首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Spatial and temporal distributions of salmonids were examined in Junction Pond, Northeast River, Placentia and Conne Pond, Conne River, Newfoundland using Lundgren multiple-mesh experimental gillnets. Both ponds contain populations of Atlantic salmon and brook trout with Junction Pond also possessing brown trout and resident Arctic charr. For salmon parr there was a significant month effect in distribution of catch rates in both ponds, and in Junction Pond, there was a significant diel effect. There was also significant variation in catch rates by lentic zone. For brook trout, there was a significant lentic zone × month interaction in Junction Pond; in Conne Pond, the main effects lentic zone and month were significant. Highest benthic catch rates of Atlantic salmon parr occurred in the littoral zone of both ponds. Most captures of brook trout also occurred benthically in both ponds; similar to salmon parr, littoral zone catch rates were higher than those of the deeper benthic area in Conne Pond but the reverse was true for Junction Pond. For both salmon parr and brook trout, the deeper benthic area and the pelagic area were relatively important rearing habitats in each pond. The distribution of catches for brown trout (few in number relative to the other species) in Junction Pond was similar to that of brook trout while Arctic charr were found mainly pelagically. Within the benthic area, most Arctic charr were caught at depths beyond the littoral zone. There was a tendency for Altantic salmon parr and brook trout found in the deeper benthic area and the pelagic area to be significantly larger and older than those in littoral zone in each pond. Sizes of Arctic charr did not differ significantly among lentic zones.  相似文献   

2.
Low productivity in aquatic ecosystems is associated with reduced individual growth of fish and increased concentrations of methylmercury (MeHg) in fish and their prey. However, many stream-dwelling fish species can use terrestrially-derived food resources, potentially subsidizing growth at low-productivity sites, and, because terrestrial resources have lower MeHg concentrations than aquatic resources, preventing an increase in diet-borne MeHg accumulation. We used a large-scale field study to evaluate relationships among terrestrial subsidy use, growth, and MeHg concentrations in two stream-dwelling fish species across an in-stream productivity gradient. We sampled young-of-the-year brook trout (Salvelinus fontinalis) and Atlantic salmon (Salmo salar), potential competitors with similar foraging habits, from 20 study sites in streams in New Hampshire and Massachusetts that encompassed a wide range of aquatic prey biomass. Stable isotope analysis showed that brook trout used more terrestrial resources than Atlantic salmon. Over their first growing season, Atlantic salmon tended to grow larger than brook trout at sites with high aquatic prey biomass, but brook grew two-fold larger than Atlantic salmon at sites with low aquatic prey biomass. The MeHg concentrations of brook trout and Atlantic salmon were similar at sites with high aquatic prey biomass and the MeHg concentrations of both species increased at sites with low prey biomass and high MeHg in aquatic prey. However, brook trout had three-fold lower MeHg concentrations than Atlantic salmon at low-productivity, high-MeHg sites. These results suggest that differential use of terrestrial resource subsidies reversed the growth asymmetry between potential competitors across a productivity gradient and, for one species, moderated the effect of low in-stream productivity on MeHg accumulation.  相似文献   

3.
Swimming ability of wild brook trout Salvelinus fontinalis , brown trout Salmo trutta , anadromous Atlantic salmon Salmo salar , and landlocked Atlantic salmon was examined using fixed and increasing velocity tests. Although brook trout and salmon parr were collected from the same site, brook trout were found generally in slow-moving pools whereas salmon were more common in faster riffle areas. Salmon parr could hold station indefinitely in currents in which brook trout could only maintain themselves briefly. Therefore, selection of fast-water areas by salmon parr may impose a velocity barrier to sympatric juvenile brook trout, reducing competition between the species. Performance comparisons also indicate that anadromous Atlantic salmon possess slightly greater sustained ability than landlocked salmon, possibly due to altered selective pressure associated with their different life histories. Finally, fishways and culverts in Newfoundland can now be designed using models generated from performance data collected from native salmonid species.  相似文献   

4.
Fall biological processes are driven by a combination of environmental factors, with cumulative effects over the length of the growing season, which are currently difficult to model. This study evaluated if leaf color change in fall (i.e., leaf yellowing) and brook trout spawning could be two biological processes that are synchronized at a regional scale and if leaf yellowing could be used to determine the peak of spawning activity of this species. To this end, we surveyed 551 brook trout redds and examined 193 digital images of forest trees in the Laurentides Wildlife Reserve (Québec, Canada) over the fall season. Results showed that leaf yellowing and brook trout spawning were synchronized, providing one of the first examples of temporal matching between freshwater and terrestrial biological processes at the regional scale. Considering the difficulty of monitoring the phenology of freshwater fish spawning at high spatial and temporal resolution, terrestrial integrators of environmental conditions, such as leaf color change, may prove to be promising predictors of spawning activity in the management of fish populations.  相似文献   

