首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
《Translational oncology》2020,13(2):321-328
BACKGROUND: ESR1 mutations are frequently detected in ER+ MBC, and have been reported to be associated with endocrine therapy resistance. However, there are little researches to validate whether dynamic monitoring of ESR1 mutations could serve as a predictive plasma biomarker of acquired resistance to endocrine therapy. Therefore, in this study, we performed longitudinal circulating tumor DNA (ctDNA) detection to evaluate the clinical implications of monitoring ESR1 mutations. METHODS: We performed longitudinal dynamic mutation analyses of plasma samples from 45 patients with metastatic breast cancer (MBC) and sequencing paired biopsy tissues, using a targeted NGS panel of 425 genes. These patients were treated at the Second Affiliated Hospital of Dalian Medical University between January 2017 and February 2019 with written informed consent. RESULTS: Mutations profiles were highly concordant between plasma and paired tissue samples from 45 MBC patients (r = 0.96, P < 0.0001). ESR1 mutations were enriched in ER+ MBC patients after AI therapy (17.8%, 8/45). The median time from AI endocrine therapies to the initial detection of ESR1 mutation was 39 months (95% CI 21.32–57.57). Some hotspot mutations (Y537S (n = 5), Y537N (n = 1), D538G (n = 2), E380Q (n = 2)) and several rare mutations (L345SfsX7, 24fs, G344delinsGC) were identified in our cohort. In addition, we observed that two patients obtained multiple ESR1 mutations over the course of treatment (Y537N/Y537S/D538G, L345SfsX7/24fs/E380Q). Through dynamically monitoring ESR1 mutations by ctDNA, we demonstrated that the change of allele frequency of ESR1 mutations was an important biomarker, which could predict endocrine resistance of ER+ MBC in our study. We also observed that the combination of everolimus in four cases with acquired ESR1 mutations showed longer PFS than other therapies without everolimus. CONCLUSION: The dynamic monitoring of ESR1 mutations by ctDNA is a promising tool to predict endocrine therapy resistance in ER+ MBC patients.  相似文献   

2.
The identification of the molecular drivers of cancer by sequencing is the backbone of precision medicine and the basis of personalized therapy; however, biopsies of primary tumors provide only a snapshot of the evolution of the disease and may miss potential therapeutic targets, especially in the metastatic setting. A liquid biopsy, in the form of cell-free DNA (cfDNA) sequencing, has the potential to capture the inter- and intra-tumoral heterogeneity present in metastatic disease, and, through serial blood draws, track the evolution of the tumor genome.In order to determine the clinical utility of cfDNA sequencing we performed whole-exome sequencing on cfDNA and tumor DNA from two patients with metastatic disease; only minor modifications to our sequencing and analysis pipelines were required for sequencing and mutation calling of cfDNA. The first patient had metastatic sarcoma and 47 of 48 mutations present in the primary tumor were also found in the cell-free DNA. The second patient had metastatic breast cancer and sequencing identified an ESR1 mutation in the cfDNA and metastatic site, but not in the primary tumor. This likely explains tumor progression on Anastrozole. Significant heterogeneity between the primary and metastatic tumors, with cfDNA reflecting the metastases, suggested separation from the primary lesion early in tumor evolution. This is best illustrated by an activating PIK3CA mutation (H1047R) which was clonal in the primary tumor, but completely absent from either the metastasis or cfDNA. Here we show that cfDNA sequencing supplies clinically actionable information with minimal risks compared to metastatic biopsies. This study demonstrates the utility of whole-exome sequencing of cell-free DNA from patients with metastatic disease. cfDNA sequencing identified an ESR1 mutation, potentially explaining a patient’s resistance to aromatase inhibition, and gave insight into how metastatic lesions differ from the primary tumor.  相似文献   

