首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
IntroductionPancreatic ductal adenocarcinoma (PDAC) is characterized by abundant stroma and cancer-associated fibroblasts (CAFs) provide a favorable tumor microenvironment. Smad4 is known as tumor suppressor in several types of cancers including PDAC, and loss of Smad4 triggers accelerated cell invasiveness and metastatic potential. The thrombospondin-1 (TSP-1) can act as a major activator of latent transforming growth factor-β (TGF-β) in vivo. However, the roles of TSP-1 and the mediator of Smad4 loss and TGF-β signal activation during PDAC progression have not yet been addressed. The aim is to elucidate the biological role of TSP-1 in PDAC progression.Methods and resultsHigh substrate stiffness stimulated TSP-1 expression in CAFs, and TSP-1 knockdown inhibited cell proliferation with suppressed profibrogenic and activated stroma-related gene expressions in CAFs. Paracrine TSP-1 treatment for PDAC cells promoted cell proliferation and epithelial mesenchymal transition (EMT) with activated TGF-β signals such as phosphorylated Akt and Smad2/3 expressions. Surprisingly, knockdown of DPC4 (Smad4 gene) induced TSP-1 overexpression with TGF-β signal activation in PDAC cells. Interestingly, TSP-1 overexpression also induced downregulation of Smad4 expression and enhanced cell proliferation in vitro and in vivo. Treatment with LSKL peptide, which antagonizes TSP-1-mediated latent TGF-β activation, attenuated cell proliferation, migration and chemoresistance with enhanced apoptosis in PDAC cells.ConclusionsTSP-1 derived from CAFs stimulates loss of Smad4 expression in cancer cells and accelerates malignant behavior by TGF-β signal activation in PDAC. TSP-1 could be a novel therapeutic target, not only for CAFs in stiff stroma, but also for cancer cells in the PDAC microenvironment.  相似文献   

2.
Tumors are characterized by extracellular matrix (ECM) deposition, remodeling, and cross-linking that drive fibrosis to stiffen the stroma and promote malignancy. The stiffened stroma enhances tumor cell growth, survival and migration and drives a mesenchymal transition. A stiff ECM also induces angiogenesis, hypoxia and compromises anti-tumor immunity. Not surprisingly, tumor aggression and poor patient prognosis correlate with degree of tissue fibrosis and level of stromal stiffness. In this review, we discuss the reciprocal interplay between tumor cells, cancer associated fibroblasts (CAF), immune cells and ECM stiffness in malignant transformation and cancer aggression. We discuss CAF heterogeneity and describe its impact on tumor development and aggression focusing on the role of CAFs in engineering the fibrotic tumor stroma and tuning tumor cell tension and modulating the immune response. To illustrate the role of mechanoreciprocity in tumor evolution we summarize data from breast cancer and pancreatic ductal carcinoma (PDAC) studies, and finish by discussing emerging anti-fibrotic strategies aimed at treating cancer.  相似文献   

3.
Pancreatic stellate cells (PSCs) and cancer-associated fibroblasts (CAFs) are highly abundant cells in the pancreatic tumor microenvironment (TME) that modulate desmoplasia. The formation of a dense stroma leads to immunosuppression and therapy resistance that are major causes of treatment failure in pancreatic ductal adenocarcinoma (PDAC). Recent evidence suggests that several subpopulations of CAFs in the TME can interconvert, explaining the dual roles (antitumorigenic and protumorigenic) of CAFs in PDAC and the contradictory results of CAF-targeted therapies in clinical trials. This highlights the need to clarify CAF heterogeneity and their interactions with PDAC cells. This review focuses on the communication between activated PSCs/CAFs and PDAC cells, as well as on the mechanisms underlying this crosstalk. CAF-focused therapies and emerging biomarkers are also outlined.  相似文献   

