首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
2.
In the present study, the accumulation of apolipoproteins (apo) A-I, B, and E in culture medium was measured after 0, 3, 6, 12, and 24 h of incubation with 150 microM docosahexaenoic acid complexed to 75 microM bovine serum albumin (BSA-22:6), either in the presence or absence of 50 micrograms/ml cholesterol and 4 micrograms/ml 25-hydroxycholesterol (C/25-OH). HepG2 cells incubated with BSA + C/25-OH for 24 h accumulated approximately 2.0-fold greater apoE and B as compared to BSA-treated cells. Moreover, HepG2 cell apoB accumulation after 24 h of BSA-22:6 treatment was approximately 2.0-fold greater than apoB accumulation from cells treated with BSA alone. When BSA-22:6 and C/25-OH were both included in the incubation, apoB accumulation was approximately 5.0-fold greater than BSA-treated cells. Comparative studies using BSA-18:1 were carried out for 24 h and showed similar levels of apoA-I, B, and E accumulation in culture medium as compared to BSA-22:6-treated cells. In addition, apoA-I, B, and E mRNA abundance were found to be unaffected by type of fatty acid treatment or length of incubation, averaging 48.2 +/- 7.5, 222 +/- 33.6, and 17.1 +/- 0.7 pg mRNA/micrograms RNA (mean +/- SEM), respectively. As the accumulation of apoB and apoE in culture medium may be modified by HepG2 cell LDL receptor expression, LDL receptor mRNA abundance and LDL receptor activity were quantified at various times over the course of the study. By 6 h of BSA + C/25-OH treatment, LDL receptor mRNA was reduced approximately 2.3-fold, while receptor activity was reduced approximately 1.5-fold, as compared to BSA controls. In an experiment designed to determine uptake of HepG2 cell lipoproteins, 3H-labeled apoB-containing lipoproteins derived from HepG2 cells were prepared. The 3H-labeled lipoproteins were 1.25-fold more likely to be removed from the media of HepG2 cells treated with BSA than from cells treated with BSA + C/25-OH. From these results, we postulate that HepG2 cell LDL receptor activity mediates the removal of apoB, E-containing lipoproteins from culture medium and contributes to the lower accumulation of apoB and E observed in culture medium from cells treated with BSA as compared to cells treated with C/25-OH.  相似文献   

3.
Apolipoprotein (apo)A-I, the major protein component of HDL, is synthesized principally in the small intestine and liver. Recently we observed an increase in plasma apoA-I level in humans who were on an oxidized fat diet. To test whether oxidized fatty acids could affect apoA-I synthesis, we incubated day 4 (undifferentiated) and day 14 (differentiated) Caco-2 cells with varying concentrations of oxidized linoleic acid (ox-linoleic acid) (5, 10, and 25 microM) and unoxidized linoleic acid for 24 h. Ox-linoleic acid caused a dose-dependent increase in the levels of apoA-I protein in both differentiated and undifferentiated Caco-2 cells as assessed by ELISA and Western blot analysis. Whereas apoB production was not increased by ox-linoleic acid in both day 4 and day 14 Caco-2 cells. The mRNA expression for apoA-I paralleled the protein expression when measured by RT-PCR. We also found that both day 4 and day 14 Caco-2 cells did express peroxisomal proliferator-activated receptor-gamma (PPAR-gamma). mRNA and PPAR-gamma ligand could increase apoA-I secretion in these cells.Therefore we propose that the mechanism for the induction of apoA-I might include PPAR-gamma for which oxidized fatty acid is a ligand.  相似文献   

