首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Vascular endothelial growth factors (VEGFs) constitute a family of six polypeptides, VEGF-A, -B, -C, -D, -E and PlGF, that regulate blood and lymphatic vessel development. VEGFs specifically bind to three type V receptor tyrosine kinases (RTKs), VEGFR-1, -2 and -3, and to coreceptors such as neuropilins and heparan sulfate proteoglycans (HSPG). VEGFRs are activated upon ligand-induced dimerization mediated by the extracellular domain (ECD). A study using receptor constructs carrying artificial dimerization-promoting transmembrane domains (TMDs) showed that receptor dimerization is necessary, but not sufficient, for receptor activation and demonstrates that distinct orientation of receptor monomers is required to instigate transmembrane signaling. Angiogenic signaling by VEGF receptors also depends on cooperation with specific coreceptors such as neuropilins and HSPG. A number of VEGF isoforms differ in binding to coreceptors, and ligand-specific signal output is apparently the result of the specific coreceptor complex assembled by a particular VEGF isoform. Here we discuss the structural features of VEGF family ligands and their receptors in relation to their distinct signal output and angiogenic potential.  相似文献   

2.
Receptor tyrosine kinases are activated upon ligand-induced dimerization. Here we show that the monomeric extracellular domain of vascular endothelial growth factor (VEGF) receptor-2 (VEGFR-2) has a flexible structure. Binding of VEGF to membrane-distal immunoglobulin-like domains causes receptor dimerization and promotes further interaction between receptor monomers through the membrane-proximal immunoglobulin-like domain 7. By this mechanism, ligand-induced dimerization of VEGFR-2 can be communicated across the membrane, activating the intracellular tyrosine kinase domains.  相似文献   

3.
Vascular endothelial growth factors (VEGFs) and their receptors play key roles in angiogenesis and lymphangiogenesis. VEGF activates VEGF receptor-1 (VEGFR-1) and VEGFR-2, whereas VEGF-C activates VEGFR-2 and VEGFR-3. We have created a library of VEGF/VEGF-C mosaic molecules that contains factors with novel receptor binding profiles, notably proteins binding to all three VEGF receptors ("super-VEGFs"). The analyzed super-VEGFs show both angiogenic and lymphangiogenic effects in vivo, although weaker than the parental molecules. The composition of the VEGFR-3 binding molecules and scanning mutagenesis revealed determinants of receptor binding and specificity. VEGFR-2 and VEGFR-3 showed striking differences in their requirements for VEGF-C binding; extracellular domain 2 of VEGFR-2 was sufficient, whereas in VEGFR-3, both domains 1 and 2 were necessary.  相似文献   

4.
T Davis-Smyth  H Chen  J Park  L G Presta    N Ferrara 《The EMBO journal》1996,15(18):4919-4927
Vascular endothelial growth factor (VEGF) is an angiogenic inducer that mediates its effects through two high affinity receptor tyrosine kinases, Flt-1 and KDR. Flt-1 is required for endothelial cell morphogenesis whereas KDR is involved primarily in mitogenesis. Flt-1 has an alternative ligand, placenta growth factor (PlGF). Both Flt-1 and KDR have seven immunoglobulin (Ig)-like domains in the extracellular domain. The significance and function of these domains for ligand binding and receptor activation are unknown. Here we show that deletion of the second domain of Flt-1 completely abolishes the binding of VEGF. Introduction of the second domain of KDR into an Flt-1 mutant lacking the homologous domain restored VEGF binding. However, the ligand specificity was characteristic of the KDR receptor. We then created chimeric receptors where the first three or just the second Ig-like domains of Flt-1 replaced the corresponding domains in Flt-4, a receptor that does not bind VEGF, and analyzed their ability to bind VEGF. Both swaps conferred upon Flt-4 the ability to bind VEGF with an affinity nearly identical to that of wild-type Flt-1. Furthermore, transfected cells expressing these chimeric Flt-4 receptors exhibited increased DNA synthesis in response to VEGF or PlGF. These results demonstrate that a single Ig-like domain is the major determinant for VEGF-PlGF interaction and that binding to this domain may initiate a signal transduction cascade.  相似文献   

