首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zusammenfassung In der Clitoris und Glans penis des Affen wurde mit Hilfe der Silbermethode nachBielschowsky-Gros die Endigungsweise cerebrospinaler und vegetativer Nervenfasern einer Betrachtung unterzogen. Den weit ausgedehnten cerebrospinalen, sensiblen Nervengeflechten wird der Charakter einer Endformation zugesprochen, da sich von den grobkalibrigen, markhaltigen Fasern feine marklose Nervenelemente abzweigen, untereinander anastomosieren und auf diese Weise ein Netz bilden. Das cerebrospinale Endnetz setzt sich aus marklosen Nervenfasern und Neurofibrillen zusammen. Innerhalb eines sensiblen Endgeflechtes erstrecken sich vegetative präterminale Netzstränge, die zusammen mit der neurovegetativen Endformation (Terminalretikulum) die Kapillaren und markhaltigen Nervenfasern umklammern. Außerdem schließen sich den cerebrospinalen Endgeflechten entstammende marklose Nervenfasern dem vegetativen Endnetz an den Kapillaren an. Die nicht von einer eigenen Kapsel umschlossenen sensiblen Endgeflechte stehen mit den organisierten, von einem Hüllgewebe umgebenen, sensiblen Endkörperchen in kontinuierlicher Verbindung. Die sensiblen nervösen Endorgane erhalten ihren Zustrom durch eine oder mehrere Fasern, die dabei einige Endkörperchen zu einem geschlossenen System zusammenfügen können.Die in der Kapsel befindlichen Nervenfasern zeigen einen verzweigten, schlingenartig gewundenen Verlauf und fibrilläre Auflockerungen. Die cerebrospinalen Endkörperchen sind korbartig von einem dichten Netz vegetativer Nervenelemente umschlossen, von denen einige in das sensible Endorgan eindringen. Andererseits zweigen sich von den innerhalb der Kapsel befindlichen sensiblen Nerven feine Fasern ab, verlassen das Endkörperchen und beteiligen sich an der Maschenbildung des vegetativen Terminalretikulums. Auf die gegenseitige enge Lage von sensiblen Endorganen, vegetativen Endnetzen und Kapillaren wird hingewiesen. Ein allgemeines Fehlen von organisierten, sensiblen Endkörperchen in der behaarten Haut muß hervorgehoben werden.Das vegetative Nervensystem entwickelt an den Arterien, Venen und Kapillaren ein dichtes, teilweise in Strängen verlaufendes präterminales Netz, das in der Endformation des vegetativen Nervensystems, das nervöse Terminalretikulum, übergeht.Eine kurze Betrachtung ist den interstitiellen Zellen, den intercalären Zellen (Feyrter) und einigen mit dem vegetativen Nervensystem in Verbindung stehenden Bindegewebszellen gewidmet.  相似文献   

2.
Zusammenfassung Unter Verwendung der Silbermethode nach Bielschowsky-Gros und der Einschlußfärbung mit Ehrlichschem, saurem Hämatoxylin wurde die Anordnung, Ausbreitung und Endigungsweise des vegetativen Nervensystems in der Wand der A. uterina des Menschen untersucht.Die A. uterina ist in der Adventitia und Periadventitia von dicken Bündeln in der Mehrzahl markloser, weniger markhaltiger Nervenfasern begleitet. Die in der Adventitia parallel zur Verlaufsrichtung der A. uterina ziehenden Stränge grobkalibriger markloser Nervenfasern verzweigen sich mehrfach und bilden Geflechte, die mit den auf der Muskularis aus feinen Nervenfasern zusammengesetzten Nervengeflechten in Verbindung stehen.Die A. uterina ist in ihrem ganzen Verlauf an der Muskularis von einem dichten Flechtwerk feinster markloser Nervenfasern überzogen, die von länglichen Schwannschen Kernen begleitet werden. Die feinkalibrigen Nervenfasern eines Nervengeflechtes setzen sich kontinuierlich in ein aus feinsten marklosen Nervenfasern bestehendes präterminales Netz fort, an das sich das nervöse Terminalretikulum, die Endigungsform des vegetativen Nervensystems, anschließt. Beide Formationen, das präterminale Netz und das Terminalretikulum lassen sich nicht immer deutlich voneinander abgrenzen und müssen als ein einheitliches Ganzes betrachtet werden.Das Terminalretikulum setzt sich aus weiten oder engen Maschen zusammen und stellt die plasmatische Verbindung von Nervengewebe und dem Plasma der Erfolgszellen, sowohl in der Tunica media, als auch in der Adventitia der A. uterina her. An den Verzweigungsstellen des prätermmalen Netzes, an den Übergängen präterminaler Nervenelemente in das nervöse Terminalretikulum und seltener im Bereich des Terminalretikulums sind die mit unterschiedlichen Kernen ausgestatteten interstitiellen Zellen zu beobachten.Da sich das Nervengewebe auf und zwischen den oberen Mediaschichten kontinuierlich erstreckt und durch das nervöse Terminalretikulum mit den glatten Muskelzellen der A. uterina in plasmatische Verbindung gerät, ist die Abhängigkeit einer jeden Muskelzelle der A. uterina vom vegetativen Nervensystem wahrscheinlich.In der Adventitia der A. uterina sind stellenweise Bindegewebszellen von Neurofibrillen durchzogen; auch ist die Verbindung von Schwannschem Leitgewebe mit dem Plasma von Bindegewebszellen zu beobachten. Eine eingehende Betrachtung ist den interstitiellen (intercalären) Zellen und den mit dem Nervengewebe in Verbindung stehenden Bindegewebszellen in der Adventitia der A. uterina und im menschlichen Magen gewidmet.Die neurovegetative Endformation (präterminales Netz und Terminalretikulum) wird mit ihren zelligen Elementen als ein in normalen und pathologischen Lebensabläufen veränderliches Gewebe betrachtet.  相似文献   

3.
Zusammenfassung Die Nerven der Milz treten in überwiegender Mehrzahl durch die Hilusleiste in das Organ ein. Ein kleiner Teil der Nervenstämmchen bildet ein in der Milzkapsel subserös gelegenes Geflecht, das nur aus wenigen verstreut liegenden kleinen Faserbündeln und einzelnen zum Teil markhaltigen Nervenfasern besteht.Die größeren Nervenfaserstämme gruppieren sich im Hilusgebiet um die Gefäße herum und ziehen entweder durch die Trabekel in das Innere der Milz oder treten sogleich in die Milzpulpa ein.In den Trabekeln findet eine allmähliche Aufteilung der Nervenfaserbündel in eine größere Zahl kleinerer Faserbündelchen statt. Letztere verlaufen meist parallel zu den glatten Muskelfaserzügen des Trabekels. Einzelne Nervenfäserchen, die den in den Trabekeln verlaufenden Bündeln entstammen bilden gemeinsam mit anderen Nervenfasern ein Endnetz, das sowohl innerhalb der Muskelfaserzüge als auch an der Trabekeloberfläche zu beobachten ist.Ein derartiges Endnetz, das sich wahrscheinlich bei allen autonom innervierten Organen aus einer zunehmenden dichotomischen Aufteilung der Nervenfasern herleitet ist dadurch charakterisiert, daß Achsenzylinder unter Bildung der typischen dreieckigen Knotenpunkte, an denen die fibrilläre Auflockerung meist sichtbar wird, miteinander in direkter Verbindung stehen. Es fehlen hierbei freie Nervenfaserenden. Dieses aus Achsenzylindern bestehende Netz hat gleichsam als Leitbahn ein syncytiales Plasmastrangnetz mit Zellkernen (Schwannsche Kerne), welches mit den neuerdingsvon Lawrentjew undvan Esveld eingehend beschriebenen interstitiellen Zellen identisch ist.Die feinsten Nervenfasern endigen innerhalb der glatten Muskelfasern entweder im Cytoplasma oder auf dem Zellkern derselben.Von der Oberfläche der gröberen Trabekel setzen sich die nervösen. Geflechte auf die feineren Verzweigungen des Trabekelsystems fort, zu denen sich auch Achsenzylinder aus der Milzpulpa zugesellen. Die nervöse Versorgung der glatten Muskulatur wird um so ausgiebiger je feiner die Trabekel werden. Die Achsenzylinder verlaufen teils auf der Oberfläche, teils zwischen den glatten Muskelfasern der feinsten Trabekel und zeigen gewöhnlich an Stellen, an denen der Trabekel stärker kontrahiert ist, und in der Umgebung von Muskelzellkernen einen stark gewundenen Verlauf.Diejenigen stärkeren Nervenfaserbündel, die oft auf lange Strecken ihren Weg durch die Milzpulpa nehmen, zeigen nach kurzem Verlaufe eine starke Auflockerung ihres Gefüges und eine fortschreitende Aufteilung in kleinere Faserbündel mit zunehmender gegenseitiger Durchflechtung. In diesen Bündeln sind die einzelnen Achsenzylinder in kernhaltige Plasmastränge eingeschlossen, die den Nervenfasern inBiblschowsky-Präparaten das Aussehen von markhaltigen Nervenfasern verleihen.Die einzeln in der Milzpulpa verlaufenden Achsenzylinder liegen intraplasmatisch in den Reticulumzellen. Das Reticulum scheint sich auch an der Fixierung der stärkeren Nervenfaserbündel an die Milzpulpa zu beteiligen.Die kleineren Arterien und Venen der Milz sind stets von Nervenfasern umgeben die in der Adventitia der Gefäße ein wenig ausgesprochenes Geflecht bilden. Einzelne Achsenzylinder sind bis in dieMalpighischen Körperchen hinein zu verfolgen.  相似文献   

