further revealed as an intriguing stepwise conversion of S8 ? FeS2 ? Fe3S4 ? FeS, where a low volume expansion of ≈32.6% and all‐solid‐state phase transitions facilitate the reaction reversibility. This study suggests an alternative direction to exploit sulfur electrodes in rechargeable transition metal–sulfur batteries.  相似文献   

12.
The kinetics process of heterogeneous catalysis involves several steps including adsorption, diffusion, and surface chemical reactions. Current studies generally aim at increasing active site amount and improving intrinsic activity. However, the ion diffusion kinetics at the electrode/electrolyte interface as a bottleneck has been rarely directly addressed. Here, a 3D holey‐graphene framework is demonstrated as a catalyst‐loading platform, with nanoscale holes that can be elaborately tuned via facile aqueous‐phase chemical etching. This enables the ions to be efficiently transported to deeply buried active sites to mitigate their insufficient supply. With systematical electrochemical investigations tuned by varied pore structures, a series of models from a simplified equivalent circuit to complicate realistic one are proposed to figure out the modulation rules of weakened electrochemical diffusion domination and identify the ion transport resistance as well. Moreover, given the inevitable negative effect on the conductivity of graphene skeleton by introducing nanoscale holes, the balance between the outside ion transport and the inside charge transport of electrode is highlighted. Such a protocol represents a synergistic modulation of catalytic performance from both the supply side (reactive ion transport) and the consuming side (active site), and provides striking information for the precise design of catalyst electrodes toward further pushing the oxygen evolution reaction performance limit.  相似文献   

13.
Na3V2(PO4)3 (NVP) has excellent electrochemical stability and fast ion diffusion coefficient due to the 3D Na+ ion superionic conductor framework, which make it an attractive cathode material for lithium ion batteries (LIBs). However, the electrochemical performance of NVP needs to be further improved for applications in electric vehicles and hybrid electric vehicles. Here, nanoflake‐assembled hierarchical NVP/C microflowers are synthesized using a facile method. The structure of as‐synthesized materials enhances the electrochemical performance by improving the electron conductivity, increasing electrode–electrolyte contact area, and shortening the diffusion distance. The as‐synthesized material exhibits a high capacity (230 mAh g?1), excellent cycling stability (83.6% of the initial capacity is retained after 5000 cycles), and remarkable rate performance (91 C) in hybrid LIBs. Meanwhile, the hybrid LIBs with the structure of NVP || 1 m LiPF6/EC (ethylene carbonate) + DMC (dimethyl carbonate) || NVP and Li4Ti5O12 || 1 m LiPF6/EC + DMC || NVP are assembled and display capacities of 79 and 73 mAh g?1, respectively. The insertion/extraction mechanism of NVP is systematically investigated, based on in situ X‐ray diffraction. The superior electrochemical performance, the design of hybrid LIBs, and the insertion/extraction mechanism investigation will have profound implications for developing safe and stable, high‐energy, and high‐power LIBs.  相似文献   

14.
Metal oxide cathode coatings are capable of scavenging the hydrofluoric acid (HF) (present in LiPF6‐based electrolytes) and improving the electrochemical performance of Li‐ion batteries. Here, a first‐principles thermodynamic framework is introduced for designing cathode coatings that consists of four elements: i) HF‐scavenging enthalpies, ii) volumetric and iii) gravimetric HF‐scavenging capacities of the oxides, and iv) cyclable Li loss into coating components. 81 HF‐scavenging reactions involving binary s‐, p‐ and d‐block metal oxides and fluorides are enumerated and these materials are screened to find promising coatings based on attributes (i‐iv). The screen successfully produces known effective coating materials (e.g., Al2O3 and MgO), providing a validation of our framework. Using this design strategy, promising coating materials, such as trivalent oxides of d‐block transition metals Sc, Ti, V, Cr, Mn and Y, are predicted. Finally, a new protection mechanism that successful coating materials could provide by scavenging the wide bandgap and low Li ion conductivity LiF precipitates from the cathode surfaces is suggested.  相似文献   