4.
Administration of adrenocorticotropic hormone (ACTH) has been shown to decrease plasma concentrations of apolipoprotein B (apoB) containing lipoproteins, including lipoprotein(a), in man. However, the mechanism behind this hypolipidemic effect is unknown. This study aimed at distinguishing between the main possibilities (increased elimination or decreased production of lipoproteins) using HepG2 cell cultures. Addition of ACTH to the cell culture medium selectively down-regulated apoB mRNA expression and apoB secretion in a dose-dependent manner. At 100 pmol/liter ACTH, the apoB mRNA level was about 40% lower than in the untreated cells, and the secretion of apoB into the medium was decreased to a similar extent. The expression and secretion of other apolipoproteins (apoA-I, apoE, and apoM), however, were not affected by ACTH. Under normal culture conditions the level of secretion of apoB from HepG2 cells is quite low. In the presence of 0.4 mmol/liter oleic acid secretion of apoB increased 3-fold, but this phenomenon was not seen in ACTH-treated cells. Binding and internalization of radiolabeled low density lipoprotein (LDL) by HepG2 cell, as well as LDL-receptor mRNA and scavenger receptor B-I mRNA levels, were not influenced by ACTH. In conclusion, ACTH directly and selectively down-regulated the production and secretion of apoB in HepG2 cell cultures, suggesting that a principal mechanism behind the cholesterol-lowering effect of ACTH in vivo may be a decreased production rate of apoB-containing lipoproteins from the liver.  相似文献   

5.
To develop a cell culture model for chyclomicron (CM) assembly, the apical media of differentiated Caco-2 cells were supplemented with oleic acid (OA) together with either albumin or taurocholate (TC). The basolateral media were subjected to sequential density gradient ultracentrifugations to obtain large CM, small CM, and very low density lipoproteins (VLDL), and the distribution of apoB in these fractions was quantified. In the absence of OA, apoB was secreted as VLDL/LDL size particles. Addition of OA (>/=0.8 mM) with TC, but not with albumin, resulted in the secretion of one-third of apoB as CM. Lipid analysis revealed that half of the secreted phospholipids (PL) and triglycerides (TG) were associated with CM. In CM, TG were 7-11-fold higher than PL indicating that CM were TG-rich particles. Secreted CM contained apoB100, apoB48, and other apolipoproteins. Secretion of large CM was specifically inhibited by Pluronic L81, a detergent known to inhibit CM secretion in animals. These studies demonstrate that differentiated Caco-2 cells assemble and secrete CM in a manner similar to enterocytes in vivo. Next, experiments were performed to identify the sources of lipids used for lipoprotein assembly. Cells were labeled with [3H]glycerol for 12 h, washed, and supplemented with OA, TC, and [14C] glycerol for various times to induce CM assembly and to radiolabel nascent lipids. TG and PL were extracted from cells and media and the association of preformed and nascent lipids with lipoproteins was determined. All the lipoproteins contained higher amounts of preformed PL compared with nascent PL. VLDL contained equal amounts of nascent and preformed TG, whereas CM contained higher amounts of nascent TG even when nascent TG constituted a small fraction of the total cellular pool. These studies indicate that nascent TG and preformed PL are preferentially used for CM assembly and provide a molecular explanation for the in vivo observations that the fatty acid composition of TG, but not PL, of secreted CM reflects the composition of dietary fat. It is proposed that in the intestinal cells the preformed PL from the endoplasmic reticulum bud off with apoB as primordial particles and the assembly of larger lipoproteins is dependent on the synthesis and delivery of nascent TG to these particles.  相似文献   

6.
To investigate the mechanism of control of intestinal apolipoprotein B (apoB) secretion, we studied the effects of fatty acids and calcium ionophores on the human intestinal model cell line Caco-2. Although treatment with various fatty acids (18:1w9, 18:2w6, and 20:5w3) complexed to bovine serum albumin resulted in a dramatic redistribution of apoB-100 from the low density and high density lipoproteins to the very low density lipoprotein fraction, there was no effect of any of the fatty acids on the overall rate of total apoB (apoB-100 and apoB-48) secretion. Treatment of differentiated monolayers with calcium ionophores A23187 or ionomycin caused dose-specific increases (125% at 1 microM) in the accumulation of total apoB, but not apoA-I, in conditioned medium as measured by specific immunoassays. Incubation studies with 35S-labeled Caco-2 apoB,E-containing low density lipoprotein particles revealed that treatment with ionomycin over a broad concentration range had no effect on the reuptake of secreted apoB-100. The effect on A23187 on total apoB secretion was blocked by prior chelation of medium calcium and was significantly enhanced by the addition of calcium (up to 50 mM) to the medium. The effect of A23187 was significantly blunted by treatment with the calmodulin antagonist trifluoperazine (10 microM). The time course of A23187 action on Caco-2 apoB secretion required at least 6 h to occur. In contrast to the concentration of apoB in the medium, cellular apoB content was not influenced by treatment with ionophore. Pulse-chase experiments demonstrated a significant reduction in the synthesis-secretion interval for apoB-100 and apoB-48 after 24 h of exposure to ionomycin. Neither fatty acid treatment nor stimulation with ionophore affected the ratio of apoB-100 to apoB-48 produced by the cells. These findings with calcium ionophores implicate the involvement of calcium ion in the mechanism of intestinal apoB secretion. A role for calcium-dependent processes in apoB production raises the possibility that, rather than fatty acid flux, calcium-evoked or calcium-dependent hormones may be important regulators of apoB secretion.  相似文献   