5.
Food resource partitioning between similar‐sized, sympatric Atlantic salmon Salmo salar and brook trout Salvelinus fontinalis was examined as a possible mechanism enabling their coexistence in a stream (Allaire) of the Sainte‐Marguerite River ecosystem, Quebec, Canada. Fish stomach contents and invertebrate drift were collected concurrently during three diel cycles in August to September 1996. The food and feeding habits of an allopatric brook trout population in a nearby stream (Epinette) were studied for comparison. The diel feeding rhythms of the two coexisting fish species were similar. The composition of their diet, however, showed significant differences. Atlantic salmon predominantly (60–90%) fed on aquatic insects, mainly Ephemeroptera (35–60% of the diet). The brook trout mostly (50–80%) fed upon the allochthonous terrestrial insects (mainly adults of Coleoptera, Hymenoptera and Diptera) which comprised 5–40% of the stream drift. The allopatric brook trout fed opportunistically on the more abundant aquatic insects and terrestrial insects rarely formed 25% of its diet. The allopatric trout fed nearly twice as much as the sympatric brook trout during a day. The results suggest that the differences in feeding by brook trout in the two streams (with and without Atlantic salmon) are the result of inter‐specific interaction with Atlantic salmon and are not related to the differences in food availability between the two streams. Food resource partitioning between Atlantic salmon and brook trout may be viewed as an adaptive response resulting in a greater exploitation of available resources and coexistence.  相似文献   

6.
Mercury levels in fish have been demonstrated to increase after impoundment with augmented levels of mercury predicted to decline as the reservoir ages. Previous research in Newfoundland predicted return rates in the order of 10 to 12 years for landlocked Atlantic salmon or ouananiche (Salmo salar) and 7 years for brook trout (Salvelinus fontinalis). In order to test the validity of these predictions on a broader spatial and temporal scale, and develop more generally predictive models, mercury levels in three fish species were studied in 16 older Newfoundland hydroelectric reservoirs of various age (32 to 95 years) and area flooded (21 to 13,000 ha).Mercury concentrations were standardized to fish length and correlated with physical, chemical, and biological characteristics of the sampling sites. Standard length mercury levels ranged from 0.23 to 0.86 ppm in ouananiche, 0.13 to 0.59 ppm in brook trout, and 0.22 to 0.72 in arctic charr (Salvelinus alpinus). Fish in excess of the Canadian Safety Limit (0.5 ppm) were collected from 14 of 16 sites for ouananiche, 8 of 17 sites for brook trout, and 3 of 7 sites for arctic charr, including control lakes. Standard length fish mercury levels were correlated with reservoir age and (log10) area flooded for ouananiche and with pH for arctic charr. A multiple regression model was developed relating standard length mercury in ouananiche with reservoir age and log10 of the flooded area. There were no apparent relationship between reservoir characteristics and brook trout mercury concentrations. Based on this analysis, it is not possible, at present, to develop generally predictive models for all species found in Newfoundland impoundments.  相似文献   

7.
1. Ecologists have struggled to describe general patterns in the impacts of predators on stream prey, particularly at large, realistic spatial and temporal scales. Among the confounding variables in many systems is the presence of multiple predators whose interactions can be complex and unpredictable. 2. We studied the interactions between brook trout (Salvelinus fontinalis) and larval two‐lined salamanders (Eurycea bislineata), two dominant vertebrate predators in New England stream systems, by examining patterns of two‐lined salamander abundance in stream reaches above and below waterfalls that are barriers to fish dispersal, by measuring the effects of trout on salamander density and activity using a large‐scale manipulation of brook trout presence, and by conducting a small‐scale laboratory experiment to study how brook trout and larval two‐lined salamanders affect each other's prey consumption. 3. We captured more salamanders above waterfalls, in the absence of trout, than below waterfalls where trout were present. Salamander density and daytime activity decreased following trout addition to streams, and salamander activity shifted from aperiodic to more nocturnal with fish. Analysis of stomach contents from our laboratory experiment revealed that salamanders eat fewer prey with trout, but trout eat more prey in the presence of salamanders. 4. We suggest that as predators in streams, salamanders can influence invertebrate prey communities both directly and through density‐ and trait‐mediated interactions with other predators.  相似文献   

