首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Once thought of as simply an oily barrier that maintains cellular integrity, lipids are now known to play an active role in a large variety of cellular processes. Phosphoinositides are of particular interest because of their remarkable ability to affect many signaling pathways. Ion channels and transporters are an important target of phosphoinositide signaling, but identification of the specific phosphoinositides involved has proven elusive. TRPV1 is a good example; although phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P(2)) can potently regulate its activation, we show that phosphatidylinositol (4)-phosphate (PI(4)P) and phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P(3)) can as well. To determine the identity of the endogenous phosphoinositide regulating TRPV1, we applied recombinant pleckstrin homology domains to inside-out excised patches. Although a PI(4,5)P(2)-specific pleckstrin homology domain inhibited TRPV1, a PI(3,4,5)P(3)-specific pleckstrin homology domain had no effect. Simultaneous confocal imaging and electrophysiological recording of whole cells expressing a rapamycin-inducible lipid phosphatase also demonstrates that depletion of PI(4,5)P(2) inhibits capsaicin-activated TRPV1 current; the PI(4)P generated by the phosphatases was not sufficient to support TRPV1 function. We conclude that PI(4,5)P(2), and not other phosphoinositides or other lipids, is the endogenous phosphoinositide regulating TRPV1 channels.  相似文献   

2.
TRPV6 is a member of the transient receptor potential superfamily of ion channels that facilitates Ca(2+) absorption in the intestines. These channels display high selectivity for Ca(2+), but in the absence of divalent cations they also conduct monovalent ions. TRPV6 channels have been shown to be inactivated by increased cytoplasmic Ca(2+) concentrations. Here we studied the mechanism of this Ca(2+)-induced inactivation. Monovalent currents through TRPV6 substantially decreased after a 40-s application of Ca(2+), but not Ba(2+). We also show that Ca(2+), but not Ba(2+), influx via TRPV6 induces depletion of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2) or PIP(2)) and the formation of inositol 1,4,5-trisphosphate. Dialysis of DiC(8) PI(4,5)P(2) through the patch pipette inhibited Ca(2+)-dependent inactivation of TRPV6 currents in whole-cell patch clamp experiments. PI(4,5)P(2) also activated TRPV6 currents in excised patches. PI(4)P, the precursor of PI(4,5)P(2), neither activated TRPV6 in excised patches nor had any effect on Ca(2+)-induced inactivation in whole-cell experiments. Conversion of PI(4,5)P(2) to PI(4)P by a rapamycin-inducible PI(4,5)P(2) 5-phosphatase inhibited TRPV6 currents in whole-cell experiments. Inhibiting phosphatidylinositol 4 kinases with wortmannin decreased TRPV6 currents and Ca(2+) entry into TRPV6-expressing cells. We propose that Ca(2+) influx through TRPV6 activates phospholipase C and the resulting depletion of PI(4,5)P(2) contributes to the inactivation of TRPV6.  相似文献   

3.
Protons are released in pain-generating pathological conditions such as inflammation, ischemic stroke, infection, and cancer. During normal synaptic activities, protons are thought to play a role in neurotransmission processes. Acid-sensing ion channels (ASICs) are typical proton sensors in the central nervous system (CNS) and the peripheral nervous system (PNS). In addition to ASICs, capsaicin- and heat-activated transient receptor potential vanilloid 1 (TRPV1) channels can also mediate proton-mediated pain signaling. In spite of their importance in perception of pH fluctuations, the regulatory mechanisms of these proton-sensitive ion channels still need to be further investigated. Here, we compared regulation of ASICs and TRPV1 by membrane phosphoinositides, which are general cofactors of many receptors and ion channels. We observed that ASICs do not require membrane phosphatidylinositol 4-phosphate (PI(4)P) or phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) for their function. However, TRPV1 currents were inhibited by simultaneous breakdown of PI(4)P and PI(4,5)P2. By using a novel chimeric protein, CF-PTEN, that can specifically dephosphorylate at the D3 position of phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3), we also observed that neither ASICs nor TRPV1 activities were altered by depletion of PI(3,4,5)P3 in intact cells. Finally, we compared the effects of arachidonic acid (AA) on two proton-sensitive ion channels. We observed that AA potentiates the currents of both ASICs and TRPV1, but that they have different recovery aspects. In conclusion, ASICs and TRPV1 have different sensitivities toward membrane phospholipids, such as PI(4)P, PI(4,5)P2, and AA, although they have common roles as proton sensors. Further investigation about the complementary roles and respective contributions of ASICs and TRPV1 in proton-mediated signaling is necessary.  相似文献   