7.
The regulation of lipoprotein assembly and secretion at a molecular level is incompletely understood. To begin to identify the determinants of apoprotein synthesis and distribution among lipoprotein classes, we have examined the effects of chylomicron remnants which deliver triglyceride and cholesterol, and beta very low density lipoprotein (beta VLDL), which deliver primarily cholesterol, on apolipoprotein synthesis and secretion by the human hepatoma Hep G2. Hep G2 cells were incubated with remnants or beta VLDL for 24 h, the medium was changed and the cells then incubated with [35S]methionine. The secreted lipoproteins were separated by gradient ultracentrifugation and the radiolabeled apoproteins were isolated by immunoprecipitation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis and counted. Remnants caused a 14-fold, and beta VLDL a 7-fold, increase in VLDL apoprotein (apo) secretion; the apoB/apoE ratio in this class was unchanged. Preincubation with either of the lipoproteins also stimulated low density lipoprotein apoB secretion. Preincubation with beta VLDL, but not with remnants, significantly increased apoE and apoA-I secreted in high density lipoprotein (HDL). In addition, the apoE/apoA-I ratio precipitated from the HDL of beta VLDL-treated cells by anti-apoE was 2.2-fold higher than that precipitated by anti-apoA-I. There was no difference in the ratios precipitated from control HDL. This was due to the secretion of a lipoprotein, subsequently isolated by immunoaffinity chromatography, that contained predominantly apoE. When Hep G2 cells were preincubated with oleic acid alone, total apoprotein secretion was not altered. However, cholesterol-rich liposomes stimulated secretion of newly synthesized apoE, but not apoB, while apoA-I secretion was variably affected. Cholesterol-poor liposomes had no effect. Thus, lipid supply is a determinant of apoprotein synthesis and secretion, and cholesterol may be of particular importance in initiating apoprotein synthesis.  相似文献   