5.
Vascular endothelial growth factor (VEGF) acts as a hierarchically high switch of the angiogenic cascade by interacting with its high affinity VEGF receptors and with neuropilin co-receptors. VEGF(165) binds to both Neuropilin-1 (NP-1) and VEGFR-2, and it is believed that ligand binding forms an extracellular bridge between both molecules. This leads to complex formation, thereby enhancing VEGFR-2 phosphorylation and subsequent signaling. We found that inhibition of VEGF receptor (VEGFR) phosphorylation reduced complex formation between NP-1 and VEGFR-2, suggesting a functional role of the cytoplasmic domain of VEGFR-2 for complex formation. Correspondingly, deleting the PDZ-binding domain of NP-1 decreased complex formation, indicating that extracellular VEGF(165) binding is not sufficient for VEGFR-2-NP-1 interaction. Synectin is an NP-1 PDZ-binding domain-interacting molecule. Experiments in Synectin-deficient endothelial cells revealed reduced VEGFR-2-NP-1 complex formation, suggesting a role for Synectin in VEGFR-2-NP-1 signaling. Taken together, the experiments have identified a novel mechanism of NP-1 interaction with VEGFR-2, which involves the cytoplasmic domain of NP-1.  相似文献   

6.
Human vascular endothelial growth factor (VEGF) and its receptor (VEGFR-2/kinase domain receptor [KDR]) play a crucial role in angiogenesis, which makes the VEGFR-2 signaling pathway a major target for therapeutic applications. In this study, a single-chain antibody phage display library was constructed from spleen cells of mice immunized with recombinant human soluble extracellular VEGFR-2/KDR consisting of all seven extracellular domains (sKDR D1-7) to obtain antibodies that block VEGF binding to VEGFR-2. Two specific single-chain antibodies (KDR1.3 and KDR2.6) that recognized human VEGFR-2 were selected; diversity analysis of the clones was performed by BstNI fingerprinting and nucleotide sequencing. The single-chain variable fragments (scFvs) were expressed in soluble form and specificity of interactions between affinity purified scFvs and VEGFR-2 was confirmed by ELISA. Binding of the recombinant antibodies for VEGFR-2 receptors was investigated by surface plasmon resonance spectroscopy. In vitro cell culture assays showed that KDR1.3 and KDR2.6 scFvs significantly suppressed the mitogenic response of human umbilical vein endothelial cells to recombinant human VEGF(165) in a dose-dependent manner, and reduced VEGF-dependent cell proliferation by 60% and 40%, respectively. In vivo analysis of these recombinant antibodies in a rat cornea angiogenesis model revealed that both antibodies suppressed the development of new corneal vessels (p < 0.05). Overall, in vitro and in vivo results disclose strong interactions of KDR1.3 and KDR2.6 scFvs with VEGFR-2. These findings indicate that KDR1.3 and KDR2.6 scFvs are promising antiangiogenic therapeutic agents.  相似文献   

7.
It is widely accepted that receptor protein-tyrosine kinases (RTKs) are activated upon dimerization by binding to their extracellular ligands. However, EGF receptor (EGFR) dimerization per se does not require ligand binding. Instead, its cytoplasmic kinase domains have to form characteristic head-to-tail asymmetric dimers to become active, where one 'activator' domain activates the other 'receiver' domain. The non-catalytic, cytoplasmic regions of RTKs, namely the juxtamembrane and carboxy terminal portions, also regulate kinase activity. For instance, the juxtamembrane region of the RTK MuSK inhibits the kinase domain probably together with a cellular factor(s). These findings suggest that RTKs could be activated by cytoplasmic proteins. Indeed, Dok-7 and cytohesin have recently been identified as such activators of MuSK and EGFR, respectively. Given that failure of Dok-7 signaling causes myasthenia, and inhibition of cytohesin signaling reduces the proliferation of EGFR-dependent cancer cells, cytoplasmic activators of RTKs may provide new therapeutic targets.  相似文献   