8.
Brook trout (Salvelinus fontinalis) and rainbow trout (Oncorhynchus mykiss) have been widely introduced outside their respective ranges within North America causing declines and displacement of native trout. Yet, successful coexistence of native and non-native trout has received little attention. Here we evaluated the effect of introduced brook trout on the size and density of native redband trout in two invaded sub-basins in southeastern Oregon. In a multi-year study, we investigated whether habitat and fish communities differed between streams and stream reaches where redband trout were allopatric versus where redband trout were sympatric with brook trout. We hypothesized that redband trout would be less dense and have smaller total length in sympatry with brook trout than in allopatry, but that total trout density would not differ. We investigated whether differences in habitat existed between sympatric and allopatric locations that would indicate differentiation in site level habitat preferences for each trout species. We found that sympatric locations had more wood but similar fish community structure. Mean length and densities of redband trout were higher at allopatric locations. However, in most years at sympatric locations total trout density was twice that of allopatric redband trout sites. Using comparable data from an eastern United States system where brook trout are native, sympatric sites had lower densities of brook trout; however, total trout density did not differ. We conclude that invading trout negatively impact native trout densities; but in southeastern Oregon system the negative impact is minimized.  相似文献   

9.
Large woody debris (LWD) was added to eight streams in the central Appalachians of West Virginia to determine if stream habitat could be enhanced and brook trout (Salvelinus fontinalis) populations increased. Brook trout populations were assessed one year prior to habitat manipulation and 3 years post-habitat manipulation. LWD was added by felling approximately 15 trees per 300 m stream reach. Four of the streams had LWD added to one 300 m reach with 300 m unmanipulated reaches upstream and downstream of the manipulated reach to observe within-stream effects of LWD additions on brook trout density. The remaining four streams had LWD added to three 300 m reaches and these streams were compared to those with only a single 300 m manipulated reach to observe the effects of the extent of habitat manipulation on brook trout density. New pools were formed by the addition of LWD, but overall pool area did not increase significantly in reaches where LWD was added. The relatively high gradient and coarse substrate of these streams may have precluded the added LWD from having a significant influence on stream channel morphology and habitat complexity. No pools were formed in the highest gradient stream, while the stream with the most pools formed had the lowest gradient. Brook trout populations fluctuated following habitat manipulations, and there was no overall effect of the LWD additions on within-stream variability in brook trout density. When there were significant differences among-streams with different extents of LWD additions, those streams receiving LWD additions over a large extent had the greatest brook trout densities. The full potential of added LWD to change stream habitat and influence on brook trout populations may take more time to develop than the 3 years post-manipulation period of this study.  相似文献   

10.
This paper examines the effect of lake characteristics on population density and how this variation affects growth, mortality and population size structure of brook trout, Salvelinus fontinalis. The study was conducted on 17 recreationally fished, reproductively isolated boreal forest lakes in Newfoundland, Canada from 1993 to 2000. A standardized sampling program, the Fyke Littoral Index Netting program (FLIN) was used to collected data that describes brook trout population parameters and life history attributes. Regression analyses showed significant relationships between fish density and biomass and characteristics of the lakes. Variation in fish density and biomass was explained by lake surface area and littoral habitat area. Significant relationships were found when growth, mortality and size structure were regressed against density. The proportional stock distribution and theoretical maximum size of brook trout were negatively related to density, and natural mortality was positively related to density. The largest maximum length and highest proportional stock densities occurred at brook trout densities of less than 30 fish/ha. In general, the higher the proportion of littoral habitat area the higher the densities of brook trout, which correspondingly had important effects on growth, natural mortality and size structure of the brook trout populations. This information is critical to the development of management strategies aimed at altering size distribution to produce specific fisheries management outcomes.  相似文献   

11.
Many species of salmonids can discriminate kin from unrelated conspecifics using olfactory cues. In this study, we determined the role of the major histocompatibility complex (MHC) in kin discrimination by juvenile Atlantic salmon (Salmo salar) and brook trout (Salvelinus fontinalis). Genetic variation at the highly polymorphic exon coding for peptide-binding region of an MHC class II gene was studied using polymerase chain reaction and denaturing gradient gel electrophoresis. Experiments compared discrimination ability based on MHC haplotypes both within and among kin and non-kin groups. Juveniles chose kin sharing both alleles over kin sharing no alleles. Juveniles also preferred non-kin sharing both alleles to non-kin sharing no alleles. These data suggest that the MHC class II gene influence kin discrimination in juvenile Atlantic salmon and brook trout. The influence of additional genes was also apparent in trials where juveniles were able to recognize kin sharing no alleles over non-kin sharing no alleles. However, the inability of juveniles to discriminate between kin sharing no alleles and non-kin sharing either one or both alleles indicates that MHC is as potent as the rest of the genome in producing distinguishable odours.  相似文献   