8.
The production of lipids, apolipoproteins (apo), and lipoproteins induced by oleic acid has been examined in Caco-2 cells. The rates of accumulation in the control medium of 15-day-old Caco-2 cells of triglycerides, unesterified cholesterol, and cholesteryl esters were 102 +/- 8, 73 +/- 5, and 11 +/- 1 ng/mg cell protein/h, respectively; the accumulation rates for apolipoproteins A-I, B, C-III, and E were 111 +/- 9, 53 +/- 4, 13 +/- 1, and 63 +/- 4 ng/mg cell protein/h, respectively. Whereas apolipoproteins A-IV and C-II were detected by immunoblotting, apoA-II was absent in most culture media. In contrast to an early production of apolipoproteins A-I and E occurring 2 days after plating, the apoB expression appeared to be differentiation-dependent and was not measurable in the medium until the sixth day post-confluency. In the control medium, very low density lipoproteins (VLDL), low density lipoproteins (LDL), high density lipoproteins (HDL), and lipid-poor very high density lipoproteins (VHDL) accounted for 12%, 46%, 18%, and 24% of the total lipid and apolipoprotein contents, respectively. The triglyceride-rich VLDL contained mainly apoE (75%) and apoB (23%), while the protein moiety of LDL was composed of apoB (59%), apoE (20%), apoA-I (15%), and apoC-III (6%). The cholesterol-rich HDL contained mainly apoA-I (69%) and apoE (27%). In the control medium, major portions of apolipoproteins B and C-III (93-97%) were present in LDL, whereas the main parts of apoA-I (92%) and apoE (76%) were associated with HDL and VHDL. Oleate increased the production of triglycerides 10-fold, cholesteryl esters 7-fold, and apoB 2- to 4-fold. There was also a moderate increase (39%) in the production of apoC-III but no significant changes in those of apolipoproteins A-I and E. These increases were reflected mainly in a 55-fold elevation in the concentration of VLDL, and a 2-fold increase in the level of LDL; there were no significant changes in HDL and VHDL. VLDL contained the major parts of total neutral lipids (74-86%), apoB (65%), apoC-III (81%) and apoE (58%). In the presence of oleate, the VLDL, LDL, HDL, and VHDL accounted for 76%, 15%, 3%, and 6% of the total lipoproteins, respectively.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Dietary fatty acids (FAs) crossing the apical plasma membrane of small intestinal enterocytes are targeted to different metabolic pathways than serum FAs crossing the basolateral membrane. This apparent compartmentalization of FA metabolism in enterocytes was further investigated using a model human enterocyte-like intestinal cell line. [3H]Oleic acid bound to bovine serum albumin (BSA) was added to the apical or basolateral surfaces of confluent monolayers of Caco-2 cells growing on uncoated polycarbonate filters. In other experiments, [3H]oleic acid incorporated into micelles with taurocholate (+/- 2-monoacylglycerol) was added apically. Caco-2 cells absorbed oleic acid bound to BSA from both the apical and basolateral surfaces at the same rate. Oleic acid in micellar solution was absorbed more efficiently than oleic acid bound to BSA. Regardless of its site or mode of presentation, the majority of the incorporated oleic acid was found in triglycerides. Only a small fraction was subjected to beta-oxidation or esterification into phospholipids. Most of the incorporated oleic acid was still retained intracellularly at 24 h. The polarity of triglyceride secretion was influenced by the experimental conditions. Triglyceride secretion was not significantly polarized when oleic acid-BSA was presented apically. However, the ratio of basolateral to apical secretion at 24 h was 9:1 for oleic acid-BSA presented basolaterally. For oleic acid in taurocholate micelles there was a trend toward polarity of secretion to the apical media (apical to basolateral ratio = 2:1). The inclusion of 2-monoacylglycerol in oleic acid-taurocholate micelles did not augment triglyceride synthesis or secretion. These differences indicate that compartmentation of FA metabolism in Caco-2 cells is influenced by the site of FA presentation. Northern and Western blot hybridization studies indicated that the liver fatty acid-binding protein but not the intestinal fatty acid-binding protein gene is expressed in these cells. The absence of this latter 15 kDa protein indicates that it is not required by Caco-2 cells for the synthesis of triglycerides or for the polarized export of triglyceride. These studies indicate that the Caco-2 cell line will be a useful model system for studying the polarization of FA trafficking/metabolism in enterocytes and defining the role of intracellular fatty acid binding proteins in these processes.  相似文献   

10.
The effects of eicosapentaenoic acid and oleic acid on lipid synthesis and secretion by HepG2 cells were examined to identify fatty acid specific changes in lipid metabolism that might indicate a basis for the hypolipidemic effect attributed to eicosapentaenoic acid and related n-3 fatty acids. Cellular glycerolipid synthesis, as determined by [3H]glycerol incorporation, increased in a concentration-dependent manner in cells incubated 4 h with either eicosapentaenoic acid or oleic acid at concentrations between 10 and 300 microM. [3H]Glycerol-labeled triglyceride was the principal lipid formed and increased approximately fourfold with the addition of 300 microM oleic acid or eicosapentaenoic acid. Both fatty acids also produced a 20-40% increase in the total cellular triglyceride mass. Although both fatty acids increased triglyceride synthesis to similar extents, eicosapentaenoic acid-treated cells secreted 40% less [3H]glycerol-labeled triglyceride than cells fed oleic acid. Cellular synthesis of [3H]glycerol-labeled phosphatidylethanolamine and phosphatidylcholine was also reduced by 40% and 30%, respectively, in cells given eicosapentaenoic acid versus cells given oleic acid. Similar results were obtained in determinations of radiolabeled oleic acid and eicosapentaenoic acid incorporation. At a fatty acid concentration of 300 microM, incorporation of radiolabeled eicosapentaenoic acid into cellular triglycerides was greater than the incorporation obtained with radiolabeled oleic acid, while the reverse relationship was observed for the formation of phosphatidylcholine from the same fatty acids. Eicosapentaenoic acid is as potent as oleic acid in inducing triglyceride synthesis but eicosapentaenoic acid is a poorer substrate than oleic acid for phospholipid synthesis. The intracellular rise in de novo-synthesized triglyceride in eicosapentaenoic acid-treated cells without corresponding increases in triglyceride secretion suggests that eicosapentaenoic acid is less effective than oleic acid in promoting the transfer of de novo-synthesized triglyceride to nascent very low density lipoproteins.  相似文献   