4.
Zusammenfassung Bei Hunden, Kaninchen und beim Menschen wurde nach einer morphologisch faßbaren nervösen Bahn zwischen Retina und vegetativem Zwischenhirn gesucht, um die klinischen und experimentellen Beobachtungen einer Lichteinwirkung auf vegetative Vorgänge im Organismus zu erklären. Im normalen Zwischenhirn von Hund und Kaninchen sowie vom Menschen verlassen dicke Stränge markloser Nervenfasern den cranialen vorderen Abschnitt des Chiasma opticum und dringen über die Lamina terminalis in das Grau des 3. Ventrikels ein.Mit Hilfe einer Opticusdurchschneidung beim Kaninchen gelang es, den Zusammenhang dieser Nervenfasern mit dem Chiasma einwandfrei nachzuweisen. Von den angewandten Färbe- und Imprägnationsmethoden erwies sich die Bielschowsky-Methode in eigener Modifizierung als sehr geeignet, da sie die degenerierten Nervenfasern besonders intensiv imprägniert. An degenerativen Merkmalen wie knotigen Verdickungen, kolbigen Auftreibungen, Ring- und Ösenbildungen sowie granulären Zerfallserscheinungen lassen sich die in das Zwischenhirn eintretenden Nerven relativ leicht erkennen. Infolge ihres degenerativen Zustandes können die aus der Sehnervenkreuzung stammenden marklosen Nervenfasern verfolgt werden: Nach ihrem Ursprung aus dem oberen, ventralen Chiasmabezirk begeben sich vegetative Opticusfasern in die vordere Begrenzung des 3. Ventrikels, in die Lamina terminalis. Indem die degenerierten marklosen Fasern die Lamina terminalis und die seitlich von ihr gelegene Substanz als Leitbahn benutzen, schieben sich die vegetativen Opticusfasern in die Subst. grisea des Rec. opticus und des 3. Ventrikels vor. Die als retino-hypothalamische Wurzel bezeichnete Fasermasse erscheint auf Sagittalschnitten und auf Horizontalserien nach einer Opticusdurchtrennung in degeneriertem Zustand. Oberhalb des Chiasma opticum breiten sich in der Regio supraoptica chiasmatis retino-hypothalamische Nerven bis zur Mitte zwischen Chiasmawölbung und Commissura rostralis aus. In einem Bogen der oberen Chiasmawölbung folgend, erreichen die vegetativen Opticusfasern den N. paraventricularis und finden sich in feiner Verteilung ebenfalls im N. infundibularis tuberis. Zahlreiche Nervenzellen des N. paraventricularis lassen in den Zwischenhirnen von Versuchstieren die Anzeichen einer Degeneration erkennen. In ihrem weiteren Weg durchziehen die retino-hypothalamischen Nerven das Infundibulum und den Hypophysenstiel und breiten sich in diffuser Anordnung im Hinterlappen der Hypophyse aus. Die vegetativen Opticusfasern benutzen in ihrem kontinuierlichen Verlauf durch das Zwischenhirn mit einigen Abweichungen das unmittelbar unter dem Ependym gelegene Gewebe.Die retino-hypothalamischen Nervenfasern werden mit Wahrscheinlichkeit als die Fortsätze der von Becher in der Retina beschriebenen vegetativen Nervenzellen angesehen, die den Einfluß des Lichtes auf die vegetativen Zentren des Zwischenhirnes im Sinne eines heliotropen Steuerungs- und Bewirkungs systems vermitteln sollen. Schädigungen von verschiedenen Netzhautquadranten lassen vermuten, daß die retino-hypothalamischen Nervenfasern in cranialer Lage den N. opticus durchlaufen. Die allmähliche Abnahme der Elemente des retinohypothalamischen Fasersystems auf dem Weg zum Hinterlappen der Hypophyse spricht für eine Endigung der vegetativen Opticusfasern in der Wand des 3. Ventrikels, im N. paraventricularis, im N. infundibularis tuberis und im Infundibulum sowie im Hypophysenhinterlappen. Einige nach Opticusdurchschneidung auftretende Wachstumserscheinungen am Ependym des Rec. opticus deuten auf einen engen funktionellen Zusammenhang von retino-hypothalamischen Nerven, Ependym und Liquortätigkeit.Meinem Chef, Herrn Prof. Dr. Dr. Becher, in Dankbarkeit zu seinem 60. Geburtstag gewidmet.  相似文献   

5.
Zusammenfassung Die früher beschriebene retino-hypothalamische Bahn (Knoche 1956–1959) wurde in ihrer Ausbreitung und Endigung durch erneute Untersuchungen an Mensch, Hund und Kaninchen ergänzt. Nach Opticusdurchschneidungen läßt sich der Ursprung und Verlauf retino-hypothalamischer Nervenfasern wie folgt festlegen: Am ventro-kranialen Chiasmarand, bzw. am N. opticus, verlassen markarme Nervenfasern die Sehbahn und dringen über die Lamina terminalis und durch die seitlich von ihr gelegenen Gebiete in das Grau der seitlichen 3. Ventrikelwand ein. Die an ihren degenerativen Zeichen zu verfolgenden vegetativen Opticusfasern durchziehen in Nähe des Ependyms die Regio suprachiasmatis (rostral und chiasmanah), die caudalen Anteile des N. paraventricularis, erreichen den N. tuberis infundibularis und in relativ geringer Zahl die Neurohypophyse. Der angegebene Verlauf läßt sich übereinstimmend an Sagittal-, Horizontal-und Frontalschnitten nachweisen.Innerhalb des N. tuberis infundibularis treten am Ende vegetativer Opticusfasern synaptische Formationen in Gestalt von Endösen und Ringen sowie Endkolben unterschiedlicher Form und Größe auf. Sie befinden sich in Gruppen an kleinen Blutgefäßen und einzeln an kleinen Nervenzellen. Die synaptischen Figuren lassen sich deutlich 10–14 Tage nach Opticusdurchschneidungen imprägnieren. Im N. tuberis infundibularis ist somit ein Endgebiet der retino-hypothalamischen Nervenfasern zu vermuten. Zur Feststellung der Ursprungszellen der retino-hypothalamischen Bahn wurden die vegetativen Opticusfasern nach ihrem Abgang aus der eigentlichen Sehbahn im Hypothalamus zerstört. Von der jeweiligen Läsionsstelle an sind die degenerativ veränderten vegetativen Opticusfasern durch die Vorderwand des 3. Ventrikels hindurch über die retino-hypothalamische Wurzel bis in den N. opticus zu beobachten. Im III. Neuron der Retina lassen sich post laesionem hypothalami degenerativ veränderte Nervenzellen (retrograde Degeneration) kleiner und mittlerer Größe nachweisen. Diese von Becher (1953–1955) als vegetative Nervenzellen der Retina bezeichneten Ganglienzellen sind als die Ursprungszellen der retino-hypothalamischen Bahn anzusehen.Die Ergebnisse von Untersuchungen der Zwischenhirne von Menschen, bei denen 2–6 Jahre vor dem Tod eine Bulbusenukleation durchgeführt wurde, sprechen für den Ablauf einer degenerativen Atrophie der retino-hypothalamischen Wurzel.Die Untersuchung erfolgte mit Unterstützung durch die Deutsche Forschungsgemeinschaft.  相似文献   