12.
1. Spatial heterogeneity of resources may influence competition among individuals and thus have a fundamental role in shaping population dynamics and carrying capacity. In the present study, we identify shelter opportunities as a limiting resource for juvenile Atlantic salmon (Salmo salar L.). Experimental and field studies are combined in order to demonstrate how the spatial distribution of shelters may influence population dynamics on both within and among population scales. 2. In closed experimental streams, fish performance scaled negatively with decreasing shelter availability and increasing densities. In contrast, the fish in open stream channels dispersed according to shelter availability and performance of fish remaining in the streams did not depend on initial density or shelters. 3. The field study confirmed that spatial variation in densities of 1-year-old juveniles was governed both by initial recruit density and shelter availability. Strength of density-dependent population regulation, measured as carrying capacity, increased with decreasing number of shelters. 4. Nine rivers were surveyed for spatial variation in shelter availability and increased shelter heterogeneity tended to decrease maximum observed population size (measured using catch statistics of adult salmon as a proxy). 5. Our studies highlight the importance of small-scale within-population spatial structure in population dynamics and demonstrate that not only the absolute amount of limiting resources but also their spatial arrangement can be an important factor influencing population carrying capacity.  相似文献   

13.
Investigations of the growth, survival and production of young salmon Salmo salar , brown trout and sea trout S. trutta in sections of a stream in Scotland were made during 1966–75. At the end of the growing season, in autumn, the size of the 0+ salmon ranged from a mean weight of 1.12 g in 1966 to 2.82 g in 1973, and the size of the 0+ trout ranged from a mean of 2.20 g in 1966 to 3.56 g (68.0 mm) in 1974. Growth rates of 0+ salmon between July to September were similar from year to year, as was the case with the 0+ trout. The greater size attained in their first year by trout, resulted from the longer feeding season, provided by earlier emergence of fry and ability to continue growing in colder weather in autumn. The lengths attained by 0+ salmon and 0+ trout in September were related to the population densities of 0+ salmon and the number of days above 0° C from 1 December. There was no discernible relationship between lengths of 0+ trout and the population densities of 0+ trout. Salmon and trout lost weight during the winter, which was made up by April. The densities of 0+ salmon in June varied between 2–12m –2. Rates of decrease of the population densities in their first year were related to their densities at the beginning of the season, and, more closely, to the densities of salmon and trout combined. At the end of the second year's growth there were between 0.06 and 0.25 salmon m –2. Size of the trout populations varied less from year to year than those of salmon. The life of a year class of salmon and trout could be divided into several stages characterized by different rates of decrease of the population.  相似文献   