4.
Cancer-associated fibroblasts (CAFs), the key component in pancreatic tumor microenvironment (TME), originate from many sources and are naturally heterogeneous in phenotype and function. Numerous studies have identified their crucial role in promoting tumorigenesis through many routes including fostering cancer proliferation, angiogenesis, invasion, and metastasis. Conversely, research also indicates that subsets of CAFs express anti-tumor activity. These dual effects reflect the complexity of CAF heterogeneity and their interactions with other cells and factors in pancreatic TME. A critical component in this environment is infiltrated immune cells and immune mediators, which can communicate with CAFs. The crosstalk occurs via the production of various cytokines, chemokines, and other mediators and shapes the immunological state in TME. Comprehensive studies of the crosstalk between CAFs and tumor immune environment, particularly internal mechanisms interlinking CAFs and immune effectors, may provide new approaches for pancreatic ductal adenocarcinoma (PDAC) treatments. In this review, we explore the characteristics of CAFs, describe the interplay among CAFs, infiltrated immune cells, other mediators, and provide an overview of recent CAF-target therapies, their limitations, and potential research directions in CAF in the context of PDAC.  相似文献   

5.
6.
The activation of cancer-associated fibroblasts (CAFs) is a key event in tumor progression, and alternative extracellular matrix (ECM) proteins derived from CAFs induce ECM remodeling and cancer cell invasion. Here we found that miR-200 s, which are generally downregulated in activated CAFs in breast cancer tissues and in normal fibroblasts (NFs) activated by breast cancer cells, are direct mediators of NF reprogramming into CAFs and of ECM remodeling. NFs with downregulated miR-200 s displayed the traits of activated CAFs, including accelerated migration and invasion. Ectopic expression of miR-200 s in CAFs at least partially restored the phenotypes of NFs. CAF activation may be governed by the targets of miR-200 s, Fli-1 and TCF12, which are responsible for cell development and differentiation; Fli-1 and TCF12 were obviously elevated in CAFs. Furthermore, miR-200 s and their targets influenced collagen contraction by CAFs. The upregulation of fibronectin and lysyl oxidase directly by miR-200 or indirectly through Fli-1 or TCF12 contributed to ECM remodeling, triggering the invasion and metastasis of breast cancer cells both in vitro and vivo. Thus, these data provide important and novel insights into breast CAF activation and ECM remodeling, which trigger tumor cell invasion.It has been well established that a reactive microenvironment induces cancer cells to proliferate, migrate and become invasive. Cancer-associated fibroblasts (CAFs) are thought to be the main players among the cohabitating stromal cell types, and they favor tumor progression. The cancer-promoting ability of CAFs is dependent on their activation; however, this process has not been fully explored.The extracellular matrix (ECM) is a complex mixture of structural proteins, proteoglycans and glycoproteins that exerts biochemical and mechanical effects on cells. An increasing body of evidence suggests that ECM remodeling has an important role in cell morphogenesis,1 survival,2 migration and invasion.3 CAFs can deposit certain ECM components and facilitate the directional migration and invasion of carcinoma cells through mechanotransduction-triggered architectural remodeling of the microenvironment.4, 5 However, the mechanism by which activated CAFs stimulate the dysregulation of ECM proteins, thus influencing cancer cell invasion, is not well understood.Previously, our team identified a set of dysregulated miRNAs in breast CAFs using a miRNA microarray, and it was found that the levels of miR-200 family members were noticeably suppressed,6 indicating their importance in CAF function. Whether these downregulated miR-200 s in the stroma drive the activated phenotype of CAFs as well as aberrant ECM protein expression to promote cancer cell invasion is an intriguing question.The miR-200 s family can be functionally divided into cluster 1 (miR-200a and miR-141) and cluster 2 (miR-200b and miR-200c) according to their ''seed'' region for binding to mRNA. The effects of the miR-200 s on fibrosis, epithelial cell characteristics, cell differentiation and tumor progression have been discussed. For example, miR-200b is essential for the regulation of renal fibrogenesis7 and the intestinal fibrosis of Crohn''s disease.8 In aggressive carcinoma cells, the maintenance of EMT,9 tumor growth,10 migration,11 invasion,9 anoikis resistance12 and poor response to chemotherapy13 are enhanced by the reduced expression of miR-200 s. Furthermore, miR-200 s are upregulated during mammary differentiation14 but are downregulated in breast cancer stem cells,15 and these molecules support the maintenance of pluripotent stem cells.16 These previous reports indicate that miR-200 s may have a significant role in CAF activation.In the current work, we first determined that miR-200 s were commonly downregulated in breast CAFs, and this result was also demonstrated in normal fibroblasts (NFs) co-cultured with breast cancer cells. miR-200 s induced the conversion of NFs into CAFs by targeting Fli-1 and TCF12. Re-expression of miR-200 s in CAFs attenuated the activation-associated CAF phenotype. In particular, miR-200 s and their targets all contributed to CAF-associated ECM remodeling through two key ECM remodeling proteins, fibronectin (FN) and lysyl oxidase, further fueling cancer cell invasion and metastasis. Therefore, our data provide new information regarding the role of CAF activation and function in the promotion of cancer cell invasion through ECM remodeling and provide a considerable amount of information that will be useful for the development of stromal therapeutic targets.  相似文献   