6.
Zusammenfassung Der Thymus von Neugeborenen, Kindern bis zu 2 Jahren und von Erwachsenen wurde mit den Methoden nach Bielschowsky-Gros, nach Jabonero und einer Silbertechnik nach Feyrter einer neurohistologischen Untersuchung unterzogen.Die interlobulär gelegenen Arterien werden von marklosen und wenigen markhaltigen Nervengeflechten umfaßt, die in der Adventitia und auf der Muscularis präterminale und terminale Neurofibrillennetze bilden. Von den Gefäßgeflechten des interlobulären Bindegewebes begeben sich marklose Nervenfasern in das Rindenparenchym und entwickeln dort feinste, dem Terminalreticulum angehörige Nervenelemente. Der Zusammenhang der Kapillar- und Parenchymnerven muß hervorgehoben werden.Im.Thymusmark breiten sich auffällig dichte und weit ausgedehnte Nervengeflechte aus. Von diesen aus vielen marklosen und wenigen markhaltigen. Nerven zusammengesetzten Geflechten sondern sich Nervenfasern ab, verzweigen sich, gelangen in die Nähe der Hassallschen Körperchen und verschwinden zwischen den Thymuszellen. Bei starker Vergrößerung lassen sich im Thymusmark feine Neurofibrillennetze erkennen, welche die Thymuszellen und stellenweise auch die Kapillaren umklammern. Relativ dickkalibrige marklose Nervenfasern schmiegen sich der Oberfläche der Hassallschen Körperchen an.Unabhängig von den Gefäßgeflechten dringen markhaltige und marklose Nervenbündel in das Thymusparenchym ein und hängen mit besonderen nervösen Endapparaten im Thymusmark zusammen. Abgesehen von sensiblen, den. Krauseschen Endkolben ähnlichen Nervengebilden stellen andere, sehr große Nervenfelder spezifisch gebaute Nerventerritorien dar. Diese die Krauseschen Endkolben um das 10–15fache an Größe übertreffenden Nerventerritorien lassen einen Eintritts- und Austrittspol der Nervenfasern erkennen und bauen sich aus markhaltigen und marklosen Nervenfasern auf. In einer bindegewebigen Grundlage verzweigen sich die Nervenfasern und entwickeln zu ihrer Oberflächenvergrößerung zahlreiche Windungen und Schlingenbildungen. Die nervösen Faserfelder enthalten unterschiedlich geformte, gleichmäßig verteilte Kerne und Kapillaren. Markhaltige und marklose Nervenfasern durchbrechen die bindegewebigen Grenzen der ovalen oder länglich-ovalen Nerventerritorien und nehmen in Gestalt feiner markloser Nervengeflechte und Neurofibrillen eine enge Beziehung mit den Markzellen des Thymus auf. Die Nerventerritorien werden zusammen mit den von ihnen ausgehenden im Thymusmark befindlichen Nervenfasern als ein in das Mark eingefügtes afferentes Nervensystem aufgefaßt. Sehr wahrscheinlich sind neben den Thymuszellen auch die Hassallschen Körperchen jenem dem N. vagus zugeordneten sensiblen System angeschlossen.Für die Überlassung des Themas danke ich meinem verehrten Chef, Herrn Prof. Dr. Dr. H. Becher, herzlich.  相似文献   

7.
Zusammenfassung Die mit der Methode von Bielschowsky-Gros durchgeführten Untersuchungen erstreckten sich auf die feineren Innervationsverhältnisse des menschlichen Nierenparenchyms. Dabei konnten die früher veröffentlichten Ergebnisse (Knoche 1950) erweitert werden.Neben den Arterien und Venen stehen auch die intertubulär gelegenen Kapillaren unter dem Einfluß des vegetativen Nervensystems, dessen Endigungsform in Gestalt des nervösen Terminalretikulums die Harnkanälchen und Kapillaren in kontinuierlichem Zusammenhang überzieht.Zahlreiche interstitielle Zellen sind in der Nierenrinde, im Bindegewebe des Nierenbeckens und in der Gefäßadventitia in das vegetative Endnetz eingeschlossen.Ein genaues Studium ist der feineren Innervation des am Gefäßpol eines Malpighischen Körperchens befindlichen Regulationsapparates gewidmet. Die paravaskulären, paraportalen Zellen und die Macula densa empfangen ihre nervöse Versorgung von seiten des auf der Muscularis der Vasa afferentia aufgelagerten marklosen Nervengeflechtes. Ein zwischen den Kernen des Goormaghtighschen Zellhaufens lokalisiertes zartes Neurofibrillennetz wurde im Zusammenhang mit marklosen, von den periarteriolären Geflechten stammenden Nervenfasern beschrieben. Dieses nervöse Fibrillennetz mit seinen Schwannschen Zellen wird als ein in das vegetative Synzytium eingeschaltetes sensibles Endorgan betrachtet und ihm der Charakter eines neurovegetativen Rezeptorenfeldes für Blutdruckschwankungen im Glomerulus zuerkannt. Für die Regulation des Blutstromes in den Glomeruluskapillaren ist in erster Linie das sich an der Kapillarwand erstreckende, nervöse Terminal retikulum verantwortlich zu machen.Da auch an den Tubuli recti feinste, retikulär miteinander verknüpfte, marklose Nervenfasern gefunden wurden, ist die Anwesenheit eines ein gesamtes Nephron, einschließlich des Malpighischen Körperchens mit seinem Regulationsapparat, umgebendes markloses Nervengeflecht anzunehmen, das mit den Gefäßgeflechten und dem periglomerulären Nervenplexus in Verbindung steht. Trotz der Abhängigkeit der Nierenarbeit vom Nervensystem scheint nach der anatomischen Anlage des intramuralen Nervengewebes eine gewisse selbständige, nervöse Regulationsfähigkeit dem Nierenparenchym innezuwohnen.Meinem Lehrer, Herrn Prof. Dr. Stöhr zu seinem 60. Geburtstag gewidmet.  相似文献   