4.
Although PI(4,5)P2 is believed to play an essential role in regulating the activity of numerous ion channels and transporters, the mechanisms by which it does so are unknown. Here, we used the ability of the TRPV1 ion channel to discriminate between PI(4,5)P2 and PI(4)P to localize the region of TRPV1 sequence that interacts directly with the phosphoinositide. We identified a point mutation in the proximal C-terminal region after the TRP box, R721A, that inverted the selectivity of TRPV1. Although the R721A mutation produced only a 30% increase in the EC50 for activation by PI(4,5)P2, it decreased the EC50 for activation by PI(4)P by more than two orders of magnitude. We used chemically induced and voltage-activated phosphatases to determine that PI(4)P continued to support TRPV1 activity even after depletion of PI(4,5)P2 from the plasma membrane. Our data cannot be explained by a purely electrostatic mechanism for interaction between the phosphoinositide and the protein, similar to that of the MARCKS (myristoylated alanine-rich C kinase substrate) effector domain or the EGF receptor. Rather, conversion of a PI(4,5)P2-selective channel to a PI(4)P-selective channel indicates that a structured phosphoinositide-binding site mediates the regulation of TRPV1 activity and that the amino acid at position 721 likely interacts directly with the moiety at the 5′ position of the phosphoinositide.  相似文献   

5.
Phosphoinositides are emerging as general regulators of the functionally diverse transient receptor potential (TRP) ion channel family. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) has been reported to positively regulate many TRP channels, but in several cases phosphoinositide regulation is controversial. TRP melastatin 3 (TRPM3) is a heat-activated ion channel that is also stimulated by chemical agonists, such as pregnenolone sulfate. Here, we used a wide array of approaches to determine the effects of phosphoinositides on TRPM3. We found that channel activity in excised inside-out patches decreased over time (rundown), an attribute of PI(4,5)P2-dependent ion channels. Channel activity could be restored by application of either synthetic dioctanoyl (diC8) or natural arachidonyl stearyl (AASt) PI(4,5)P2. The PI(4,5)P2 precursor phosphatidylinositol 4-phosphate (PI(4)P) was less effective at restoring channel activity. TRPM3 currents were also restored by MgATP, an effect which was inhibited by two different phosphatidylinositol 4-kinase inhibitors, or by pretreatment with a phosphatidylinositol-specific phospholipase C (PI-PLC) enzyme, indicating that MgATP acted by generating phosphoinositides. In intact cells, reduction of PI(4,5)P2 levels by chemically inducible phosphoinositide phosphatases or a voltage-sensitive 5′-phosphatase inhibited channel activity. Activation of PLC via muscarinic receptors also inhibited TRPM3 channel activity. Overall, our data indicate that TRPM3 is a phosphoinositide-dependent ion channel and that decreasing PI(4,5)P2 abundance limits its activity. As all other members of the TRPM family have also been shown to require PI(4,5)P2 for activity, our data establish PI(4,5)P2 as a general positive cofactor of this ion channel subfamily.  相似文献   