7.
8.
Alteration in the density and composition of extracellular matrix (ECM) occurs in tumors. The alterations toward both stiffness and degradation are contributed to tumor growth and progression. Cancer-associated fibroblasts (CAFs) are the main contributors to ECM stiffness and degradation. The cells interact with almost all cells within the tumor microenvironment (TME) that could enable them to modulate ECM components for tumorigenic purposes. Cross-talks between CAFs with cancer cells and macrophage type 2 (M2) cells are pivotal for ECM stiffness and degradation. CAFs induce hypoxia within the TME, which is one of the key inducers of both stiffness and degradation. Cancer cell modulatory roles in integrin receptors are key for adjusting ECM constituents to either fates. Cancer cell proliferation, migration, and invasion as well as angiogenesis are consequences of ECM stiffness and degradation. ECM stiffness in a transforming growth factor-β (TGF-β) related pathway could make a bridge in the basement membrane, and ECM degradation in a matrix metalloproteinase (MMP)-related pathway could make a path in the TME, both of which contribute to cancer cell invasion. ECM stiffness is also obstructive for drug penetration to the tumor site. Therefore, it would be a promising strategy to make a homeostasis in ECM for easy penetration of chemotherapeutic drugs and increasing the efficacy of antitumor approaches. MMP and TGF-β inhibitors, CAF and M2 reprogramming toward their normal counterparts, reduction of TME hypoxia and hampering integrin signaling are among the promising approaches for the modulation of ECM in favor of tumor regression.  相似文献   

9.
Cancer-associated fibroblasts (CAFs) are the most prominent cell type within the tumor stroma of many cancers, in particular breast carcinoma, and their prominent presence is often associated with poor prognosis1,2. CAFs are an activated subpopulation of stromal fibroblasts, many of which express the myofibroblast marker α-SMA3. CAFs originate from local tissue fibroblasts as well as from bone marrow-derived cells recruited into the developing tumor and adopt a CAF phenotype under the influence of the tumor microenvironment4. CAFs were shown to facilitate tumor initiation, growth and progression through signaling that promotes tumor cell proliferation, angiogenesis, and invasion5-8. We demonstrated that CAFs enhance tumor growth by mediating tumor-promoting inflammation, starting at the earliest pre-neoplastic stages9. Despite increasing evidence of the key role CAFs play in facilitating tumor growth, studying CAFs has been an on-going challenge due to the lack of CAF-specific markers and the vast heterogeneity of these cells, with many subtypes co-existing in the tumor microenvironment10. Moreover, studying fibroblasts in vitro is hindered by the fact that their gene expression profile is often altered in tissue culture11,12 . To address this problem and to allow unbiased gene expression profiling of fibroblasts from fresh mouse and human tissues, we developed a method based on previous protocols for Fluorescence-Activated Cell Sorting (FACS)13,14. Our approach relies on utilizing PDGFRα as a surface marker to isolate fibroblasts from fresh mouse and human tissue. PDGFRα is abundantly expressed by both normal fibroblasts and CAFs9,15 . This method allows isolation of pure populations of normal fibroblasts and CAFs, including, but not restricted to α-SMA+ activated myofibroblasts. Isolated fibroblasts can then be used for characterization and comparison of the evolution of gene expression that occurs in CAFs during tumorigenesis. Indeed, we and others reported expression profiling of fibroblasts isolated by cell sorting16. This protocol was successfully performed to isolate and profile highly enriched populations of fibroblasts from skin, mammary, pancreas and lung tissues. Moreover, our method also allows culturing of sorted cells, in order to perform functional experiments and to avoid contamination by tumor cells, which is often a big obstacle when trying to culture CAFs.  相似文献   