8.
Zusammenfassung Im Myokard können zwei Typen der Innervation beobachtet werden. In den Vorhöfen und den Papillarmuskeln bilden die feineren präterminalen Verzweigungen der Nerven ein von den Gefäßen unabhängiges Grundgeflecht. In der Kammermuskulatur lösen sich von den Gefäßen meist nur die intrasyncytialen Endverzweigungen (Grundplexus) der Nerven.Die intrasyncytialen Endverzweigungen der Herznerven degenerieren sekundär auf typische Weise nach Unterbrechung der zum Herzen führenden Nervenbahnen. Die Degeneration der imSchwannschen Leitgewebe befindlichen Nervenelemente spricht gegen die neueren Anschauungen über die angeblich syncytiale Natur der vegetativen Nerven, wenigstens was ihre Endausbreitung anbetrifft. Die Fortsätze der sympathischen Nervenzellen bleiben auch in demSchwannschen Syncytium unabhängige Axonen, die nach Abtrennung von ihrer Ursprungszelle unabhängig von den mit ihnen im gleichen Syncytium verlaufenden Fasern anderen Ursprunges einer sekundären Degeneration anheimfallen.Mit Hilfe der Degenerationsmethode können die Fasern verschiedenen Ursprunges auch in ihren letzten Verzweigungen voneinander differenziert werden. Es konnte erwiesen werden, daß sowohl die Fasern der beiderseitigen sympathischen cervicothoracalen Ganglien als auch die der zum Vagussystem gehörenden Herzganglien und die aus den Vagus- und den Intervertebralganglien der unteren Cervicalsegmente stammenden sensorischen Fasern in dem gleichenSchwannschen Syncytium unmittelbar nebeneinander verlaufen können. Somit wird die Bedeutung des kernhaltigen Endplexus (Grundplexus) als eines eigenen sympathischen oder vegetativen Endapparates hinfällig. DasSchwannsche Leitgewebe ist nichts weiter als die wahrscheinlich präterminale Hülle der Nervenfasern verschiedensten Ursprunges und verschiedener Funktion.Weitaus der größte Teil der Nerven des Myokards kommen aus den beiderseitigen Ganglia stellaria. Das linksseitige Ganglion versorgt vornehmlich die linke und hintere Fläche der Herzkammern und die Gegend der Herzspitze. Das rechtsseitige versorgt die vordere Fläche der Herzkammern, das Kammerseptum und den vorderen linken Papillarmuskel. Die Innervationsgebiete überdecken sich jedoch weitgehend.Die Fortsätze der intramuralen Ganglienzellen versorgen alle Teile des Herzens gleichmäßig. Ihre Fasern sind morphologisch nicht charakterisiert. Sensorische Fasern erhält das Myokard vor allem aus dem Nervus vagus und aus den unteren cervicalen Intervertebralganglien, die dem Herzen durch den Nervus vertebralis über das Ganglion stellare zugeführt werden. Die Fasern verschiedener Funktion und verschiedenen Ursprunges sind morphologisch nicht gekennzeichnet und nur durch Degenerations-untersuchungen voneinander zu isolieren.Nervenendigungen konnten im Myokard allerdings den Nervenfasern gegenüber in unverhältnismäßig geringer Zahl vorgefunden werden. Es sind zum Teil Seitenzweige der imSchwannschen Leitgewebe verlaufenden Nervenfasern.  相似文献   

9.
Zusammenfassung Die Untersuchungen beziehen sich auf das Grundzytoplasma der Spermatozyten und Spermatiden von Tachea nemoralis, Helix lutescens und Helix pomatia.Das Grundzytoplasma der Spermatozyten hat eine schon mikroskopisch nachweisbare Schichtung. Es besteht aus einem Ekto- und aus einem Entoplasma. Das erstere ist hyalin und einschlußfrei. Das letztere besteht aus einer lipoidarmen, zentralen, mitochondrienhaltigen und aus einer lipoidreichen, peripheren, zum Teil das Zentrosom unmittelbar umhüllenden, den Golgi-Apparat enthaltenden Phase. Der Golgi-Apparat und die Mitochondrien sind konzentrisch in bezug auf das Zentrosom angeordnet. Der erstere liegt näher dem Zentrosom als die letzteren.Die Zellen wurden durch verschiedene Mittel zur Bildung von Myelinfiguren veranlaßt. Die Myelinfiguren entstehen aus der Plasmamembran, aus der lipoidreichen Phase des Entoplasmas und aus der Hülle der Golgi-Apparatelemente. Dagegen konnten die Mitochondrien, das zwischen ihnen liegende Grundzytoplasma, die Binnenkörper der Golgi-Apparatelemente und das Ektoplasma niemals zur Bildung von Myelinfiguren veranlaßt werden. Die Lipoide sind also ungleichmäßig im Zytoplasma verteilt. Die strukturellen Veränderungen der lipoidreichen Phase, welche experimentell entweder durch Verflüssigung oder durch Verfestigung ihrer Substanz hervorgerufen werden können, werden näher beschrieben.Die lipoidreichen Schichten des Entoplasmas sind nach Vitalfärbung mit Chrysoidin schwach positiv doppelbrechend in bezug auf den Radius der Zelle. Die Oberfläche der lebenden ungefärbten Zelle ist dagegen schwach negativ doppelbrechend in bezug auf den Radius. Diese Doppelbrechung wird nicht auf die Plasmamembran, sondern auf das äußere Ektoplasma bezogen.Das Grundzytoplasma hat also submikroskopischen Schichtenbau. Die miteinander alternierenden Eiweißfolien und Lipoidlamellen sind jedoch teilweise gerüstartig miteinander verbunden, da die nachgewiesene Doppelbrechung nur schwach ist. Die Lipoidlamellen sind jedoch nicht gleichmäßig im Grundzytoplasma verteilt. Am zahlreichsten müssen sie in der lipoidreichen Phase des Entoplasmas und in der Plasmamembran sein. Gering ist dagegen ihre Anzahl im Ektoplasma, welches hauptsächlich aus Eiweißfolien aufgebaut sein muß. Die Lipoidlamellen und Eiweißfolien sind innen konzentrisch in bezug auf das Zentrosom und außen konzentrisch in bezug auf den Kern und das Zentrosom angeordnet. Diese submikroskopische Struktur muß sehr labil sein, da der Aggregatzustand des Grundzytoplasmas in der Mitte zwischen einem typischen Gel und einem typischen Sol steht.Während der Reifungsteilungen zerfallen die lipoidreichen Schichten in Fibrillen, welche in bezug auf ihre Länge schwach negativ doppelbrechend sind. Während der Mitose geht die submikroskopische Schichtenstruktur des Grundzytoplasmas teilweise, insbesondere im Inneren der Zelle, in eine submikroskopische Fibrillenstruktur über.Die submikroskopische Struktur des Golgi-Apparates wurde vom Verfasser schon früher beschrieben. Auch wurde die Doppelbrechung der Mitochondrien schon früher festgestellt. Die Moleküle der Glyzeride sind senkrecht zur Länge der sehr kurzen, stäbchenförmigen Mitochondrien orientiert.Die Literatur, welche sich auf die mikroskopisch faßbare Schichtung des Grundzytoplasmas in verschiedenen Zellen bezieht, wird besprochen. Die mikroskopische Struktur der Zellen ist nämlich der grobmorphologische Ausdruck einer feineren submikroskopischen Struktur. Auch kann aus der Schichtung der mikroskopischen Einschlüsse auf die Schichtung der Substanzen des Grundzytoplasmas geschlossen werden. Die auf diese Weise gewonnenen Vorstellungen über die submikroskopische Struktur des Grundzytoplasmas können polarisationsoptisch geprüft werden.Das Grundzytoplasma der Spermatozyten, Ovozyten und der somatischen Zellen besteht aus einem Ekto- und aus einem Entoplasma. Das letztere ist entweder homogen oder besteht aus einer lipoidarmen, mitochondrienhaltigen und aus einer lipoidreichen, mit dem Golgi-Apparat verbundenen Phase. Das Ektoplasma der Ovozyten, Spermatozyten, Amöbozyten, Leukozyten und Fibroblasten ist in der Regel hyalin und einschlußfrei. Dagegen ist es in einigen Fällen nachgewiesen, daß die Neurofibrillen, Nissl-Körper, Myofibrillen, Tonofibrillen, Epithelfibrillen und retikulären Bindegewebsfibrillen nur im Ektoplasma liegen. Deshalb ist die Vermutung naheliegend, daß die spezifischen mikroskopischen Komponenten der Nerven-, Muskel-, Epithel- und retikulären Bindegewebszellen Differenzierungsprodukte des Ektoplasmas sind. Dagegen scheinen die Sekretions-, Exkretions- und Reserveprodukte, ebenso wie der Golgi-Apparat und die Mitochondrien immer nur im Entoplasma zu liegen.Der Golgi-Apparat und die Mitochondrien sind entweder konzentrisch in bezug auf den Kern oder konzentrisch in bezug auf das Zentrosom angeordnet. Im letzteren Fall wird das Zentrosom entweder unmittelbar vom Golgi-Apparat umgeben, während die Mitochondrien nach außen von ihm liegen oder umgekehrt. In jungen Ovozyten können diese mikroskopischen Komponenten besonders dicht um das Zentrosom zusammengedrängt sein, ja das ganze Entoplasma kann einen fast kompakten, vom Ektoplasma durch eine Membran scharf abgegrenzten Körper bilden. In solchen Fällen haben wir es mit einem Dotterkern im weiteren Sinne zu tun. Seltener scheinen die mikroskopischen Komponenten regellos im homogenen Entoplasma zerstreut zu sein.Gewöhnlich besteht das Grundzytoplasma nur aus einer Ekto- und Entoplasmaschicht. Seltener alternieren zahlreichere Ekto- und Entoplasmaschichten miteinander. Auch kann das Entoplasma als ein Netzwerk von Strängen im Ektoplasma liegen. Die lipoidreiche und die mitochondrienhaltige Phase bilden gewöhnlich zwei verschiedene Schichten des Entoplasmas. Jedoch kann sich die lipoidreiche Phase auch als ein kompliziertes Lamellensystem, ein Faden- oder ein Netzwerk in der mitochondrienhaltigen Phase verteilen oder umgekehrt. Die lipoidreiche, mit dem Golgi-Apparat verbundene und die mitochondrienhaltige Phase können entweder konzentrisch in bezug auf den Kern oder wenigstens teilweise auch konzentrisch in bezug auf das Zentrosom angeordnet sein. Im letzteren Fall wird das Zentrosom entweder unmittelbar von der lipoidreichen Phase umhüllt, während die mitochondrienhaltige nach außen von ihr liegt oder umgekehrt. Auch scheint eine der beiden Phasen des Entoplasmas bisweilen einen kompakten Körper bilden zu können.Das Grundzytoplasma ungefähr isodiametrischer Zellen (Ovozyten, Spermatozyten, Amöbozyten, Fibroblasten, Nervenzellen) scheint also überall aus Eiweißfolien und Lipoidlamellen, welche entweder konzentrisch in bezug auf den Kern oder auch teilweise konzentrisch in bezug auf das Zentrosom angeordnet sind, aufgebaut zu sein. Die Lipoidlamellen sind in den einen Schichten des Grundzytoplasmas zahlreicher und in den anderen spärlicher. Die Eiweißfolien und Lipoidlamellen sind wohl zum Teil gerüstartig miteinander verbunden. Nur die Ausläufer dieser Zellen haben eine submikroskopische fibrilläre Struktur. Dagegen müssen wir annehmen, daß in sehr stark gestreckten Zellen (Muskelzellen, hohe Zylinderepithelzellen) das gesamte Grundzytoplasma eine mehr oder weniger deutlich ausgesprochene submikroskopische fibrilläre Struktur hat. An der Peripherie solcher Zellen kommt es vielleicht sogar zur Filmstruktur. In schwächer anisodiametrischen Zellen hat das Entoplasma, die Plasmamembran und vielleicht auch das äußerste Ektoplasma, wenn es frei von mikroskopischen Fibrillen ist wohl noch eine submikroskopische Folien- und Lamellenstruktur.  相似文献   