6.
Recently, a family of temperature-activated ion channels has been identified in mammalian and nonmammalian species that appear to contribute to thermosensation. Two of these proteins, TRPV3 and TRPV4, are ion channels activated by modest increases in ambient temperature. Localization studies have indicated that both proteins, in addition to being expressed in sensory neurons, are also expressed in skin keratinocytes. These and other findings have suggested that keratinocytes might act in concert with sensory neurons to perceive our thermal environment. In this study, we demonstrate that primary keratinocytes isolated from mouse skin exhibit two distinct heat-evoked current responses to mild increases in ambient temperature. The more common of these response types bears considerable similarity to responses mediated by recombinant TRPV4, is absent in mice lacking this ion channel, and is restored upon TRPV4 reintroduction. The second, rarer response strongly resembles those mediated by recombinant TRPV3. Together, these findings demonstrate that keratinocytes can indeed act as thermosensory cells and that they do so via at least two distinct transduction mechanisms.  相似文献   

7.
Cellular or chemical activators for most transient receptor potential channels of the vanilloid subfamily (TRPV) have been identified in recent years. A remarkable exception to this is TRPV2, for which cellular events leading to channel activation are still a matter of debate. Diverse stimuli such as extreme heat or phosphatidylinositol-3 kinase (PI3-kinase) regulated membrane insertion have been shown to promote TRPV2 channel activity. However, some of these results have proved difficult to reproduce and may underlie different gating mechanisms depending on the cell type in which TRPV2 channels are expressed. Here, we show that expression of recombinant TRPV2 can induce cytotoxicity that is directly related to channel activity since it can be prevented by introducing a charge substitution in the pore-forming domain of the channel, or by reducing extracellular calcium. In stably transfected cells, TRPV2 expression results in an outwardly rectifying current that can be recorded at all potentials, and in an increase of resting intracellular calcium concentration that can be partly prevented by serum starvation. Using cytotoxicity as a read-out of channel activity and direct measurements of cell surface expression of TRPV2, we show that inhibition of the PI3-kinase decreases TRPV2 channel activity but does not affect the trafficking of the channel to the plasma membrane. It is concluded that PI3-kinase induces or modulates the activity of recombinant TRPV2 channels; in contrast to the previously proposed mechanism, activation of TRPV2 channels by PI3-kinase is not due to channel translocation to the plasma membrane.  相似文献   

8.
Small G proteins in the Rho family are known to regulate diverse cellular processes, including cytoskeletal organization and cell cycling, and more recently, ion channel activity and activity of phosphatidylinositol 4-phosphate 5-kinase (PI(4)P 5-K). The present study investigates regulation of the epithelial Na(+) channel (ENaC) by Rho GTPases. We demonstrate here that RhoA and Rac1 markedly increase ENaC activity. Activation by RhoA was suppressed by the C3 exoenzyme. Inhibition of the downstream RhoA effector Rho kinase, which is necessary for RhoA activation of PI(4)P 5-K, abolished ENaC activation. Similar to RhoA, overexpression of PI(4)P 5-K increased ENaC activity suggesting that production of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) in response to RhoA-Rho kinase signaling stimulates ENaC. Supporting this idea, inhibition of phosphatidylinositol 4-kinase, but not the RhoA effector phosphatidylinositol 3-kinase and MAPK cascades, markedly attenuated RhoA-dependent activation of ENaC. RhoA increased ENaC activity by increasing the plasma membrane levels of this channel. We conclude that RhoA activates ENaC via Rho kinase and subsequently activates PI(4)P 5-K with concomitant increases in PI(4,5)P(2) levels promoting channel insertion into the plasma membrane.  相似文献   