11.
CaCo-2 cells, grown on filter membranes, were used to study the effects of fatty acids on cellular metabolism of triacylglycerol and phospholipids. The rate of triacylglycerol secretion was enhanced more than 2-fold, from 1 to 2 weeks after reaching confluency, in the presence of 0.6 mM fatty acids. Triacylglycerol secretion and oxidation of oleic acid increased 2- and 9-fold, respectively, with this culture system, as compared to cells grown on conventional plastic dishes. Eicosapentaenoic acid (20:5 n-3), when compared to oleic acid, did not reduce formation of triacylglycerol or enhance phospholipid synthesis in CaCo-2 cells during short term (less than 24 h) experiments, when the cells resided on membranes, regardless of what type of radioisotopes were used as precursors in the incubation media. However, the n-3 fatty acid was preferentially incorporated into phosphatidylinositol, lysophosphatidylcholine, and sphingomyelin, as compared to oleic acid. The disappearance from the apical medium and cellular uptake of labeled eicosapentaenoic and oleic acid were similar during incubations up to 24 h, and the metabolism of these fatty acids to acid-soluble materials and CO2 was equal. Light scattering analysis indicated that secreted lipoproteins of density less than 1.006 g/ml were in the same size-range as chylomicrons derived from human plasma. Assessment of secreted apolipoprotein B showed that by incubating CaCo-2 cells with oleic acid, apolipoprotein B levels increased approximately 1.4-fold when compared to cells incubated with eicosapentaenoic acid, whereas the amount of triacylglycerol and size-range of particles were similar for the two fatty acids. Our data indicate that CaCo-2 cells grown on filter membranes exhibit enterocyte-like characteristics with the ability to synthesize and secrete chylomicrons. Eicosapentaenoic acid and oleic acid are absorbed, metabolized, and influence secretion of lipoprotein particles in a similar way, except for some differences in incorporation of the fatty acids into certain phospholipid classes and a reduced secretion of apolipoprotein B. The culture conditions, including time after confluency and cellular support, are critical for the rate of secretion in the presence of eicosapentaenoic acid and oleic acid.  相似文献   

12.
We determined the effect of the two major fish oil fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), on VLDL assembly and secretion by cultured rat hepatocytes. The incorporation of [3H]glycerol into total triglyceride (cell plus media) was stimulated eight-fold when hepatocytes were incubated for 2 h with 1 mM EPA, DHA, or oleic acid (OA), suggesting that fish oil fatty acids stimulate hepatic triglyceride synthesis to an extent similar to OA. In contrast, mass quantitation of secreted triglyceride showed impaired triglyceride secretion with EPA and DHA compared to OA. During a 42-h time course, cells stimulated with EPA and DHA progressively accumulated triglyceride compared to cells stimulated with OA. To determine whether fish oil fatty acids impair very low density lipoprotein (VLDL) secretion, cells were labeled with [35S]methionine and the secretion of de novo synthesized apoB was measured. Compared to OA, EPA and DHA significantly impaired the secretion of both molecular weight forms of apoB. The cellular content of apoB was not altered by any of the fatty acids. The concordant decrease in the secretion of both triglyceride and apoB suggests that fish oil fatty acids impair VLDL assembly and/or secretion.  相似文献   