10.
Zusammenfassung Die Struktur der Endformation vegetativer Nervenfasern innerhalb der Dünndarmzotte der weißen Ratte wurde elektronenmikroskopisch untersucht. Auch die feinsten (kleiner als 1 ) Nervenfasern sind individuelle, zytoplasmatische Gebilde. Mehrere Axone, jedes von einem Axolemm begrenzt, sind in die Zytoplasmamembran der Schwannschen Zelle eingefaltet. Das Leitgewebe besteht ebenfalls aus einzelnen Zellen. Es ist kein Plasmodium. Im bindegewebigen Zottenstroma wird das aus Axonen und Schwannschen Zellen bestehende Bündel von einer Basalmembran gegen das Tnterstitium abgegrenzt. Das Bündel wird hier von zahlreichen, feinen kollagenen Fasern begleitet.An den Basen der Epithelzellen werden Synapsen solcher Bündel beobachtet. Die Zytoplasmamembran der Epithelzelle und das Axolemm werden zu synaptischen Membranen. Diese zeichnen sich durch starken Kontrast und Anlagerung osmiophiler Substanzen aus. Im terminalen Axoplasma sind synaptische Bläschen zwar häufig, aber nicht regelmäßig vorhanden. Basalmembran und Schwannsche Zellmembran fehlen hier. Oft erreicht ein ganzes Axonbündel das Epithel, so daß von einer multiterminalen Innervationsform gesprochen werden kann. Dabei finden sich Synapsen mehrerer Axone an der Membran einer einzelnen Zelle. Auch kann eines der Axone mit zwei oder mehreren Zellen synaptisch verbunden sein.  相似文献   

11.
Ohne Zusammenfassung1) Es wird nötig sein, diese Untersuchungen auf weitere Tierarten auszudehnen, um etwa vorhandene variable Faktoren auszuschalten. Die hier mitgeteilten Schlußfolgerungen werden möglicherweise durch die weiteren Untersuchungen, die bereits begonnen sind, eine Modifikation erfahren. Die genaueren Messungen und Zählungen, die in dieser Mitteilung angeführt werden, wurden von Herrn Dr.Addison ausgeführt. — Es soll in diesem Zusammenhang noch kurz eine frühere Untersuchung von L.Loeb erwähnt werden, der ein ähnlicher Gedanke zugrunde lag, die jedoch zu negativen Ergebnissen führte: Das subepitheliale Bindegewebe des Uterus ist beim Meerschweinchen viel zellreicher als das Bindegewebe der Tube. Es war nun möglich, daß dieser Unterschied in dem Zellreichtum des Bindegewebes auf einer durch das Corpus luteum bewirkten Sensibilisierung beruhe. Früher hatte ich nämlich gezeigt, daß nur die Uterusschleimhaut, nicht aber die Tubenschleimhaut durch das Corpus luteumSekret sensibilisiert wird. Ich untersuchte deshalb die Tuben- und Uterusschleimhaut des Meerschweinchens auf früheren Stadien, ehe ein Corpus luteum gebildet worden war. Wäre der Unterschied durch die Funktion des Corpus luteum bedingt, so sollten die beiden Mucosen zu dieser Periode sich im wesentlichen gleich verhalten. Es ergab sich aber, daß die typischen Unterschiede schon zu einer Zeit vorhanden waren, wo ein Corpus luteum noch nicht funktioniert hatte. Das Sekret des Corpus luteum bewirkt also nicht die Verschiedenheit in dem Eeichtume an Bindegewebszellen in der Uterus- und Tubenschleimhaut, sondern es ist im Gegenteil wahrscheinlich, daß dieser Unterschied in der Struktur der beiden Schleimhäute primär ist und die Grundlage bildet, die es dem Corpus luteum ermöglicht, seine sensibilisierende Funktion lokal beschränkt auszuüben. Voraussichtlich würde ohne ein präexistierendes zellreiches Stroma das Corpus luteum außerstande sein, eine Sensibilisiernng der Mucosa herbeizuführen, welch letztere dann nach Hinzufügung des äußeren Reizes zur Bildung der mütterlichen Placenta führt. Wohl aber wäre zu erwägen, ob nicht ein Mangel an Ovarienfunktion im Fötus die Unterschiede in der Struktur der Uterus- und Tubenschleimhaut zum Verschwinden bringen möge.  相似文献   