9.
10.
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) and phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P(3)) are physiologically important second messengers. These molecules bind effector proteins to modulate activity. Several types of ion channels, including the epithelial Na(+) channel (ENaC), are phosphoinositide effectors capable of directly interacting with these signaling molecules. Little, however, is known of the regions within ENaC and other ion channels important to phosphoinositide binding and modulation. Moreover, the molecular mechanism of this regulation, in many instances, remains obscure. Here, we investigate modulation of ENaC by PI(3,4,5)P(3) and PI(4,5)P(2) to begin identifying the molecular determinants of this regulation. We identify intracellular regions near the inner membrane interface just following the second transmembrane domains in beta- and gamma- but not alpha-ENaC as necessary for PI(3,4,5)P(2) but not PI(4,5)P(2) modulation. Charge neutralization of conserved basic amino acids within these regions demonstrated that these polar residues are critical to phosphoinositide regulation. Single channel analysis, moreover, reveals that the regions just following the second transmembrane domains in beta- and gamma-ENaC are critical to PI(3,4,5)P(3) augmentation of ENaC open probability, thus, defining mechanism. Unexpectedly, intracellular domains within the extreme N terminus of beta- and gamma-ENaC were identified as being critical to down-regulation of ENaC activity and P(o) in response to depletion of membrane PI(4,5)P(2). These regions of the channel played no identifiable role in a PI(3,4,5)P(3) response. Again, conserved positive-charged residues within these domains were particularly important, being necessary for exogenous PI(4,5)P(2) to increase open probability. We conclude that beta and gamma subunits bestow phosphoinositide sensitivity to ENaC with distinct regions of the channel being critical to regulation by PI(3,4,5)P(3) and PI(4,5)P(2). This argues that these phosphoinositides occupy distinct ligand-binding sites within ENaC to modulate open probability.  相似文献   

11.
TRPM4 is a Ca(2+)-activated nonselective cation channel that regulates membrane potential in response to intracellular Ca(2+) signaling. In lymphocytes it plays an essential role in shaping the pattern of intracellular Ca(2+) oscillations that lead to cytokine secretion. To better understand its role in this and other physiological processes, we investigated mechanisms by which TRPM4 is regulated. TRPM4 was expressed in ChoK1 cells, and currents were measured in excised patches. Under these conditions, TRPM4 currents were activated by micromolar concentrations of cytoplasmic Ca(2+) and progressively desensitized. Here we show that desensitization can be explained by a loss of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) from the channels. Poly-l-lysine, a PI(4,5)P(2) scavenger, caused rapid desensitization, whereas MgATP, at concentrations that activate lipid kinases, promoted recovery of TRPM4 currents. Application of exogenous PI(4,5)P(2) to the intracellular surface of the patch restored the properties of TRPM4 currents. Our results suggest that PI(4,5)P(2) acts to uncouple channel opening from changes in the transmembrane potential, allowing current activation at physiological voltages. These data argue that hydrolysis of PI(4,5)P(2) underlies desensitization of TRPM4 and support the idea that PI(4,5)P(2) is a general regulator for the gating of TRPM ion channels.  相似文献   

12.
TRPV3, a thermosensitive cation channel, is predominantly expressed in keratinocytes. It contributes to physiological processes such as thermosensation, nociception, and skin development. TRPV3 is polymodally regulated by chemical agonists, innocuous heat, intracellular acidification or by membrane depolarization. By manipulating the content of plasma membrane cholesterol, a key modulator of the physicochemical properties of biological membranes, we here addressed the question, how the lipid environment influences TRPV3. Cholesterol supplementation robustly potentiated TRPV3 channel activity by sensitising it to lower concentrations of chemical activators. In addition, the thermal activation of TRPV3 is significantly shifted to lower temperatures in cholesterol-enriched cells. The sensitising effect of cholesterol was not caused by an increased plasma membrane targeting of the channel. In HaCaT keratinocytes, which natively express TRPV3, a cholesterol-mediated sensitisation of TRPV3-like responses was reproduced. The cholesterol-dependent modulation of TRPV3 activity may provide a molecular mechanism to interpret its involvement in keratinocyte differentiation.  相似文献   