3.
BackgroundAlthough recent advances in circulating DNA analysis allow the prediction of tumor genomes by noninvasive means, some challenges remain, which limit the widespread introduction of cfDNA in cancer diagnostics. We analyzed the status of the two best characterized colorectal cancer (CRC) genetic and epigenetic alterations in a cohort of CRC patients, and then compared the degree to which the two patterns move from tissue to plasma in order to improve our understanding of biology modulating the concordance between tissues and plasma methylation and mutation profiles.MethodsPlasma and tumor tissues were collected from 85 patients (69±14 years, 56 males). KRAS and SEPT9 status was assessed by allele refractory mutation system quantitative PCR and quantitative methylation-specific PCR, respectively. Six of the most common point mutations at codon 12 and 13 were investigated for KRAS analysis.ResultsKRAS mutations and SEPT9 promoter methylation were present in 34% (29/85) and in 82% (70/85) of primary tumor tissue samples. Both genetic and epigenetic analyses of cfDNA revealed a high overall concordance and specificity compared with tumor-tissue analyses. Patients presenting with both genetic and epigenetic alterations in tissue specimens (31.8%, 27/85) were considered for further analyses. The median methylation rates in tumour tissues and plasma samples were 64.5% (12.2–99.8%) and 14.5% (0–45.5%), respectively. The median KRAS mutation load (for matched mutations) was 33.6% (1.8–86.3%) in tissues and 2.9% (0–17.3) in plasma samples. The plasma/tissue (p/t) ratio of SEPT9 methylation rate was significantly higher than the p/t ratio of KRAS mutation load, especially in early stage cancers (p=0.0108).ConclusionThe results of this study show a discrepant rate of epigenetic vs. genetic alterations moving from tissue to plasma. Many factors could affect mutation cfDNA analysis, including both presence of tumor clonal heterogeneity and strict compartmentalization of KRAS mutation profile. The present study highlights the importance of considering the nature of the alteration when analyzing tumor-derived cfDNA.  相似文献   

4.
Human ether-à-go-go–related gene (hERG, Kv11.1) potassium channels have unusually slow activation and deactivation kinetics. It has been suggested that, in fast-activating Shaker channels, a highly conserved Phe residue (F290) in the S2 segment forms a putative gating charge transfer center that interacts with S4 gating charges, i.e., R362 (R1) and K374 (K5), and catalyzes their movement across the focused electric field. F290 is conserved in hERG (F463), but the relevant residues in the hERG S4 are reversed, i.e., K525 (K1) and R537 (R5), and there is an extra positive charge adjacent to R537 (i.e., K538). We have examined whether hERG channels possess a transfer center similar to that described in Shaker and if these S4 charge differences contribute to slow gating in hERG channels. Of five hERG F463 hydrophobic substitutions tested, F463W and F463Y shifted the conductance–voltage (G-V) relationship to more depolarized potentials and dramatically slowed channel activation. With the S4 residue reversals (i.e., K525, R537) taken into account, the closed state stabilization by F463W is consistent with a role for F463 that is similar to that described for F290 in Shaker. As predicted from results with Shaker, the hERG K525R mutation destabilized the closed state. However, hERG R537K did not stabilize the open state as predicted. Instead, we found the neighboring K538 residue to be critical for open state stabilization, as K538R dramatically slowed and right-shifted the voltage dependence of activation. Finally, double mutant cycle analysis on the G-V curves of F463W/K525R and F463W/K538R double mutations suggests that F463 forms functional interactions with K525 and K538 in the S4 segment. Collectively, these data suggest a role for F463 in mediating closed–open equilibria, similar to that proposed for F290 in Shaker channels.  相似文献   

5.

Background

This retrospective study was undertaken to determine if the plasma circulating tumor DNA (ctDNA) level and tumor biological features in patients with advanced solid tumors affected the detection of genomic alterations (GAs) by a plasma ctDNA assay.

Method

Cell-free DNA (cfDNA) extracted from frozen plasma (N?=?35) or fresh whole blood (N?=?90) samples were subjected to a 62-gene hybrid capture-based next-generation sequencing assay FoundationACT. Concordance was analyzed for 51 matched FoundationACT and FoundationOne (tissue) cases. The maximum somatic allele frequency (MSAF) was used to estimate the amount of tumor fraction of cfDNA in each sample. The detection of GAs was correlated with the amount of cfDNA, MSAF, total tumor anatomic burden (dimensional sum), and total tumor metabolic burden (SUVmax sum) of the largest ten tumor lesions on PET/CT scans.