12.
Zusammenfassung Wir halten an unserer Auffassung der Synapsen im Sympathikus im Sinne einer elektrischen Maschennetzschaltung bzw. eines Rückkoppelungssystems mit Kondensator, Widerstand und Detektor fest. Diese Vorstellung ist sowohl mit den komplizierten morphologischen Strukturen, als auch den neueren physiologischen Ergebnissen über die vorwiegend elektrische Natur der Erregung und Leitung in den Ganglien in Übereinstimmung (Lorente de Nó, Prosser, Govaerts).Die Synapsen liegen an den Stellen der in verschiedenen Formen auftretenden, um die Ganglienzellen liegenden Endapparate, wo sie direkten Kontakt mit der Zelloberfläche haben. Man hat sich das daher nicht nur an einer kleinen umschriebenen Stelle, sondern auch auf einer größeren Strecke und an verschiedenen Punkten zugleich vorzustellen.Die Synapsen sind ebenso wie alle an die Zellen herantretenden oder aus ihr heraustretenden Nervenfasern in eine Isoliermasse, das Scheidenplasmodium (Stöhr) eingebettet, das physiologisch auch noch StoffWechselfunktionen dient, die wir im einzelnen noch nicht kennen, das jedoch kein Acetylcholin produziert (Lorente de Nó).Die Stöhrsche Auffassung vom Terminalretikulum als einem feinsten nervösen Netzwerk, das Ganglienzellen und Nervenfasern in gleicher Weise schleierartig einhüllt, das Scheidenplasmodium innerviert und auf diese Weise sowohl Ganglienzellen als Scheidenzellen nervöse Impulse zuteilt, läßt sich in keiner Weise mit den neueren physiologischen Vorstellungen vorwiegend elektrischer Erregungsprozesse zur Deckung bringen. Danach ist das Terminalretikulum physiologisch ein Absurdum, da dadurch weder eine Erregungsleitung, noch differente, selektionierte Reize möglich sind. Die Existenz des nervösen Terminalretikulums wird von den meisten Forschern in Frage gestellt.Das Scheidenplasmodium ist ektodermaler Abstammung und umfaßt ebenso die sogenannten Kapselzellen, als auch die die Fortsätze und Nervenfasern umscheidenden Zellen, ist also identisch mit den Schwannschen Zellen (Koelliker, Kohn).Sogenannte neurogene Nebenzellen (Kohn) spielen im Sympathikus des Erwachsenen keine wesentliche Rolle, da sie, wenn überhaupt, immer nur vereinzelt vorkommen. Es ist in keiner Weise berechtigt, nach Stöhr diese zusammen mit den Scheidenzellen als Nebenzellenplasmodium zu bezeichnen und es als Gewebe sui generis zu betrachten.Eine Innervation des Scheidenplasmodiums widerspricht absolut den morphologischen und physiologischen Tatsachen, dagegen liegen in ihm stets die Zellfortsätze und Endapparate (Isolation und Stoffwechsel). Ein Kapselraum existiert um die lebende Nervenzelle offenbar nicht (Szantroch).Die Kernform der Scheidenzellen ist wechselnd, was weitgehend von funktionellen Zuständen und mechanischen Faktoren abhängt.Das Eindringen von Scheidenplasmodium in das Neuroplasma der Ganglienzellen ist beim Menschen absolut unbewiesen, und damit auch eine Verzahnung (Stöhr), außerdem aber würde es der physiologisch-elektrischen Vorstellung der Erregung und Leitung völlig widersprechen.Als äußere Hülle der sympathischen Ganglienzellen figuriert eine außen aus gröberen, innen aus feinsten netzförmigen Bindegewebsfasern bestehende Kapsel.Ein exakter Beweis gegen den individuellen Zellcharakter der Ganglienzellen, die vielfach in Gruppen zusammenwirken, ist bisher nicht erbracht und daher die Neuronentheorie, wenn auch nicht mehr in ihrer starren Form, durchaus noch gültig und vor allem durch die neueren physiologischen Ergebnisse fest gestützt.  相似文献   

13.
Zusammenfassung Die Capillaren des Herzens werden sämtlich von einer, zwei oder drei marklosen Nervenfasern versorgt, derart, daß die Fasern oder die zugehörigen Schwannschen Kerne dem Endothel streckenweise direkt aufgelagert sind und hierbei sehr häufig eine Anzahl kleiner Windungen erkennen lassen, die auf eine Oberflächenvergrößerung des Achsencylinders hinweisen.Die Nervenfasern können gelegentlich auch die Gefäße umschlingen, teilen sich manchmal dichotomisch und sind sehr häufig von verschiedener Dicke.Feine, fibrilläre Auflockerung der Capillarnerven auf dem Endothel sind öfters zu erkennen, freie, knopfförmige Endigungen waren nicht zu beobachten.Die Nerven sind nicht streng an die einzelne Capillare gebunden; sie verlassen das Gefäß meist nach einer kurzen Strecke wieder um sich zu einem benachbarten Capillargefäß zu begeben. Auf diese Weise kommt ein geschlossenes, jedoch mit dem gesamten Capillarsystem aufs engste verknüpftes Nervennetz zustande.Über die Funktion der Capillarnerven lassen sich vom histologischen Standpunkte aus keinerlei bestimmte Angaben machen.  相似文献   

14.
Zusammenfassung Die Beschreibung der Struktur 2. Ordnung baut auf einer Klassifizierung der Strukturen 3. Ordnung, Osteone und Tangentiallamellen, auf (Knese, Voges und Ritschl 1954). Um die Zusammenlagerung der Osteone mit verschiedenen Merkmalen wie Form, Größe und Steigungsfolge am einzelnen Ort zu erfassen, wird das Lochkartenverfahren benutzt. Die Besonderheiten dieses Verfahrens, das sich von der üblichen Beschreibung sowie der Zahlenstatistik unterscheidet, bzw. eine Kombination beider darstellt, werden diskutiert. Es wird darauf hingewiesen, daß die Verwendung des Lochkartenverfahrens die Möglichkeit gibt, eine unübersichtliche Ansammlung sehr ähnlicher Gebilde in ihren einzelnen Bestandteilen zu differenzieren.Typen einer Struktur 2. Ordnung, die an verschiedenen Skeletelementen wiederkehren, existieren nicht. Es ist daraus zu schließen, daß jedes Skeletstück in seinen verschiedenen Anteilen einen individuellen Bau besitzt. Damit kann aber auch nicht mit einem gleichartigen Spannungsgefüge an verschiedenen Skeletstücken gerechnet werden. Die Verteilung der Strukturen ist als Funktion (im mathematischen Sinn) des Querschnittes anzusehen. Asymmetrische Osteone haben Verteilungsschwerpunkte an den Flächen, Runde und Schrägschnitte an den Kanten. In einem Skeletstück herrscht eine Steigungsfolge vor. Gleichartige Wicklungen finden sich zum Teil an gegenüberliegenden Flächen. Im einzelnen ist die Verteilung der Steigungsfolgen über den Querschnitt ähnlich wie die der Asymmetrierichtungen sehr verwickelt.Ausgeführt mit Unterstützung der Deutschen Forschungsgemeinschaft.  相似文献   

15.
Zusammenfassung Die untersuchten Epiphysen I, II, III (23, 24, 31 Jahre) zeigen ein, was Menge und Anordnung des Bindegewebes, der Glia und der Pinealzellen anbetrifft, verschiedenes Verhalten. In Epiphyse I finden sich starke bindegewebige Septen. Epiphyse II hat ein mächtiges zentrales Glialager. Epiphyse III weist eine mehr oder weniger zentral gelegene, mit Flüssigkeit erfüllte große Cyste auf.Konkremente nehmen hier (entgegen der allgemeinen Regel) mit dem Alter ab. Sie sind regellos im Pinealzellgewebe verteilt. Der Pigmentgehalt nimmt in Übereinstimmung mit anderen Autoren mit dem Alter etwas zu.Der Aufbau von Epiphyse II läßt sich von Epiphyse III herleiten. In allen drei Epiphysen gleichen die Pinealzellen einander und sind normal. Die Pinealzellen liegen in einem reichen Fasergeflecht aus einer wechselnden Anzahl gröberer, im nach Alzheimer gefärbten Präparat (Fix. nach Flemming) rot und einer großen Anzahl feinerer, im gleichen Präparat grün färbbarer Fasern. Die grünen Fasern enden oft knopf förmig um die Gefäße und bilden das sog. Terminalretikulum.Scharfe Zellgrenzen können nicht zur Darstellung gebracht werden. Was bei schwachen Vergrößerungen als solches gedeutet wurde, erwies sich, mit Immersion betrachtet, als stärkere Züge des reichen Faserfilzes, in dem die Pinealzellen liegen. Möglicherweise bilden die Zellen ein Syncytium. Die Grundform der Zellkerne ist die eines Rotationsellipsoids. Das Chromatin ist im Vergleich zu dem vieler anderer Organzellkerne spärlich und fein verteilt. Nucleoli kommen in wechselnder Anzahl und Größe vor und sind homogen färbbar. Sie können offenbar wachsen. Von einer bestimmten Größe ab, meist etwa 2 nehmen die Nucleoli mehr Flüssigkeit als kolloide Substanzen auf. Der Nucleolus wird zu einem schollenreichen Gebilde: der nucleolären Blase, welche von einer mikroskopisch nachweisbaren Membran umgeben ist.Die nucleolären Blasen wandern zur Kernmembran, ihre Membran verklebt mit der Kernmembran, und auf der kernseitigen Fläche der Nucleolarmembran häuft sich Chromatin an. Es kann die Verklebungsstelle cytoplasmawärts über die Kernkontur vorgetrieben sein, was unter anderem für die Beurteilung der Richtung des Ablaufes dieses Vorganges wichtig ist. Nach Schwinden der Verklebungsstelle wird der Inhalt der nucleolären Blase ins Cytoplasma entleert. Um die Eröffnungsstelle findet man einen scharfen, dann stumpfen und zuletzt runden Saum.Es ist wahrscheinlich, daß nicht immer die Verklebungsstelle beider Membranen über die Kernkontur vorgewölbt wird.Die Ausstoßung des Inhalts der nucleolären Blase kann auf jedem Entwicklungsstadium erfolgen.Mit Unterstützung der Gesellschaft der Freunde und Förderer der medizinischen Fakultät.  相似文献   