13.
The voltage dependence of activation of the HCN hyperpolarization-activated cation channels is shifted in inside-out patches by -40 to -60 mV relative to activation in intact cells, a phenomenon referred to as rundown. Less than 20 mV of this hyperpolarizing shift can be due to the influence of the canonical modulator of HCN channels, cAMP. Here we study the role of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) in HCN channel rundown, as hydrolysis of PI(4,5)P(2) by lipid phosphatases is thought to underlie rundown of several other channels. We find that bath application of exogenous PI(4,5)P(2) reverses the effect of rundown, producing a large depolarizing shift in HCN2 activation. A synthetic short chain analogue of PI(4,5)P(2), dioctanoyl phosphatidylinositol 4,5-bisphosphate, shifts the HCN2 activation curve to more positive potentials in a dose-dependent manner. Other dioctanoyl phosphatidylinositides with one or more phosphates on the lipid headgroup also shift activation, although phosphatidylinositol (PI) is ineffective. Several lines of evidence suggest that HCN2 is also regulated by endogenous PI(4,5)P(2): (a) blockade of phosphatases slows the hyperpolarizing shift upon patch excision; (b) application of an antibody that binds and depletes membrane PIP(2) causes a further hyperpolarizing shift in activation; (c) the shift in activation upon patch excision can be partially reversed by MgATP; and (d) the effect of MgATP is blocked by wortmannin, an inhibitor of PI kinases. Finally, recordings from rabbit sinoatrial cells demonstrate that diC(8) PI(4,5)P(2) delays the rundown of native HCN currents. Thus, both native and recombinant HCN channels are regulated by PI(4,5)P(2).  相似文献   

14.
Oculocerebrorenal syndrome of Lowe (OCRL) gene product is a phosphatidyl inositol 4,5-bisphosphate [PI(4,5)P(2)] 5-phosphatase, and mutations of OCRL cause Lowe syndrome and Dent disease, both of which are frequently associated with hypercalciuria. Transient receptor potential, vanilloid subfamily, subtype 6 (TRPV6) is an intestinal epithelial Ca(2+) channel mediating active Ca(2+) absorption. Hyperabsorption of Ca(2+) was found in patients of Dent disease with increased Ca(2+) excretion. In this study, we tested whether TRPV6 is regulated by OCRL and, if so, to what extent it is altered by Dent-causing OCRL mutations using Xenopus laevis oocyte expression system. Exogenous OCRL decreased TRPV6-mediated Ca(2+) uptake by regulating the function and trafficking of TRPV6 through different domains of OCRL. The PI(4,5)P(2) 5-phosphatase domain suppressed the TRPV6-mediated Ca(2+) transport likely through regulating the PI(4,5)P(2) level needed for TRPV6 function without affecting TRPV6 protein abundance of TRPV6 at the cell surface. The forward trafficking of TRPV6 was decreased by OCRL. The Rab binding domain in OCRL was involved in regulating the trafficking of TRPV6. Knocking down endogenous X. laevis OCRL by antisense approach increased TRPV6-mediated Ca(2+) transport and TRPV6 forward trafficking. All seven Dent-causing OCRL mutations examined exhibited alleviation of the inhibitory effect on TRPV6-mediated Ca(2+) transport together with decreased overall PI(4,5)P(2) 5-phosphatase activity. In conclusion, OCRL suppresses TRPV6 via two separate mechanisms. The disruption of PI(4,5)P(2) 5-phosphatase activity by Dent-causing mutations of OCRL may lead to increased intestinal Ca(2+) absorption and, in turn, hypercalciuria.  相似文献   

15.
TRPV1 (transient receptor potential vanilloid 1) proteins are heat-activated nonselective cation channels. TRPV1 channels are polymodal in their function and exhibit multifaceted regulation with various molecular compounds. In this regard, phosphoinositides, particularly phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 4-phosphate, are important channel regulators. However, their effects on TRPV1 channel activity have not been conclusively determined. To characterize temperature-induced activation of TRPV1 in the presence of different phospholipids, we purified the TRPV1 protein from HEK-293 cells and incorporated it into planar lipid bilayers. In the presence of 2.5 μm phosphatidylinositol 4,5-bisphosphate, TRPV1 channels demonstrated rapid activation at 33–39 °C and achieved full channel opening at 42 °C. At this temperature range, TRPV1 heat activation exhibited steep temperature dependence (temperature coefficient (Q10) of 18), and the channel openings were accompanied by large changes in entropy and enthalpy, suggesting a substantial conformation change. At a similar temperature range, another phosphoinositide, phosphatidylinositol 4-phosphate, also potentiated heat activation of TRPV1, but with much lower efficiency. Negatively charged phosphatidylglycerol could also induce heat activation of TRPV1 channels, although with a small-conductance state. Our data demonstrate that phospholipids, specifically phosphoinositides, are important regulators of TRPV1 and are required for heat-induced channel activity.  相似文献   