Results

FoundationACT detected GAs in 69 of 81 (85%) cases with MSAF >?0. Forty-two of 51 (82%) cases had ≥?1 concordance GAs matched with FoundationOne, and 22 (52%) matched to the National Comprehensive Cancer Network (NCCN)-recommended molecular targets. FoundationACT also detected 8 unique molecular targets, which changed the therapy in 7 (88%) patients who did not have tumor rebiopsy or sufficient tumor DNA for genomic profiling assay. In all samples (N?=?81), GAs were detected in plasma cfDNA from cancer patients with high MSAF quantity (P?=?0.0006) or high tumor metabolic burden (P?=?0.0006) regardless of cfDNA quantity (P?=?0.2362).

Conclusion

This study supports the utility of using plasma-based genomic assays in cancer patients with high plasma MSAF level or high tumor metabolic burden.
  相似文献   

6.
Measuring total cell-free DNA (cfDNA) or cancer-specific mutations herein has presented as new tools in aiding the treatment of cancer patients. Studies show that total cfDNA bears prognostic value in metastatic colorectal cancer (mCRC) and that measuring cancer-specific mutations could supplement biopsies. However, limited information is available on the performance of different methods. Blood samples from 28 patients with mCRC and known KRAS mutation status were included. cfDNA was extracted and quantified with droplet digital polymerase chain reaction (ddPCR) measuring Beta-2 Microglobulin. KRAS mutation detection was performed using ddPCR (Bio-Rad) and next-generation sequencing (NGS, Ion Torrent PGM). Comparing KRAS mutation status in plasma and tissue revealed concordance rates of 79% and 89% for NGS and ddPCR. Strong correlation between the methods was observed. Most KRAS mutations were also detectable in 10-fold diluted samples using the ddPCR. We find that for detection of KRAS mutations in ctDNA ddPCR was superior to NGS both in analysis success rate and concordance to tissue. We further present results indicating that lower amount of plasma may be used for detection of KRAS mutations in mCRC.  相似文献   

7.
《Endocrine practice》2018,24(5):453-459
Objective: Circulating tumor DNA (ctDNA), a subset of cell-free DNA (cfDNA), is a potential biomarker for thyroid cancer. We determined the performance of a ctDNA panel for detecting thyroid malignancy in patients with thyroid nodules.Methods: Sixty-six patients with thyroid nodules without a prior history of cancer enrolled in a prospective, 1-year study in which blood was drawn for ctDNA analysis prior to undergoing fine-needle aspiration biopsy (FNAB) of thyroid nodules. The ctDNA panel consisted of 96-mutations in 9 cancer driver genes. The primary outcome measures were the sensitivity, specificity, and positive and negative predictive values (PPV, NPV) of our ctDNA panel for the diagnosis of thyroid malignancy as determined by pathologic and/or molecular tissue examination.Results: Results from 10 subjects could not be determined due to inadequate volume or technical issues. The final classifications of the thyroid nodules were 13 malignant and 43 benign lesions. A KRAS G12V mutation was detected in the plasma of 1 patient with stage IVA papillary carcinoma whose tissue contained the same mutation. Two of the 43 patients with benign lesions also had ctDNA detected, giving a sensitivity of 7.7%, specificity of 95.35%, PPV of 33.33%, and NPV of 77.35%. There were no significant differences between benign or malignant lesions in cfDNA levels.Conclusion: Neither cfDNA measurements nor our panel of ctDNA mutations are sensitive or specific enough to provide valuable information over FNAB. An expanded panel and the inclusion of proteomics may improve sensitivity and specificity for thyroid cancer detection.Abbreviations: cfDNA = cell-free DNA; ctDNA = circulating tumor DNA; FNAB = fine-needle aspiration biopsy; NIFTP = noninvasive follicular thyroid neoplasm with papillary-like nuclear features  相似文献   

8.
9.
10.