10.
Carcinoma-associated fibroblasts (CAFs) are critical in determining tumor invasion and metastasis. However the role of CAFs in the invasion of salivary gland adenoid cystic carcinoma (ACC) is poorly understood. In this study, we isolated primary CAFs from two ACC patients. ACC-derived CAFs expressed typical CAF biomarkers and showed increased migration and invasion activity. Conditioned medium collected from CAFs significantly promoted ACC cell migration and invasion. Co-culture of CAFs with ACC cells in a microfluidic device further revealed that CAFs localized at the invasion front and ACC cells followed the track behind the CAFs. Interfering of both matrix metalloproteinase and CXCL12/CXCR4 pathway inhibited ACC invasion promoted by CAFs. Overall, our study demonstrates that ACC-derived CAFs exhibit the most important defining feature of CAFs by promoting cancer invasion. In addition to secretion of soluble factors, CAFs also lead ACC invasion by creating an invasive track in the ECM.  相似文献   

11.

Background

Tumor-stroma reaction is associated with activation of fibroblasts. Nemosis is a novel type of fibroblast activation. It leads to an increased production of growth factors and proinflammatory and proteolytic proteins, while at the same time cytoskeletal proteins are degraded. Here we used paired normal skin fibroblasts and cancer-associated fibroblasts (CAF) and primary and recurrent oral squamous cell carcinoma (SCC) cells to study the nemosis response.

Principal Findings

Fibroblast nemosis was analyzed by protein and gene expression and the paracrine regulation with colony formation assay. One of the normal fibroblast strains, FB-43, upregulated COX-2 in nemosis, but FB-74 cells did not. In contrast, CAF-74 spheroids expressed COX-2 but CAF-43 cells did not. Alpha-SMA protein was expressed in both CAF strains and in FB-74 cells, but not in FB-43 fibroblasts. Its mRNA levels were downregulated in nemosis, but the CAFs started to regain the expression. FSP1 mRNA was downregulated in normal fibroblasts and CAF-74 cells, but not in CAF-43 fibroblasts. Serine protease FAP was upregulated in all fibroblasts, more so in nemotic CAFs. VEGF, HGF/SF and FGF7 mRNA levels were upregulated to variable degree in nemosis. CAFs increased the colony formation of primary tumor cell lines UT-SCC-43A and UT-SCC-74A, but normal fibroblasts inhibited the anchorage-independent growth of recurrent UT-SCC-43B and UT-SCC-74B cells.

Conclusions

Nemosis response, as observed by COX-2 and growth factor induction, and expression of CAF markers α-SMA, FSP1 and FAP, varies between fibroblast populations. The expression of CAF markers differs between normal fibroblasts and CAFs in nemosis. These results emphasize the heterogeneity of fibroblasts and the evolving tumor-promoting properties of CAFs.  相似文献   