15.
With a high theoretical capacity of 1162 mA h g?1, Li2S is a promising cathode that can couple with silicon, tin, or graphite anodes for next‐generation energy storage devices. Unfortunately, Li2S is highly insulating, exhibits large charge overpotential, and suffers from active‐material loss as soluble polysulfides during battery cycling. To date, low‐cost, scalable synthesis of an electrochemically active Li2S cathode remains a challenge. This work demonstrates that the low conductivity and material loss issues associated with Li2S cathodes can be overcome by forming a stable, conductive encapsulation layer at the surface of the Li2S bulk particles through in situ surface reactions between Li2S and electrolyte additives containing transition‐metal salts. It is identified that the electronic band structure in the valence band region of the thus‐generated encapsulation layers, consisting largely of transition‐metal sulfides, determines the initial charging resistance of Li2S. Furthermore, among the transition metals tested, the encapsulation layer formed with an addition of 10 wt% manganese (II) acetylacetonate salt proved to be robust within the cycling window, which is attributed to the chemically generated MnS surface species. This work provides an effective strategy to use micrometer‐sized Li2S directly as a cathode material and opens up new prospects to tune the surface properties of electrode materials for energy‐storage applications.  相似文献   

16.
Fiber‐supercapacitors (FSCs) are promising energy storage devices that can complement or even replace microbatteries in miniaturized portable and wearable electronics. Currently, a major challenge for FSCs is achieving ultrahigh volumetric energy and power densities simultaneously, especially when the charge/discharge rates exceed 1 V s?1. Herein, an Au‐nanoparticle‐doped‐MnOx@CoNi‐alloy@carbon‐nanotube (Au–MnOx@CoNi@CNT) core/shell nanocomposite fiber electrode is designed, aiming to boost its charge/discharge rate by taking advantage of the superconductive CoNi alloy network and the greatly enhanced conductivity of the Au doped MnOx active materials. An all‐solid‐state coaxial asymmetric FSC (CAFSC) prototype device made by wrapping this fiber with a holey graphene paper (HGP) exhibits excellent performance at rates up to 10 V s?1, which is the highest charge rate demonstrated so far for FSCs based on pseudocapacitive materials. Furthermore, our fully packaged CAFSC delivers a volumetric energy density of ≈15.1 mW h cm?3, while simultaneously maintaining a high power density of 7.28 W cm?3 as well as a long cycle life (90% retention after 10 000 cycles). This value is the highest among all reported FSCs, even better than that of a typical 4 V/500 µA h thin‐film lithium battery.  相似文献   

17.
Great efforts toward developing novel and efficient hole‐transporting materials are needed to further improve the device efficiency and enhance the cell stability of perovskite solar cells (PSCs). The poor film conductivity and the low carrier mobility of organic small‐molecule‐based hole‐transporting materials restrict their application in PSCs. This study develops an efficient and stable hole‐transporting material, tetrafluorotetracyanoquinodimethane (F4‐TCNQ)‐doped copper phthalocyanine‐3,4′,4′′,4′′′‐tetra‐sulfonated acid tetra sodium salt (TS‐CuPc) via a solution process, in planar structure PSCs. The p‐type‐doped TS‐CuPc film demonstrates improved film conductivity and hole mobility owing to the strong electron affinity of F4‐TCNQ. By the F4‐TCNQ tailoring, the composite film gives the highest occupied molecular orbital level as high as 5.3 eV, which is beneficial for hole extraction. In addition, the aqueous solution processed TS‐CuPc:F4‐TCNQ precursor is almost neutral with good stability for avoiding the electrode erosion. As a result, the fabricated PSCs employing TS‐CuPc:F4‐TCNQ as the hole‐transporting material exhibit a power conversion efficiency of 16.14% in a p–i–n structure and 20.16% in an n–i–p structure, respectively. The developed organic small molecule of TS‐CuPc provides the diversification of hole‐transporting materials in planar PSCs.  相似文献   