16.
Zusammenfassung In Zusammenhang mit der Entwicklungsgeschichte werden die morphologischen und zahlenmäßigen Veränderungen der Chondriosomen, Sphärosomen und Proplastiden in Archespor-, Pollenmutter- und Tapetumzellen anhand von 7 aufeinanderfolgenden Stadien untersucht. Dabei ergibt sich: Nach Zellteilungen tritt eine Vermehrung von Zellorganellen bis zur Partikelzahl der Mutterzelle auf. Darüber hinaus finden sich erhöhte Organellzahlen (im Gegensatz zu den Tapetumzellen) in den Pollenmutterzellen vor der Meiosis und der Tetradenbildung sowie in den Pollenkörnern nach der 1. Pollenkornmitose. Die Teilung der beiden Organellarten muß nicht gleichzeitig erfolgen, wie aus ihrem Verhalten vor oder während der Furchung zu schließen ist. — Es wird angenommen, daß während der Meiosis keine Organellvermehrung stattfindet. — Die 1. Pollenkornmitose ist nur in bezug auf die Zahl der Plasmapartikel pro Zelle inäqual; die Verteilung letzterer pro Plasmaeinheit wird durch die Cytokinese nicht geändert, und auch das Verhältnis Proplastiden: Chondriosomen und Sphärosomen innerhalb der generativen Zelle entspricht dem in der vegetativen Zelle sowie dem in den Ausgangszellen (sekundäre Archesporzellen). — Der RNS-Gehalt der Tapetumzellen, der anfangs geringer als der der Pollenmutterzellen war, wird zunächst bis zur Ausbildung der vier Gonen erhöht und sinkt dann (z. Z. des Pollenkornwachstums) ab. Der RNS-Gehalt der Pollenmutterzellen steigt kontinuierlich an, der der generativen Zelle ist zunächst niedriger als in der vegetativen Zelle, wird jedoch später erhöht. — Die Kern-Plasma-Mitochondrien-Relation von R. und H.Lettre wird auf die quantitativen Untersuchungen anzuwenden versucht. Dabei werden die zeitliche Aufeinanderfolge der Partikelteilung und des Plasmawachstums und die Relation zwischen Chromatingehalt und Organellzahl berücksichtigt. Die Bedeutung der inäqualen Teilung für die Plasmonumkombination nachMichaelis wird diskutiert.Mit 2 Textabbildungen  相似文献   

17.
Zusammenfassung Im Blut der Urodelen kommen außer kernhaltigen roten Blutkörperchen stets auch kernlose vor. Ihre Zahl ist bei den einzelnen Arten sehr verschieden. Den höchsten bisher beobachteten Prozentsatz besitzt der lungenlose Salamander Batrachoseps attenuatus. Bei ihm ist die Mehrzahl (90–98%) der Erythrozyten kernlos. Die kernlosen roten Blutkörperchen sind kein Kunstprodukt, sondern ein normaler Bestandteil des Urodelenblutes. Die Kernlosigkeit ist ein Zeichen der höheren Differenzierung der Erythrozyten, nicht dagegen das Zeichen einer Degeneration. Sie ist eine funktionelle Anpassung des Blutes an die Lebensweise und die dadurch bedingte Atmungsweise des Tieres. Die lungenlosen, durch die Haut und die Buccopharyngealschleimhaut atmenden Urodelen haben mehr kernlose Erythrozyten als die mit Lungen atmenden.Die Bildung der kernlosen roten Blutkörperchen findet im zirkulierenden Blut statt und geschieht in Form einer Abschnürung größerer oder kleinerer Cytoplasmastücke von kernhaltigen Zellen. Sie sind infolgedessen ganz verschieden groß. Sehr deutlich läßt sich diese Art der Entstehung kernloser Erythrozyten in vitro beobachten. Vielleicht gibt es daneben auch noch eine zweite Art. Manche kernlosen Erythrozyten mit Jolly-Körperchen und Chromatinbröckelchen machen es wahrscheinlich, daß sie durch eine intrazelluläre Auflösung des Kernes aus einem kernhaltigen Erythrozyten hervorgegangen sind. Die Regel ist jedoch die Abschnürung. Eine Ausstoßung des Kernes kommt bei normalen Erythrozyten nicht vor, sondern nur bei zerfallenden. Sie ist ein Zeichen der Degeneration der Zelle. Der Zelleib geht kurz nach dem Austritt des Kernes zugrunde. Der Kern bleibt als freier oder nackter Kern etwas länger erhalten, um dann aber ebenfalls völlig zu zerfallen.Da im zirkulierenden Blut der Urodelen regelmäßig eine Anzahl von Erythrozyten zugrunde geht, sind in ihm immer freie Kerne zu finden. Sie haben nicht mehr das normale Aussehen eines Erythrozytenkernes, sondern sind bereits erheblich verändert. Schon vor der Ausstoßung des Kernes aus der Zelle tritt eine teilweise Verflüssigung des Kerninhaltes ein; es bilden sich mit Flüssigkeit gefüllte Vakuolen, die zu Kanälchen und größeren Hohlräumen zusammenfließen. Auf diese Weise kommt es zu einer starken Auflockerung und Aufquellung des Kernes. Wenn der Kern den ebenfalls aufgequollenen und sich allmählich auflösenden Cytoplasmaleib verlassen hat und als nackter Kern im Blut schwimmt, schreitet der Prozeß des Zerfalles weiter fort. Nach allen Seiten strömt schließlich der noch nicht völlig verflüssigte Kerninhalt in Form fädiger und körniger Massen aus.Nach Komocki sollen sich diese Massen als eine Hülle um den nackten Kern legen und in Cytoplasma verwandeln, in dem dann später Hämoglobin auftritt. Die nackten Kerne sollen die Fähigkeit haben, aus sich heraus eine neue Erythrozytengeneration aufzubauen. Das ist nicht richtig. Es hat sich kein Anhaltspunkt für eine Umwandlung der den freien Kernen entströmenden Massen in Cytoplasma ergeben. Die Bilder, die Komocki als Beleg für seine Theorien heranzieht, sind vielmehr der Ausdruck der letzten Phase in dem Degenerationsprozeß des Kernes.Andere sogenannte freie Kerne, die Komocki abbildet und als Ursprungselemente einer neuen Erythrozytengeneration in Anspruch nimmt, sind gar keine freien, nackten Kerne, sondern weiße Blutzellen, vor allem Lymphozyten und Spindelzellen. Das weiße Blutbild der Urodelen ist, abgesehen von den Spindelzellen, einer für Fische, Amphibien, Reptilien und Vögel charakteristischen Zellform des Blutes, ganz das gleiche wie das der Säugetiere und des Menschen. Es setzt sich aus Lymphozyten, Monozyten und den drei Arten von Granulozyten, neutrophilen, eosinophilen und basophilen, zusammen. Die Monozyten können sich unter gewissen Umständen, z. B. bei Infektionen oder in Blutkulturen, zu Makrophagen umwandeln und Erythrozyten bzw. Reste zerfallender Erythrozyten phagozytieren. Die phagozytierten Teile roter Blutkörperchen haben Komocki zu der falschen Annahme verleitet, daß bei Batrachoseps attenuatus, in dessen Blut er entsprechende Bilder beobachtet hat, die kernlosen Erythrozyten in besonderen Zellen, sogenannten Plasmozyten entstehen und sich ausdifferenzieren. Komockis Theorie über die Bildung roter Blutkörperchen aus dem Chromatin nackter Kerne ist nicht haltbar. Die Befunde, auf denen sie aufgebaut ist, sind keineswegs beweiskräftig. Sie verlangen eine ganz andere Deutung, als Komocki ihnen gegeben hat. Komockis Kritik an der Zellenlehre ist daher in keiner Weise berechtigt.  相似文献   