Background

Circulating cell-free DNA (cfDNA) in plasma has shown potential as biomarker in various cancers and could become an importance source for tumour mutation detection. The objectives of our study were to establish a normal range of cfDNA in a cohort of healthy individuals and to compare this with four cohorts of metastatic colorectal cancer (mCRC) patients. We also investigated the prognostic value of cfDNA and analysed the tumour-specific KRAS mutations in the plasma.

Methods

The study was a prospective biomarker evaluation in four consecutive Phase II trials, including 229 patients with chemotherapy refractory mCRC and 100 healthy individuals. Plasma was obtained from an EDTA blood-sample, and the total number of DNA alleles and KRAS mutated alleles were assessed using an in-house ARMS-qPCR as previously described.

Results

Median cfDNA levels were higher in mCRC compared to controls (p <0.0001). ROC analysis revealed an AUC of 0.9486 (p<0.00001). Data showed impaired OS with increasing levels of baseline cfDNA both when categorising patients by quartiles of cfDNA and into low or high cfDNA groups based on the upper normal range of the control group (Median OS 10.2 (8.3–11.7) and 5.2 (4.6–5.9) months, respectively, HR 1.78, p = 0.0006). Multivariate analysis confirmed an independent prognostic value of cfDNA (HR 1.5 (95% CI 1.3–1.7) for each increase in the cfDNA quartile). The overall concordance of KRAS mutations in plasma and tissue was high (85%).

Conclusions

These data confirm the prognostic value of cfDNA measurement in plasma and utility for mutation detection with the method presented.  相似文献   

11.
De novo mutations in ATP1A3, the gene encoding the α3-subunit of Na+,K+-ATPase, are associated with the neurodevelopmental disorder Alternating Hemiplegia of Childhood (AHC). The aim of this study was to determine the functional consequences of six ATP1A3 mutations (S137Y, D220N, I274N, D801N, E815K, and G947R) associated with AHC. Wild type and mutant Na+,K+-ATPases were expressed in Sf9 insect cells using the baculovirus expression system. Ouabain binding, ATPase activity, and phosphorylation were absent in mutants I274N, E815K and G947R. Mutants S137Y and D801N were able to bind ouabain, although these mutants lacked ATPase activity, phosphorylation, and the K+/ouabain antagonism indicative of modifications in the cation binding site. Mutant D220N showed similar ouabain binding, ATPase activity, and phosphorylation to wild type Na+,K+-ATPase. Functional impairment of Na+,K+-ATPase in mutants S137Y, I274N, D801N, E815K, and G947R might explain why patients having these mutations suffer from AHC. Moreover, mutant D801N is able to bind ouabain, whereas mutant E815K shows a complete loss of function, possibly explaining the different phenotypes for these mutations.  相似文献   

12.
《Biophysical journal》2022,121(19):3651-3662
Mutations of the intracellular estrogen receptor alpha (ERα) is implicated in 70% of breast cancers. Therefore, it is of considerable interest to image various mutants (L536S, Y537S, D538G) in living cancer cell lines, particularly as a function of various anticancer drugs. We therefore developed a small (13 kDa) Affimer, which, after fluorescent labeling, is able to efficiently label ERα by traveling through temporary pores in the cell membrane, created by the toxin streptolysin O. The Affimer, selected by a phage display, predominantly labels the Y537S mutant and can tell the difference between L536S and D538G mutants. The vast majority of Affimer-ERαY537S is in the nucleus and is capable of an efficient, unrestricted navigation to its target DNA sequence, as visualized by single-molecule fluorescence. The Affimer can also differentiate the effect of selective estrogen receptor modulators. More generally, this is an example of a small binding reagent—an Affimer protein—that can be inserted into living cells with minimal perturbation and high efficiency, to image an endogenous protein.  相似文献   