16.
The regulation of the heat- and capsaicin-activated transient receptor potential vanilloid 1 (TRPV1) channels by phosphoinositides is controversial. Data in cellular systems support the dependence of TRPV1 activity on phosphoinositides. The purified TRPV1, however, was recently shown to be fully functional in artificial liposomes in the absence of phosphoinositides. Here, we show that several other negatively charged phospholipids, including phosphatidylglycerol, can also support TRPV1 activity in excised patches at high concentrations. When we incorporated TRPV1 into planar lipid bilayers consisting of neutral lipids, capsaicin-induced activity depended on phosphatidylinositol 4,5-bisphosphate. We also found that TRPV1 activity in excised patches ran down and that MgATP reactivated the channel. Inhibition of phosphatidylinositol 4-kinases or enzymatic removal of phosphatidylinositol abolished this effect of MgATP, suggesting that it activated TRPV1 by generating endogenous phosphoinositides. We conclude that endogenous phosphoinositides are positive cofactors for TRPV1 activity. Our data highlight the importance of specificity in lipid regulation of ion channels and may reconcile discordant data obtained in various experimental settings.  相似文献   

17.
The epithelial Ca2+ channel transient receptor potential vanilloid 6 (TRPV6) undergoes Ca2+-induced inactivation that protects the cell from toxic Ca2+ overload and may also limit intestinal Ca2+ transport. To dissect the roles of individual signaling pathways in this phenomenon, we studied the effects of Ca2+, calmodulin (CaM), and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) in excised inside-out patches. The activity of TRPV6 strictly depended on the presence of PI(4,5)P2, and Ca2+-CaM inhibited the channel at physiologically relevant concentrations. Ca2+ alone also inhibited TRPV6 at high concentrations (IC50 = ∼20 μm). A double mutation in the distal C-terminal CaM-binding site of TRPV6 (W695A/R699E) essentially eliminated inhibition by CaM in excised patches. In whole cell patch clamp experiments, this mutation reduced but did not eliminate Ca2+-induced inactivation. Providing excess PI(4,5)P2 reduced the inhibition by CaM in excised patches and in planar lipid bilayers, but PI(4,5)P2 did not inhibit binding of CaM to the C terminus of the channel. Overall, our data show a complex interplay between CaM and PI(4,5)P2 and show that Ca2+, CaM, and the depletion of PI(4,5)P2 all contribute to inactivation of TRPV6.  相似文献   

18.
Transient receptor potential channels are involved in sensing chemical and physical changes inside and outside of cells. TRPV3 is highly expressed in skin keratinocytes, where it forms a nonselective cation channel activated by hot temperatures in the innocuous and noxious range. The channel has also been implicated in flavor sensation in oral and nasal cavities as well as being a molecular target of some allergens and skin sensitizers. TRPV3 is unique in that its activity is sensitized upon repetitive stimulations. Here we investigated the role of calcium ions in the sensitization of TRPV3 to repetitive stimulations. We show that the sensitization is accompanied by a decrease of Ca(2+)-dependent channel inhibition mediated by calmodulin acting at an N-terminal site (amino acids 108-130) and by an acidic residue (Asp(641)) at the pore loop of TRPV3. These sites also contribute to the voltage dependence of TRPV3. During sensitization, the channel displayed a gradual shift of the voltage dependence to more negative potentials as well as uncoupling from voltage sensing. The initial response to ligand stimulation was increased and sensitization to repetitive stimulations was decreased by increasing the intracellular Ca(2+)-buffering strength, inhibiting calmodulin, or disrupting the calmodulin-binding site. Mutation of Asp(641) to Asn abolished the high affinity extracellular Ca(2+)-mediated inhibition and greatly facilitated the activation of TRPV3. We conclude that Ca(2+) inhibits TRPV3 from both the extracellular and intracellular sides. The inhibition is sequentially reduced, appearing as sensitization to repetitive stimulations.  相似文献   