14.
Summary Fluvial salmonids have evolved to use the diversity of habitats in natural streams for different life history stages and at different seasons. Required freshwater habitat of Atlantic salmon can be classified generally as that suitable (i) for spawning, (ii) for feeding during the major growing period, and (iii) for overwintering.Spawning habitat of salmon is usually in rapid water at the tail of pools on the upstream edge of a gravel bar, ideally with depths about 25 cm, in mean water velocities of about 30–45 cm s-1, with maximum velocities about 2 body lengths s-1, and with a substrate of irregularly shaped stones of cobble, pebble, and gravel.Underyearling salmon (<7 cm TL) are most common in shallow (<15 cm) pebbly riffles, whereas older and larger parr (>7 cm TL) are usually in riffles deeper than 20 cm with a coarse substrate. Depth preference increases with size. Multiple linear regression models quantifying parr habitat have identified substrate as an important variable, with a positive relationship to an index of coarseness. Negative relationships were found with mean stream width, range of discharge, and overhanging cover. Water chemistry, especially alkalinity, nitrates, and phosphates, are important regulators of production. Although similar variables had importance, coefficients among rivers differed. Interactions occur among variables. Further studies are required to quantify productive capacity of habitat for parr. Results suggest that useful models can be derived and if a river system is mapped, and stratified by habitat, then smolt yield could be predicted and the required egg deposition could be estimated.In winter, young salmon shelter among coarse substrate or move to pools, but continue feeding, with larger parr being more active.Feeding is in general opportunistic. Food consists mainly of insects, taken primarily in the water column, but also from the surface and at the bottom. Young salmon in flowing water are highly territorial but are less so in slow or still waters. In fast water, parr use their large pectoral fins to apply themselves to the substrate, allowing them to occupy this type of habitat with little expenditure of energy. Height above the substrate decreases with water velocity, but increases with temperature and social status. Although riffles are preferred habitat, and are relatively more productive, lentic waters can be occupied where there are few predators or severe competitors and may provide significant smolt yield in some systems. Selective segregation minimizes competition between salmon and brook charr or brown trout, but brook charr and brown trout may have negative effects on underyearling salmon, and on parr in pools, whereas salmon have negative effects on small brook charr and brown trout in riffles and flats. Competition by both interference and exploitation results in interactive segregation when the resource, mainly food, becomes limiting.Limited downstream movement of underyearling salmon may occur during the summer. Older juveniles may make upstream movements, but generally migrate downstream, with most movements in the spring, and a lesser peak of activity in the autumn. Dispersal tends to be mainly downstream, indicating that for full distribution, spawning areas are best located upstream. High densities of yearling parr may have negative effects on growth and survival of underyearlings in some river systems, but apparently not in others, so that future research is required in this regard. Density-dependent growth is evident where food is limiting, and can provide an indicator of densities of cohorts so that if a quantitative relationship has been derived, mean size from a sample can give an estimate of the density at that station, with minimum size occurring at carrying capacity. Such regressions vary between habitats with differing productive capabilities, so that future research could provide useful models for assessing productive capacity of a habitat, and optimum densities. Life history strategies can change with changes in density-dependent growth rates. Present stock-recruitment functions do not take environmental variables into consideration, and have limited applicability. Further research is required to determine optimum spawning requirements for salmon in different types of river systems in different geographical areas.  相似文献   

15.
A Salvelinus -infecting variant of Loma salmonae , derived from naturally-infected Chinook salmon Oncorhynchus tshawytscha by serial passage through brook trout Salvelinus fontinalis , has been isolated and amplified. Loma salmonae SV ( Salvelinus -variant) has a high preference for species of Salvelinus (brook trout and Arctic charr S. alpinus ) and low virulence and preference for species of Oncorhynchus (rainbow trout O. mykiss , Chinook salmon, cohoSalmon O. kisutch ) or Salmo (Atlantic salmon Salmo salar ). Although this variant of L. salmonae was different from the original, the differences do not justify describing it as a new species, although definitive determination is pending.  相似文献   

16.
Competitive interactions for foraging microhabitat among introduced brook charr, Salvelinus fontinalis, and native bull charr, S. confluentus, and westslope cutthroat trout, Oncorhynchus clarki lewisi, were studied by species removal experiments in a tributary of the Flathead Lake and River system, northwestern Montana, focusing on brook charr influences on bull charr. When the three species were in sympatry, they interacted with each other, forming a size-structured, mixed-species dominance hierarchy in two stream pools. The influences of interference interactions were examined by measuring changes in five characteristics of foraging microhabitat and behavior, focal point height and velocity, cover use, and foraging rate and distance, after the successive removal of two species. Cutthroat trout removal resulted in increased foraging rates and distances, and decreased cover use for brook charr, but no changes for bull charr. After removal of brook charr from the two-species system, bull charr also increased foraging rates and distances and occupied more exposed positions. Moreover, total fish densities, which had initially decreased owing to the removal experiments, were partly compensated for by subsequent bull charr immigration, implying that competitive interactions with brook charr are an important factor in the mechanisms responsible for the regulation of bull charr densities, at least on a local scale.  相似文献   

17.
Non-indigenous species may be the most severe environmental threat the world now faces. Fishes, in particular, have been intentionally introduced worldwide and have commonly caused the local extinction of native fish. Despite their importance, the impact of introduced fishes on threatened populations of Pacific salmon has never been systemically examined. Here, we take advantage of several unique datasets from the Columbia River Basin to address the impact of non-indigenous brook trout, Salvelinus fontinalis, on threatened spring/summer-run chinook salmon, Oncorhynchus tshawytscha. More than 41 000 juvenile chinook were individually marked, and their survival in streams without brook trout was nearly double the survival in streams with brook trout. Furthermore, when brook trout were absent, habitat quality was positively associated with chinook survival, but when brook trout were present no relationship between chinook survival and habitat quality was evident. The difference in juvenile chinook survival between sites with, and without, brook trout would increase population growth rate (lambda) by ca. 2.5%. This increase in lambda would be sufficient to reverse the negative population growth observed in many chinook populations. Because many of the populations we investigated occur in wilderness areas, their habitat has been considered pristine; however, our results emphasize that non-indigenous species are present and may have a dramatic impact, even in remote regions that otherwise appear pristine.  相似文献   