13.
BackgroundThe leading cause of mortality for patients with the neurofibromatosis type 1 (NF1) cancer predisposition syndrome is the development of malignant peripheral nerve sheath tumor (MPNST), an aggressive soft tissue sarcoma. In the setting of NF1, this cancer type frequently arises from within its common and benign precursor, plexiform neurofibroma (PN). Transformation from PN to MPNST is challenging to diagnose due to difficulties in distinguishing cross-sectional imaging results and intralesional heterogeneity resulting in biopsy sampling errors.Methods and findingsThis multi-institutional study from the National Cancer Institute and Washington University in St. Louis used fragment size analysis and ultra-low-pass whole genome sequencing (ULP-WGS) of plasma cell-free DNA (cfDNA) to distinguish between MPNST and PN in patients with NF1. Following in silico enrichment for short cfDNA fragments and copy number analysis to estimate the fraction of plasma cfDNA originating from tumor (tumor fraction), we developed a noninvasive classifier that differentiates MPNST from PN with 86% pretreatment accuracy (91% specificity, 75% sensitivity) and 89% accuracy on serial analysis (91% specificity, 83% sensitivity). Healthy controls without NF1 (participants = 16, plasma samples = 16), PN (participants = 23, plasma samples = 23), and MPNST (participants = 14, plasma samples = 46) cohorts showed significant differences in tumor fraction in plasma (P = 0.001) as well as cfDNA fragment length (P < 0.001) with MPNST samples harboring shorter fragments and being enriched for tumor-derived cfDNA relative to PN and healthy controls. No other covariates were significant on multivariate logistic regression. Mutational analysis demonstrated focal NF1 copy number loss in PN and MPNST patient plasma but not in healthy controls. Greater genomic instability including alterations associated with malignant transformation (focal copy number gains in chromosome arms 1q, 7p, 8q, 9q, and 17q; focal copy number losses in SUZ12, SMARCA2, CDKN2A/B, and chromosome arms 6p and 9p) was more prominently observed in MPNST plasma. Furthermore, the sum of longest tumor diameters (SLD) visualized by cross-sectional imaging correlated significantly with paired tumor fractions in plasma from MPNST patients (r = 0.39, P = 0.024). On serial analysis, tumor fraction levels in plasma dynamically correlated with treatment response to therapy and minimal residual disease (MRD) detection before relapse. Study limitations include a modest MPNST sample size despite accrual from 2 major referral centers for this rare malignancy, and lack of uniform treatment and imaging protocols representing a real-world cohort.ConclusionsTumor fraction levels derived from cfDNA fragment size and copy number alteration analysis of plasma cfDNA using ULP-WGS significantly correlated with MPNST tumor burden, accurately distinguished MPNST from its benign PN precursor, and dynamically correlated with treatment response. In the future, our findings could form the basis for improved early cancer detection and monitoring in high-risk cancer-predisposed populations.

Jeffrey J. Szymanski and colleagues investigate the use of cell-free DNA ultra-low-pass whole genome sequencing to distinguish the malignant peripheral nerve sheath tumor (MPNST) from its benign precursor lesion in patients with Neurofibromatosis type 1 in United States.  相似文献   

14.
《Translational oncology》2020,13(3):100735
ESR1 mutations in breast cancer are known as one of the mechanisms of resistance to aromatase inhibitors. These mutations often occur in the hotspot regions in the ligand binding domain (LBD), but comprehensive mutational analysis has shown that mutations are observed throughout the whole LBD. We previously developed a molecular barcode sequencing (MB-NGS) technique to detect ESR1 hotspot mutations in plasma with high sensitivity. In this study, we have developed a multiplex MB-NGS assay that covers the whole LBD of ESR1. The assay demonstrated that the background errors in the plasma DNA of 10 healthy controls were below 0.1%; thus, the limit of detection was set at 0.1%. We analyzed the plasma DNA of 54 patients with estrogen receptor–positive metastatic breast cancer. Seventeen mutations were detected in 13 patients (24%), with variant allele frequencies ranging from 0.13% to 10.67%, including six rare mutations with a variant allele frequency <1.0% and a novel nonhotspot mutation (A312V). Three patients had double mutations located in the same amplicons, and it was revealed that the double mutations were located in different alleles. ESR1 hotspot mutations were associated with a longer duration of aromatase inhibitor treatment under metastatic conditions and to liver metastasis. The multiplex MB-NGS assay is useful for the sensitive and comprehensive detection of mutations throughout the whole LBD of ESR1. Our assay can be applied to any specific target region of interest using tailor-made primers and can result in minimized sequencing volume and cost.  相似文献   

15.