13.
The objective of this study was to compare the long-term effects of oleic (cis 18:1), elaidic (trans 18:1), and palmitic (16:0) acids on hepatic lipoprotein production, using HepG2 cells as an experimental model. The net accumulation in the medium of apolipoprotein A-I (apoA-I) was not significantly altered by fatty acids, whereas that of apoB was increased with oleic and elaidic acids. Oleic acid, and to a lesser extent elaidic and palmitic acids, increased the mass of triglycerides in the medium and the incorporation of [(3)H]glycerol into secreted triglycerides. The incorporation of [(14)C]acetate into cellular and secreted total cholesterol was stimulated by 96% and 83%, respectively, with elaidic acid but was not significantly modified by oleic or palmitic acid. Relative to oleic acid, the secretion of (14)C-labeled phospholipids and triglycerides was decreased 28% to 31% with elaidic and palmitic acids whereas that of free cholesterol and cholesteryl esters was enhanced 93% and 73%, respectively, with elaidic acid but remained unchanged with palmitic acid. Compared with oleic acid, elaidic acid stimulated the secretion of very low density lipoprotein cholesterol (VLDL-Chol), low density lipoprotein cholesterol (LDL-Chol), and high density lipoprotein cholesterol (HDL-Chol) by 43%, 70%, and 34%, respectively, whereas palmitic acid decreased VLDL-Chol but had no significant effect on LDL-Chol and HDL-Chol. The ratios of total cholesterol to HDL-Chol were 3.17, 3.60, and 3.25 with oleic, elaidic, and palmitic acids, respectively; the corresponding ratios of LDL-Chol to HDL-Chol were 0.87, 1.10, and 0.93, respectively. Compared with oleic and palmitic acids, the LDL and HDL particles secreted in the presence of elaidic acid contained higher levels of free cholesterol and cholesteryl esters and a lower content of phospholipids. The phospholipid-to-total cholesterol ratios of HDL were 1.05, 0.40, and 0.76 with oleic, elaidic, and palmitic acids, respectively.Our results indicate that in comparison with cis monounsaturated and saturated fatty acids, trans fatty acids have more adverse effects on the concentration and composition of lipoproteins secreted by HepG2 cells.  相似文献   

14.
15.
This study was conducted to determine the secretion rate and composition of lipoproteins secreted by HepG2 cells as influenced by the type of fatty acid present in the incubation medium. Cells were preincubated for 24 h with palmitic, oleic, elaidic, linoleic or conjugated linoleic acid (CLA), and the lipoproteins secreted during a subsequent incubation period of 24 h were collected for analysis. The secretion rate of apolipoprotein B-100 (apoB) was significantly greater in HepG2 cells preincubated with elaidic acid compared with those preincubated with palmitic or oleic acid; apoB secretion was greater in cells preincubated with CLA compared with those preincubated with linoleic acid. The lipid composition of secreted lipoproteins was also influenced by fatty acid treatment, resulting in significantly smaller lipoprotein particles secreted by cells preincubated with elaidic acid and CLA compared with those secreted by cells treated with oleic acid and linoleic acid, respectively. Our results are relevant to human metabolism for the following reasons: (1) the size of plasma low-density lipoproteins (LDLs) is determined, at least in part, by the composition of apoB-containing lipoproteins secreted by the liver; (2) small plasma LDL particles are associated with an increased risk of coronary heart disease; and (3) specific dietary fatty acids can affect the composition and size of plasma LDLs, thereby imparting a relative atherogenicity to plasma LDLs independent of LDL cholesterol concentration. The present study therefore suggests that elaidic acid and CLA promote the hepatic secretion of small apoB-containing lipoproteins, which could lead to an increased production of small plasma LDL particles.  相似文献   

16.
17.
Monolayers of Caco-2 cells, a human enterocyte cell line, were incubated with [1-14C]15-hydroxyeicosatetraenoic acid (15-HETE), a lipid mediator of inflammation, and [1-14C]arachidonic acid. Both fatty acids were taken up readily and metabolized by Caco-2 cells. [1-14C]Arachidonic acid was directly esterified in cellular phospholipids and, to a lesser extent, in triglycerides. When [1-14C]15-hydroxyeicosatetraenoic acid was incubated with Caco-2 cells, about 10% was directly esterified into cellular lipids but most (55%) was beta-oxidized to ketone bodies, CO2, and acetate, with very little accumulation of shorter carbon chain products of partial beta-oxidation. The radiolabeled acetate generated from beta-oxidation of [1-14C]15-hydroxyeicosatetraenoic acid was incorporated into the synthesis of new fatty acids, primarily [14C]palmitate, which in turn was esterified into cellular phospholipids, with lesser amounts in triglycerides. Caco-2 cells were also incubated with [5,6,8,9,11,12,14,15-3H]15-hydroxyeicosatetraenoic acid; most of the radiolabel was recovered either in ketone bodies or in [3H]palmitate esterified in phospholipids and triglycerides, demonstrating that most of the [3H]15-hydroxyeicosatetraenoic acid underwent several cycles of beta-oxidation. The binding of both 15-hydroxyeicosatetraenoic acid and arachidonic acid to hepatic fatty acid binding protein, the only fatty acid binding protein in Caco-2 cells, was measured. The Kd (6.0 microM) for 15-HETE was three-fold higher than that for arachidonate (2.1 microM).  相似文献   