18.
Layered double hydroxides (LDHs) are promising cathode materials for supercapacitors because of the enhanced flow efficiency of ions in the interlayers. However, the limited active sites and monotonous metal species further hinder the improvement of the capacity performance. Herein, cobalt sulfide quantum dots (Co9S8‐QDs) are effectively created and embedded within the interlayer of metal‐organic‐frameworks‐derived ternary metal LDH nanosheets based on in situ selective vulcanization of Co on carbon fibers. The hybrid CF@NiCoZn‐LDH/Co9S8‐QD retains the lamellar structure of the ternary metal LDH very well, inheriting low transfer impedance of interlayer ions. Significantly, the selectively generated Co9S8‐QDs expose more abundant active sites, effectively improving the electrochemical properties, such as capacitive performance, electronic conductivity, and cycling stability. Due to the synergistic relationship, the hybrid material delivers an ultrahigh electrochemical capacity of 350.6 mAh g?1 (2504 F g?1) at 1 A g?1. Furthermore, hybrid supercapacitors fabricated with CF@NiCoZn‐LDH/Co9S8‐QD and carbon nanosheets modified by single‐walled carbon nanotubes display an outstanding energy density of 56.4 Wh kg?1 at a power density of 875 W kg?1, with an excellent capacity retention of 95.3% after 8000 charge–discharge cycles. Therefore, constructing hybrid electrode materials by in situ‐created QDs in multimetallic LDHs is promising.  相似文献   

19.
Cathode materials are usually active in the range of 2–4.3 V, but the decomposition of the electrolytic salt above 4 V versus Na+/Na is common. Arguably, the greatest concern is the formation of HF after the reaction of the salts with water molecules, which are present as an impurity in the electrolyte. This HF ceaselessly attacks the active materials and gradually causes the failure of the electrode via electric isolation of the active materials. In this study, a bioinspired β‐NaCaPO4 nanolayer is reported on a P2‐type layered Na2/3[Ni1/3Mn2/3]O2 cathode material. The coating layers successfully scavenge HF and H2O, and excellent capacity retention is achieved with the β‐NaCaPO4‐coated Na2/3[Ni1/3Mn2/3]O2 electrode. This retention is possible because a less acidic environment is produced in the Na cells during prolonged cycling. The intrinsic stability of the coating layer also assists in delaying the exothermic decomposition reaction of the desodiated electrodes. Formation and reaction mechanisms are suggested for the coating layers responsible for the excellent electrode performance. The suggested technology is promising for use with cathode materials in rechargeable sodium batteries to mitigate the effects of acidic conditions in Na cells.  相似文献   

20.
Stable and seamless interfaces among solid components in all‐solid‐state batteries (ASSBs) are crucial for high ionic conductivity and high rate performance. This can be achieved by the combination of functional inorganic material and flexible polymer solid electrolyte. In this work, a flexible all‐solid‐state composite electrolyte is synthesized based on oxygen‐vacancy‐rich Ca‐doped CeO2 (Ca–CeO2) nanotube, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), and poly(ethylene oxide) (PEO), namely Ca–CeO2/LiTFSI/PEO. Ca–CeO2 nanotubes play a key role in enhancing the ionic conductivity and mechanical strength while the PEO offers flexibility and assures the stable seamless contact between the solid electrolyte and the electrodes in ASSBs. The as‐prepared electrolyte exhibits high ionic conductivity of 1.3 × 10?4 S cm?1 at 60 °C, a high lithium ion transference number of 0.453, and high‐voltage stability. More importantly, various electrochemical characterizations and density functional theory (DFT) calculations reveal that Ca–CeO2 helps dissociate LiTFSI, produce free Li ions, and therefore enhance ionic conductivity. The ASSBs based on the as‐prepared Ca–CeO2/LiTFSI/PEO composite electrolyte deliver high‐rate capability and high‐voltage stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号