Background

Mutations in the DNAI1 gene, encoding a component of outer dynein arms of the ciliary apparatus, are the second most important genetic cause of primary ciliary dyskinesia (PCD), the genetically heterogeneous recessive disorder with the prevalence of ~1/20,000. The estimates of the DNAI1 involvement in PCD pathogenesis differ among the reported studies, ranging from 4% to 10%.

Methods

The coding sequence of DNAI1 was screened (SSCP analysis and direct sequencing) in a group of PCD patients (157 families, 185 affected individuals), the first ever studied large cohort of PCD patients of Slavic origin (mostly Polish); multiplex ligation-dependent probe amplification (MLPA) analysis was performed in a subset of ~80 families.

Results

Three previously reported mutations (IVS1+2-3insT, L513P and A538T) and two novel missense substitutions (C388Y and G515S) were identified in 12 families (i.e. ~8% of non-related Polish PCD patients). The structure of background SNP haplotypes indicated common origin of each of the two most frequent mutations, IVS1+2-3insT and A538T. MLPA analysis did not reveal any significant differences between patients and control samples. The Polish cohort was compared with all the previously studied PCD groups (a total of 487 families): IVS1+2-3insT remained the most prevalent pathogenetic change in DNAI1 (54% of the mutations identified worldwide), and the increased global prevalence of A538T (14%) was due to the contribution of the Polish cohort.

Conclusions

The worldwide involvement of DNAI1 mutations in PCD pathogenesis in families not preselected for ODA defects ranges from 7 to 10%; this global estimate as well as the mutation profile differs in specific populations. Analysis of the background SNP haplotypes suggests that the increased frequency of chromosomes carrying A538T mutations in Polish patients may reflects local (Polish or Slavic) founder effect. Results of the MLPA analysis indicate that no large exonic deletions are involved in PCD pathogenesis.  相似文献   

16.
Knockdown resistance (kdr) mutations in the voltage-gated sodium channel (VGSC) of mosquitoes confer resistance to insecticides. Although insecticide resistance has been suspected to be widespread in the natural population of Aedes aegypti in Myanmar, only limited information is currently available. The overall prevalence and distribution of kdr mutations was analyzed in Ae. aegypti from Mandalay areas, Myanmar. Sequence analysis of the VGSC in Ae. aegypti from Myanmar revealed amino acid mutations at 13 and 11 positions in domains II and III of VGSC, respectively. High frequencies of S989P (68.6%), V1016G (73.5%), and F1534C (40.1%) were found in domains II and III. T1520I was also found, but the frequency was low (8.1%). The frequency of S989P/V1016G was high (55.0%), and the frequencies of V1016G/F1534C and S989P/V1016G/F1534C were also high at 30.1% and 23.5%, respectively. Novel mutations in domain II (L963Q, M976I, V977A, M994T, L995F, V996M/A, D998N, V999A, N1013D, and F1020S) and domain III (K1514R, Y1523H, V1529A, F1534L, F1537S, V1546A, F1551S, G1581D, and K1584R) were also identified. These results collectively suggest that high frequencies of kdr mutations were identified in Myanmar Ae. aegypti, indicating a high level of insecticide resistance.  相似文献   