18.
Seasonal microhabitat selection by sympatric young Atlantic salmon and brown trout was studied by diving. Both species, especially Atlantic salmon, showed seasonal variation with respect to surface and mean water velocities and depth. This variation is partly attributed to varying water flows and water temperatures. In winter the fish sought shelter in the substratum. A spatial variation in habitat use along the river due to different habitat availabilities was observed. Both species occupied habitats within the ranges of the microhabitat variables, rather than selecting narrow optima. It is hypothesized that the genetic basis allows a certain range to the behavioural response. Microhabitat segregation between the two species was pronounced, with brown trout inhabiting the more slow-flowing and partly more shallow stream areas. Atlantic salmon tolerated a wider range of water velocities and depths. Habitat suitability curves were produced from both species. It is suggested that habitat suitability curves that are based on observations of fish occupancy of habitat at median or base flow may not be suitable in habitat simulation models, where available habitat is projected at substantially greater water flows.  相似文献   

19.
Factors related to stream size and alkalinity were most influential in determining fish species associations in three catchments of New Brunswick (NB) and Nova Scotia (NS) Canada, as determined by discriminant function analysis of TWINSPAN stream site classification.
In the circumneutral Saint Croix (NB) catchment, the creek chub, Semotilus atromaculatus (Mitchill), brook trout, Salvelinus fontinalis (Mitchill), blacknose dace, Rhinichthys atratulus (Hermann), Atlantic salmon, Salmo salar Linnaeus, eel, Anguilla rostrata (Lesueur) and fallfish. Semotilus corporalis (Mitchill) dominated stream sites of progressively greater discharge and higher median mid-summer temperature. In the acidic Gold (NS) system, the brook trout, Atlantic salmon, and eel exhibited a distribution pattern in relation to stream size and temperature similar to that for the Saint Croix, with the eel relatively more abundant in the Gold at large stream sites. The creek chub was excluded from the smallest tributaries by low pH. The ranges of blacknose dace and fallfish do not extend to southwestern Nova Scotia. In the Medway (NS) system (slightly more acidic than the Gold), the relative abundance of Atlantic salmon is reduced, and that of eel increased as compared with the Gold and Saint Croix systems. The lower limiting mid-summer pH levels for creek chub, salmon, brook trout, and eel are 5.2, 5.0, 4.7 and <4.5 respectively.  相似文献   

20.
1. Adaptive trade-offs are fundamental to the evolution of diversity and the coexistence of similar taxa and occur when complimentary combinations of traits maximize efficiency of resource exploitation or survival at different points on environmental gradients. 2. Standard metabolic rate (SMR) is a key physiological trait that reflects adaptations to baseline metabolic performance, whereas active metabolism reflects adaptations to variable metabolic output associated with performance related to foraging, predator avoidance, aggressive interactions or migratory movements. Benefits of high SMR and active metabolism may change along a resource (productivity) gradient, indicating that a trade-off exists among active metabolism, resting metabolism and energy intake. 3. We measured and compared SMR, maximal metabolic rate (MMR), aerobic scope (AS), swim performance (UCrit) and growth of juvenile hatchery and wild steelhead and coho salmon held on high- and low-food rations in order to better understand the potential significance of variation in SMR to growth, differentiation between species, and patterns of habitat use along a productivity gradient. 4. We found that differences in SMR, MMR, AS, swim performance and growth rate between steelhead trout and coho salmon were reduced in hatchery-reared fish compared with wild fish. Wild steelhead had a higher MMR, AS, swim performance and growth rate than wild coho, but adaptations between species do not appear to involve differences in SMR or to trade-off increased growth rate against lower swim performance, as commonly observed for high-growth strains. Instead, we hypothesize that wild steelhead may be trading off higher growth rate for lower food consumption efficiency, similar to strategies adopted by anadromous vs. resident brook trout and Atlantic salmon vs. brook trout. This highlights potential differences in food consumption and digestion strategies as cryptic adaptations ecologically differentiating salmonid species. 5. We hypothesize that divergent digestive strategies, which are common and well documented among terrestrial vertebrates, may be an important but overlooked aspect of adaptive strategies of juvenile salmonids, and fish in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号