12.
CAFs (cancer-associated fibroblasts), the most abundant cell type in breast cancer stroma, produce a plethora of chemokines, growth factors and ECM (extracellular matrix) proteins, that may contribute to dissemination and metastasis. Axillary nodes are the first metastatic site in breast cancer; however, to the present date, there is no consensus of which specific proteins, synthesized by CAFs, might be related with lymph node involvement. The purpose of this study was to perform a systematic review of CAF biomarkers associated with the presence of regional metastasis. PubMed was searched using the words: ‘breast cancer’ and ‘lymph node’ and fibroblast or stroma or microenvironment. After exclusions, eight studies evaluating biomarkers immunoexpression in CAFs and lymph node status were selected. Biomarkers evaluated in these studies may be divided in two groups, according to their ontology: extracellular matrix components [MMP13 (matrix metalloproteinase 13), TIMP2 (tissue inhibitor of metalloproteinases-2), THBS1 (thrombospondin 1), LGALS1 (lectin, galactoside-binding, soluble, 1)] and response to wounding [PDPN (podoplanin), PLAU (plasminogen activator, urokinase), PLAUR (plasminogen activator, urokinase receptor), CAV1 (caveolin 1), THBS1, LGALS1]. A positive expression of MMP13 and LGALS1 in CAFs was associated with enhanced OR (odds ratio) for regional metastasis. Contrariwise, CAV1 positive staining of fibroblasts was associated with decreased OR for nodal involvement. Expression of MMP13, PDPN and CAV1 was further tested in a new series of 65 samples of invasive ductal breast carcinomas by immunohistochemistry and no association between biomarkers expression in CAFs and nodal status was found. It was suggested that breast cancer subtypes may differentially affect CAFs behaviour. It would be interesting to evaluate the prognostic significance of these biomarkers in CAFs from different tumour types.  相似文献   

13.
BACKGROUND: The analysis of exosomes in blood obtained from the tumor-draining mesenteric vein (MV) can identify tumor biomarkers before they reach target organs and form the premetastatic niche where circulating tumor cells can anchor. Our group has recently shown that microRNAs in plasma from the MV—but not the peripheral vein (PV)—have been related to liver metastases in colon cancer (CC) patients. Here we examine the exosomal protein cargo in plasma from the MV and paired PV in 31 CC patients. PATIENTS AND METHODS: The study included patients who were initially diagnosed with stage I-III CC and 10 healthy controls. Exosomes from the MV and PV of all patients and controls were isolated by ultracentrifugation and confirmed by cryogenic transmission electron microscopy. High-throughput proteomic analysis by mass spectrometry was used to identify expression levels of exosomal proteins. Findings were confirmed by Western blot. RESULTS: Exosomal ECM1 protein was more highly expressed in patients than in controls and was 13.55 times higher in MV from relapsed than relapse-free patients. High exosomal ECM1 expression was associated with liver metastases. Patients with high exosomal ECM1 expression in MV—but not PV—plasma had shorter time to relapse than those with low ECM1 expression (P = .04). CONCLUSION: High levels of exosomal ECM1 protein can identify CC patients with a higher risk of relapse. The analysis of exosomes isolated from the tumor-draining MV is a promising method for the identification of biomarkers before they reach the target organ.  相似文献   

14.
The pHs of extracellular fluids (ECFs) in normal tissues are commonly maintained at 7.35 to 7.45. The acidification of the ECF is one of the major characteristics of tumour microenvironment. In this study, we report that decreased extracellular pH promotes the transformation of mesenchymal stem cells (MSCs) into cancer-associated fibroblasts (CAFs), termed CAF activation. Furthermore, we demonstrate that GPR68, a proton-sensing G-protein-coupled receptor (GPCR), is required for the pH-dependent regulation of the differentiation of MSCs into CAFs. We then identify Yes-associated protein 1 (YAP) as a downstream effector of GPR68 for CAF activation. Finally, we show that knockdown of GPR68 in MSCs can prevent the CAF activation under cancer microenvironment. Systemic transplantation of GPR68-silenced MSCs suppresses in-situ tumour growth and prolong life span after cancer graft.  相似文献   