17.
BackgroundRadiology is the current standard for monitoring treatment responses in lung cancer. Limited sensitivity, exposure to ionizing radiations and related sequelae constitute some of its major limitation. Non-invasive and highly sensitive methods for early detection of treatment failures and resistance-associated disease progression would have additional clinical utility.MethodsWe analyzed serially collected plasma and paired tumor samples from lung cancer patients (61 with stage IV, 48 with stages I-III disease) and 61 healthy samples by means of next-generation sequencing, radiological imaging and droplet digital polymerase chain reaction (ddPCR) mutation and methylation assays.ResultsA 62% variant concordance between tumor-reported and circulating-free DNA (cfDNA) sequencing was observed between baseline liquid and tissue biopsies in stage IV patients. Interestingly, ctDNA sequencing allowed for the identification of resistance-mediating p.T790M mutations in baseline plasma samples for which no such mutation was observed in the corresponding tissue. Serial circulating tumor DNA (ctDNA) mutation analysis by means of ddPCR revealed a general decrease in ctDNA loads between baseline and first reassessment. Additionally, serial ctDNA analyses only recapitulated computed tomography (CT) -monitored tumor dynamics of some, but not all lesions within the same patient. To complement ctDNA variant analysis we devised a ctDNA methylation assay (methcfDNA) based on methylation-sensitive restriction enzymes. cfDNA methylation showed and area under the curve (AUC) of > 0.90 in early and late stage cases. A decrease in methcfDNA between baseline and first reassessment was reflected by a decrease in CT-derive tumor surface area, irrespective of tumor mutational status.ConclusionTaken together, our data support the use of cfDNA sequencing for unbiased characterization of the molecular tumor architecture, highlights the impact of tumor architectural heterogeneity on ctDNA-based tumor surveillance and the added value of complementary approaches such as cfDNA methylation for early detection and monitoring  相似文献   

18.
Ma C  Tran J  Li C  Ganesan L  Wood D  Morrissette N 《Genetics》2008,180(2):845-856
Dinitroanilines (oryzalin, trifluralin, ethafluralin) disrupt microtubules in protozoa but not in vertebrate cells, causing selective death of intracellular Toxoplasma gondii parasites without affecting host cells. Parasites containing α1-tubulin point mutations are dinitroaniline resistant but show increased rates of aberrant replication relative to wild-type parasites. T. gondii parasites bearing the F52Y mutation were previously demonstrated to spontaneously acquire two intragenic mutations that decrease both resistance levels and replication defects. Parasites bearing the G142S mutation are largely dependent on oryzalin for viable growth in culture. We isolated 46 T. gondii lines that have suppressed microtubule defects associated with the G142S or the F52Y mutations by acquiring secondary mutations. These compensatory mutations were α1-tubulin pseudorevertants or extragenic suppressors (the majority alter the β1-tubulin gene). Many secondary mutations were located in tubulin domains that suggest that they function by destabilizing microtubules. Most strikingly, we identified seven novel mutations that localize to an eight-amino-acid insert that stabilizes the α1-tubulin M loop, including one (P364R) that acts as a compensatory mutation in both F52Y and G142S lines. These lines have reduced dinitroaniline resistance but most perform better than parental lines in competition assays, indicating that there is a trade-off between resistance and replication fitness.  相似文献   

19.
20.
Site-directed mutagenesis of active site residues of deacetoxycephalosporin C synthase active site residues was carried out to investigate their role in catalysis. The following mutations were made and their effects on the conversion of 2-oxoglutarate and the oxidation of penicillin N or G were assessed: M180F, G299N, G300N, Y302S, Y302F/G300A, Y302E, Y302H, and N304A. The Y302S, Y302E, and Y302H mutations reduced 2-oxoglutarate conversions and abolished (<2%) penicillin G oxidation. The Y302F/G300A mutation caused partial uncoupling of penicillin G oxidation from 2-oxoglutarate conversion, but did not uncouple penicillin N oxidation from 2-oxoglutarate conversion. Met-180 is involved in binding 2-oxoglutarate, and the M180F mutation caused uncoupling of 2-oxoglutarate from penicillin oxidation. The N304A mutation apparently enhanced in vitro conversion of penicillin N but had little effect on the oxidation of penicillin G, under standard assay conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号