18.
Zusammenfassung Die Marginalborste auf der Marginalleiste der Rüsselscheibe von Calliphora und Phormia ist bei adulten Tieren und reifen Puppen lichtmikroskopisch untersucht worden. Sie besteht aus einer zweilumigen Borste, unter der sich ein Sack mit Sinneszellen und akzessorischen Zellen befindet. Der Sack baut sich aus zwei Hüllen auf, deren innere aus bindegewebigem Perilemm gebildet wird. Distal grenzt das Perilemm an die Basalmembran, proximal zieht es von der Basis des Sackes aus als Nervenscheide in das Labellum, wo es sich mit den Nervenscheiden anderer Marginalborsten vereinigt und an der Basis des Labellums in die Nervenscheide des Labialnerven mündet. Die äußere Hülle des Sackes besteht aus granuliertem Septum, das distal 2–25 unterhalb der Basalmembran endet und proximal die Nervenscheide etwa bis zur Mitte des Labellums eng anliegend überzieht. Dort löst es sich von der Nervenscheide und zieht unter die Basalmembran, unter der es auch im Haustellum und Rostrum vorkommt. Die trichogene Zelle der Marginalborste verschließt den Sack in Höhe der Basalmembran wie ein zugespitzter Korken. Die Membran ihrer Zelle im intrakutikulären Bereich wird beschrieben. Ein Scolops zieht als Fortsetzung vom engen Lumen der Borste durch die trichogene Zelle hindurch in den Sack hinein, wo sein freies Ende distale Nervenfortsätze aufnimmt. Zur Anzahl und Art der Zellen im Sack wird Stellung genommen. Ein Netz aus Fibrillen unbekannter Art um den Kern der Sinneszellen und der Verlauf einer mechanorezeptorischen Faser werden beschrieben. In den Nervenscheiden kommen biund tripolare Zellen mit kurzen Fasern vor, die für Perilemmzellen gehalten werden. Nach Berechnungen über die Anzahl der Sinneszellen je Labellum und nach Querschnitten durch den Labialnerven in Höhe des Haustellums besteht eine Reduktion der afferenten Axone von etwa 1000 Sinneszellen zu rund 250, was einer Reduktion von vier Axonen zu einem einzigen entspricht.Herrn Prof. Dr. R. Stämpfli danke ich sehr für sein großes Interesse und seine Anregungen, Herrn Prof. Dr. B. Hassenstein (Direktor des Instituts für Zoologie der Universität Freiburg) für die kritische Durchsicht des Manuskripts.  相似文献   

19.
    
Zusammenfassung In Ergänzung der vorwiegend auf Intelligenzprüfung ausgerichteten Tierpsychologie wird hier das Gefühls- und Stimmungsleben in den Vordergrund vergleichend psychophysiologischer Untersuchung gerückt. Ausgezeichnete Gelegenheit dazu bietet der in die Familiengemeinschaft aufgenommene Hund, welcher in ihm restlos vertrauter Umgebung und ohne gestellte Situationen beobachtet wird. Als Kriterien für die Beurteilung subjektiven Erlebens dienen einerseits die objektiv feststellbaren äußeren Einflüsse, welche das Verhalten sichtbar bestimmen, anderseits die Auswirkungen der Gefühlsreaktionen.In einjähriger fortlaufender Überwachung wird ein auffallend reicher Gefühlsschatz festgestellt, wobei die Verhältnisse aber doch noch so einfach liegen, daß sie nach Ursache und Wirkung verständlich sind. Es wird der Versuch gemacht, das System der Gefühle nach seinem organischen Aufbau und nach seinen Leistungen im physiologischen Gesamtgeschehen zu kennzeichnen. Dabei sehen wir die Gefühle in Steuerungsmechanismen eingespannt, welche in ihrer elementarsten Form unmittelbaren Anschluß an die reflektorische Regulierung vegetativer Funktionen haben und speziell dort in Aktion treten, wo Faktoren der Umwelt in den Regulationsvorgang einzubeziehen sind. Das enge Verhältnis zum vegetativen Regulationsapparat kommt in der starken Neigung zu Mitbewegungen in seinem Funktionsbereich zum Ausdruck. Je nach Qualität und Akzent einer Gefühlsregung entwickelt sich ein koordiniertes vegetatives Syndrom oder — bei qualitativ hoher Wertigkeit und intensiver Entladung — eine die-Ordnung durchbrechende Irradiation. In dieser Ebene des physiologischen Geschehens drängt sich im Sinne der vergleichenden Psychophysiologie eine Gegenüberstellung zu den Verhältnissen beim Menschen, speziell beim Kind auf.In der Entwicklung der Gefühle zu höherer Leistung greifen sie mehr und mehr in die Auseinandersetzung mit Kräften der Umwelt über, welche nicht mehr einzelne Sektoren des vegetativen Systemes berühren, sondern das Individuum als Ganzes betreffen. Gleichzeitig wird der Aktionsbereich von einer nächsten Zukunft, in welcher sich der Erfolg der regulierten Leistung einstellt, in eine fernere ausgedehnt. Auf dem Wege zum fernen Ziel lassen sich im aktiven Verhalten zwei Phasen unterscheiden, nämlich eine subjektiv erlebte Bereitschaft, d. h. eine Stimmung, und die eigentliche Handlung. — Die Entwicklung des Gefühlssystemes betritt eine noch höhere Ebene, wenn es in das Verhalten im Rahmen eines Kollektivums eingreift, in welchem das Individuum durch Gefühlsbindungen, egozentrisch optimal, eingefügt ist und mit welchem es sein Schicksal teilt.Im Zusammenhang mit der Kennzeichnung des organisch aufgebauten Gefüges der Gefühle wird die Frage der Verschmelzung und des Wettstreites zwischen verschiedenen Komponenten gestreift. — Im ganzen handelt es sich um die Bestrebung, durch Rückgriff auf einfache Verhältnisse Einblicke in die Stellung der Gefühle im physiologischen Gesamtgeschehen, im besonderen auch in die Wechselbeziehungen zwischen subjektivem Erleben und vegetativen Reaktionen zu gewinnen.Herrn Prof. Dr. O. Bürgi, dem verdienten Senior der vet. med. Fakultät der Universität Zürich gewidmet.  相似文献   

20.
Zusammenfassung Anläßlich Stoels Untersuchungen betreffs der Kapillarisation des weißen M. Adductor magnus und des roten M. Semitendinosus des Kaninchens werden der Wert seiner tatsächlichen Befunde sowie die hieraus gezogenen Folgerungen bezüglich auf die Strömungsgeschwindigkeit des Blutes in beiden Muskelarten geprüft. Es stellt sich heraus, daß der Wert seiner tatsächlichen Befunde nur ein ganz relativer ist, während es sich außerdem zeigt, daß diese Befunde, eben wenn sie einigen absoluten Wert aufweisen könnten, doch nicht zu den von S. gemachten Folgerungen bevollmächtigen würden. Zur Verifizierung der also bereits aus aprioristischen Gründen überaus unwahrscheinlichen Gesetzmäßigkeit wie sie Stoel gefunden hätte, werden Untersuchungen über eine größere Zahl von Kaninchenmuskeln angestellt. Versucht wird, den Einfluß verschiedener Momente auf die Kapillarisation zu bestimmen. Eine deutliche Beziehung zwischen Kapillarisation und Faserdicke, Funktion, Art der Kontraktion oder Muskelfarbe kann nicht aufgefunden werden. Zum Schluß werden einige Anschauungen betreffs der Beziehung zwischen Kapillarisation, Strömungsgeschwindigkeit und Stoffwechselverhältnissen begründet, und wird versucht, eine Formel zu entwickeln, welche als erste Annäherung der Verhältnisse betreffs Strömungsgeschwindigkeit, Druck usw. in dem Kapillarsystem des Tierkörpers im allgemeinen angesehen werden möchte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号