15.
Cancer-associated fibroblasts (CAFs) in the tumor microenvironment play major roles in supporting cancer progression. A previous report showed that SPIN90 downregulation is correlated with CAF activation and that SPIN90-deficient CAFs promote breast cancer progression. However, the mechanisms that mediate cancer-stroma interaction and how such interactions regulate cancer progression are not well understood. Here, we show that extra domain A (EDA)-containing fibronectin (FN), FN(+)EDA, produced by mouse embryonic fibroblasts (MEFs) derived from Spin90-knockout (KO) mice increases their own myofibroblast differentiation, which facilitates breast cancer progression. Increased FN(+)EDA in Spin90-KO MEFs promoted fibril formation in the extracellular matrix (ECM) and specifically interacted with integrin α4β1 as the mediating receptor. Moreover, FN(+)EDA expression by Spin90-KO MEFs increased proliferation, migration, and invasion of breast cancer cells. Irigenin, a specific inhibitor of the interaction between integrin α4β1 and FN(+)EDA, significantly blocked the effects of FN(+)EDA, such as fibril formation by Spin90-KO MEFs and proliferation, migration, and invasion of breast cancer cells. In orthotopic breast cancer mouse models, irigenin injection remarkably reduced tumor growth and lung metastases. It was supported by that FN(+)EDA in assembled fibrils was accumulated in cancer stroma of human breast cancer patients in which SPIN90 expression was downregulated. Our data suggest that SPIN90 downregulation increases FN(+)EDA and promotes ECM stiffening in breast cancer stroma through an assembly of long FN(+)EDA-rich fibrils; moreover, engagement of the Integrin α4β1 receptor facilitates breast cancer progression. Inhibitory effects of irigenin on tumor growth and metastasis suggest the potential of this agent as an anticancer therapeutic.  相似文献   

16.
肿瘤的发生发展是一个肿瘤细胞与其微环境相互促进,共同演化的动态过程.实体肿瘤的发生发展过程伴随细胞外基质的过量沉积及其组织形式的异常以及成纤维细胞的活化和富集.细胞外基质与肿瘤相关成纤维细胞不仅是实体肿瘤的重要病理特征,同时也是恶性肿瘤发展的重要驱动力量.细胞外基质与肿瘤相关成纤维细胞通过多种机制促进了肿瘤的发生、发展和转移.针对细胞外基质与肿瘤相关成纤维细胞进行肿瘤治疗,可以为肿瘤的临床治疗提供新的思路.  相似文献   

17.

Background

Mesenchymal stem cells (MSCs) promote tumor growth by differentiating into carcinoma-associated fibroblasts (CAFs) and composing the tumor microenvironment. However, the mechanisms responsible for the transition of MSCs to CAFs are not well understood. Exosomes regulate cellular activities by mediating cell-cell communication. In this study, we aimed to investigate whether cancer cell-derived exosomes were involved in regulating the differentiation of human umbilical cord-derived MSCs (hucMSCs) to CAFs.

Methodology/Principal Findings

We first showed that gastric cancer cell-derived exosomes induced the expression of CAF markers in hucMSCs. We then demonstrated that gastric cancer cell-derived exosomes stimulated the phosphorylation of Smad-2 in hucMSCs. We further confirmed that TGF-β receptor 1 kinase inhibitor attenuated Smad-2 phosphorylation and CAF marker expression in hucMSCs after exposure to gastric cancer cell-derived exosomes.

Conclusion/Significance

Our results suggest that gastric cancer cells triggered the differentiation of hucMSCs to CAFs by exosomes-mediated TGF-β transfer and TGF-β/Smad pathway activation, which may represent a novel mechanism for MSCs to CAFs transition in cancer.  相似文献   

18.

Purpose

To evaluate the prognostic impact of the lymph node ratio (LNR) in ypStage III rectal cancer patients who were treated with neoadjuvant chemoradiotherapy (NCRT).

Materials and Methods

We retrospectively reviewed the data of 638 consecutive patients who underwent NCRT followed by total mesorectal excision, and postoperative adjuvant chemotherapy for rectal cancer from 2004 to 2011. Of these, 125 patients were positive for lymph node (LN) metastasis and were analyzed in this study.

Results

The median numbers of examined and metastatic LNs were 17 and 2, respectively, and the median LNR was 0.143 (range, 0.02–1). Median follow-up time was 55 months. In multivariate analyses, LNR was an independent prognostic factor for overall survival (OS) (hazard ratio [HR] 2.17, p = 0.041), disease-free survival (DFS) (HR 2.28, p = 0.005), and distant metastasis-free survival (DMFS) (HR 2.30, p = 0.010). When ypN1 patients were divided into low (low LNR ypN1 group) and high LNR (high LNR ypN1 group) according to a cut-off value of 0.152, the high LNR ypN1 group had poorer OS (p = 0.043) and DFS (p = 0.056) compared with the low LNR ypN1 group. And there were no differences between the high LNR ypN1 group and the ypN2 group in terms of the OS (p = 0.703) and DFS (p = 0.831).