19.
Phosphatidylinositol phosphate kinases (PIPKs) have important roles in the production of various phosphoinositides. For type I PIP5Ks (PIP5KI), a broad substrate specificity is known. They phosphorylate phosphatidylinositol 4-phosphate most effectively but also phosphorylate phosphatidylinositol (PI), phosphatidylinositol 3-phosphate, and phosphatidylinositol (3,4)-bisphosphate (PI(3, 4)P(2)), resulting in the production of phosphatidylinositol (4, 5)-bisphosphate (PI(4,5)P(2)), phosphatidylinositol 3-phosphate, phosphatidylinositol (3,4)-bisphosphate (PI(3,4)P(2)), phosphatidylinositol (3,5)-bisphosphate (PI(3,5)P(2)), and phosphatidylinositol (3,4,5)-trisphosphate. We show here that PIP5KIs have also protein kinase activities. When each isozyme of PIP5KI (PIP5KIalpha, -beta, and -gamma) was subjected to in vitro kinase assay, autophosphorylation occurred. The lipid kinase-negative mutant of PIP5KIalpha (K138A) lost the protein kinase activity, suggesting the same catalytic mechanism for the lipid and the protein kinase activities. PIP5KIbeta expressed in Escherichia coli also retains this protein kinase activity, thus confirming that no co-immunoprecipitated protein kinase is involved. In addition, the autophosphorylation of PIP5KI is markedly enhanced by the addition of PI. No other phosphoinositides such as phosphatidylinositol phosphate, phosphatidylinositol bisphosphate, or phosphatidylinositol trisphosphate have such an effect. We also found that the PI-dependent autophosphorylation strongly suppresses the lipid kinase activity of PIP5KI. The lipid kinase activity of PIP5KI was decreased to one-tenth upon PI-dependent autophosphorylation. All these results indicate that the lipid kinase activity of PIP5KI that acts predominantly for PI(4,5)P(2) synthesis is regulated by PI-dependent autophosphorylation in vivo.  相似文献   

20.
Xiao R  Tian J  Tang J  Zhu MX 《Cell calcium》2008,43(4):334-343
TRPV3 is a non-selective cation channel activated by warm to hot temperatures. In rodents, TRPV3 is highly expressed in basal keratinocytes of skin and oral/nasal epithelia. TRPV3 knockout mice showed impaired responses to innocuous and noxious heat but otherwise normal appearance and reactions to many sensory modalities. However, point mutations of TRPV3 at Gly573 to Ser and Cys have recently been linked to autosomal dominant hairless phenotypes and spontaneous dermatitis in mice and rats, implicating an important role for TRPV3 in alopecia and skin diseases. Exactly, how the mutations affect TRPV3 function was unexplained. Here, we show that both G573S and G573C mutations of murine TRPV3 are constitutively active in heterologous systems. In HEK 293 cells, expression of the TRPV3 mutants causes cell death. In Xenopus oocytes, the constitutively active mutant channel is irresponsive to thermal and chemical stimuli but it reduces the temperature threshold and enhances the responses to heat and TRPV3 agonists of the wild type channel when they are co-expressed. We conclude that the G573S and G573C substitutions render the TRPV3 channel spontaneously active under normal physiological conditions, which in turn alters ion homeostasis and membrane potentials of skin keratinocytes, leading to hair loss and dermatitis-like skin diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号