18.
The human intestinal cell line, CaCo-2, was used to study the effect of the n-3 fatty acid, eicosapentaenoic acid, on triacylglycerol secretion. In cells incubated with 250 microM eicosapentaenoic acid, the incorporation of [3H]glycerol into triacylglycerols secreted into the medium was decreased by 58% compared to cells incubated with 250 microM oleic acid. The incorporation of [3H]glycerol into cellular triacylglycerols was decreased 32% in cells incubated with eicosapentaenoic acid. In cells preincubated with [3H]glycerol to label existing triacylglycerols, the rates of secretion of preformed triacylglycerols were similar in response to the addition of either fatty acid. Initial uptake rates of the n-3 fatty acid were higher than for oleic acid. Both eicosapentaenoic acid and oleic acid were minimally oxidized to CO2. Oleic acid was predominantly incorporated into cellular triacylglycerols (62% vs. 47%), whereas more eicosapentaenoic acid was incorporated into cellular phospholipids (46% vs. 30%). Phospholipids of microsomes prepared from cells incubated with eicosapentaenoic acid were enriched in this fatty acid. The rate of synthesis of triacylglycerol and diacylglycerol acyltransferase activities were significantly less in microsomes prepared from cells incubated with eicosapentaenoic acid. Triacylglycerol mass secreted by CaCo-2 cells incubated with either fatty acid was similar. In CaCo-2 cells, eicosapentaenoic acid decreases the synthesis and secretion of newly synthesized triacylglycerol without decreasing the secretion of triacylglycerol mass. Modification of microsomal membrane phospholipid fatty acid composition is associated with a decrease in microsomal triacylglycerol synthesis and diacylglycerol acyltransferase activities.  相似文献   

19.
Human hepatoma HepG2 cells were used to study the effects of cholesterol loading and depletion on apolipoprotein B (apoB) secretion and low-density lipoprotein (LDL) receptor activity. Exposure of HepG2 cells to cholesterol and oleic acid, which elevated intracellular cholesterol levels, stimulated apoB secretion and reduced receptor-mediated uptake of LDL, whereas recombinant complexes of apolipoprotein A-I with dimyristoylphosphatidylcholine, which depleted the cellular cholesterol pool, inhibited apoB secretion and up-regulated LDL receptors. Significant negative correlation (r = -0.92, P less than 0.001) between the levels of apoB secretion and LDL uptake was found. These data suggest that the cholesterol content of the cells may induce concomitant changes in apoB secretion and LDL receptor activity.  相似文献   

20.
Cholesterol synthesis in animal cells is regulated by sterol regulatory element-binding protein (SREBP)-2. The objective of this study was to investigate whether activation of peroxisome proliferator-activatedreceptor (PPAR)-gamma influences the SREBP-2 dependent cholesterol synthesis in liver and intestinal cells. Therefore, HepG2 and Caco-2 cells were incubated with and without 10 or 30 microM of troglitazone, a synthetic PPAR gamma agonist, for 4 hrs. Incubation with 10 or 30 microM of troglitazone caused a significant, dose-dependent reduction of cholesterol synthesis in both HepG2 and Caco-2 cells (P < 0.05). HepG2 and Caco-2 cells incubated with 10 or 30 microM of troglitazone had also lower mRNA concentrations and lower nuclear protein concentrations of SREBP-2 than untreated control cells (P < 0.05). mRNA concentrations of the SREBP-2 target genes HMG-CoA reductase and LDL receptor were also reduced in HepG2 and Caco-2 cells treated with 30 microM of troglitazone compared to control cells (P < 0.05). In conclusion, this study shows that PPAR gamma activation by troglitazone lowers the cholesterol synthesis in HepG2 and Caco-2 cells by reducing the concentration of nuclear SREBP-2 and successive downregulation of its target genes involved in cholesterol synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号