Conclusions

For ypN-positive rectal cancer patients, the LNR was a more effective prognostic marker than the ypN stage, circumferential resection margin, or tumor regression grade after NCRT, and could be used to discern the high-risk group among ypN1 patients.  相似文献   

19.
Cancer‐associated fibroblasts (CAFs) are a heterogeneous population of activated fibroblasts that constitute a dominant cellular component of the tumor microenvironment (TME) performing distinct functions. Here, the role of tumor‐derived exosomes (Exos) in activating quiescent fibroblasts into distinct functional subtypes is investigated. Proteomic profiling and functional dissection reveal that early‐ (SW480) and late‐stage (SW620) colorectal cancer (CRC) cell‐derived Exos both activated normal quiescent fibroblasts (α‐SMA?, CAV+, FAP+, VIM+) into CAF‐like fibroblasts (α‐SMA+, CAV?, FAP+, VIM+). Fibroblasts activated by early‐stage cancer‐exosomes (SW480‐Exos) are highly pro‐proliferative and pro‐angiogenic and display elevated expression of pro‐angiogenic (IL8, RAB10, NDRG1) and pro‐proliferative (SA1008, FFPS) proteins. In contrast, fibroblasts activated by late‐stage cancer‐exosomes (SW620‐Exos) display a striking ability to invade through extracellular matrix through upregulation of pro‐invasive regulators of membrane protrusion (PDLIM1, MYO1B) and matrix‐remodeling proteins (MMP11, EMMPRIN, ADAM10). Conserved features of Exos‐mediated fibroblast activation include enhanced ECM secretion (COL1A1, Tenascin‐C/X), oncogenic transformation, and metabolic reprogramming (downregulation of CAV‐1, upregulation of glycogen metabolism (GAA), amino acid biosynthesis (SHMT2, IDH2) and membrane transporters of glucose (GLUT1), lactate (MCT4), and amino acids (SLC1A5/3A5)). This study highlights the role of primary and metastatic CRC tumor‐derived Exos in generating phenotypically and functionally distinct subsets of CAFs that may facilitate tumor progression.  相似文献   

20.
ABSTRACT: BACKGROUND: Breast cancer is a heterogeneous disease for which prognosis and treatment strategies are largely governed by the receptor status (estrogen, progesterone and Her2) of the tumor cells. Gene expression profiling of whole breast tumors further stratifies breast cancer into several molecular subtypes which also co-segregate with the receptor status of the tumor cells. We postulated that cancer associated fibroblasts (CAFs) within the tumor stroma may exhibit subtype specific gene expression profiles and thus contribute to the biology of the disease in a subtype specific manner. Several studies have reported gene expression profile differences between CAFs and normal breast fibroblasts but in none of these studies were the results stratified based on tumor subtypes. METHODS: To address whether gene expression in breast cancer associated fibroblasts varies between breast cancer subtypes, we compared the gene expression profiles of early passage primary CAFs isolated from twenty human breast cancer samples representing three main subtypes; seven ER+, seven triple negative (TNBC) and six Her2+. RESULTS: We observed significant expression differences between CAFs derived from Her2+ breast cancer and CAFs from TNBC and ER + cancers, particularly in pathways associated with cytoskeleton and integrin signaling. In the case of Her2+ breast cancer, the signaling pathways found to be selectively up regulated in CAFs likely contribute to the enhanced migration of breast cancer cells in transwell assays and may contribute to the unfavorable prognosis of Her2+ breast cancer. CONCLUSIONS: These data demonstrate that in addition to the distinct molecular profiles that characterize the neoplastic cells, CAF gene expression is also differentially regulated in distinct subtypes of breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号