8.
In recent years, evidence has accumulated that many endogenous peptides play an important regulatory role in angiogenesis by modulating endothelial cell behavior. Adrenomedullin (AM), one such factor, was previously shown to exert a clearcut proangiogenic effect in vitro when tested on specialized human endothelial cells, such as HUVECs and immortalized endothelial cell lines. In the present study we used normal adult vascular endothelial cells isolated from human saphenous vein to analyze in vitro the role of AM, related to both early (increased cell proliferation) and late (differentiation and self-organization into capillary-like structures) angiogenic events and their relationship with the vascular endothelial growth factor (VEGF) signaling cascade. The results indicated that also in this endothelial cell phenotype AM promoted cell proliferation and differentiation into cord-like structures. These actions resulted specific and were mediated by the binding of AM to its AM1 (CRLR/RAMP2) receptor. Neither the administration of a VEGF receptor 2 (VEGFR-2) antagonist nor the downregulation of VEGF production by gene silencing were able to suppress the proangiogenic effect of AM. However, when the experiments were performed in the presence of SU5416 (a selective inhibitor of the VEGFR-2 receptor at the level of the intra-cellular tyrosine kinase domain) the proangiogenic effect of AM was abolished. This result suggests that in vascular endothelial cells the binding of AM to its AM1 receptor could trigger a transactivation of the VEGFR-2 receptor, leading to a signaling cascade inducing proangiogenic events in the cells.  相似文献   

9.
Vascular endothelial growth factor VEGF (VEGF-A or VEGF165) is a potent angiogenic factor that also signals neuroprotection through activation of its cognate receptor VEGFR-2. In this capacity, VEGF signaling can rescue neurons from the damage induced by stressful stimuli many of which elicit oxidative stress. However, the regulatory role that VEGFR-2 plays in providing neuroprotection remains elusive. Therefore, we investigated the effects of VEGFR-2 inhibition on primary cultures of mature hippocampal neurons undergoing nutritional stress. We found that neurons cultured under nutritional stress had increased expression of VEGF and its receptors, VEGFR-1, VEGFR-2, and NP-1, as well as enhanced levels of VEGFR-2 phosphorylation. These neurons also showed increased activation of the prosurvival pathways for MEK/ERK1/2 and PI3K/Akt, enhanced phosphorylation (inactivation) of the proapoptotic BAD, and higher levels of the antiapoptotic protein Bcl-xL, all of which were augmented by treatments with exogenous VEGF and blocked by VEGFR-2 inhibition. The blockade of VEGFR-2 function also elicited a cytotoxicity that was accompanied by caspase-3 activation, induction of hemeoxygenase-1 (HO-1), oxidative stress, and a collapse in the mitochondrial membrane potential (ΔΨm). Knockdown of VEGFR-2 by siRNA generated a similar pattern of redox change and mitochondrial impairment. Pretreatments with VEGF, VEGF-B, or the antioxidant N-acetylcysteine (NAC) rescued SU1498 or siRNA-treated neurons from the mitochondrial dysfunction and oxidative stress induced by VEGFR-2 inhibition in a timely fashion. These findings suggested that VEGF or VEGF-B can provide neuroprotection by signaling through an alternate VEGF receptor. Together, our findings suggest that VEGF signaling through VEGFR-2 plays a critical regulatory role in protecting stressed hippocampal neurons from the damaging effects of an oxidative insult. These findings also implicate VEGFR-1 or NP-1 as compensatory receptors that mediate neuroprotection when VEGFR-2 function is blocked.  相似文献   

10.
血管内皮生长因子受体-2所介导信号通路的研究进展   总被引:2,自引:0,他引:2  
血管新生是许多生理和病理进程发生的重要机理.在生物体内,血管新生需经过多步精细调控历程,现有研究表明,血管内皮生长因子(VEGF)及其受体蛋白酪氨酸激酶,尤其是血管内皮生长因子受体-2(VEGFR-2)所介导的信号级联通路是其中关键性的调节途径.VEGF/VEGFR-2所介导的信号级联通路可以调控血管内皮细胞的增殖、迁移、存活和通透性的改变,促进血管的新生.VEGF与VEGFR-2的胞外区特异性结合后,引起受体的二聚化和自身的交互磷酸化,使胞内特定的酪氨酸残基磷酸化.下游信号蛋白可以通过其Src同源结构域-2(SH2)与VEGFR-2结合,随后激活下游的效应蛋白,调控内皮细胞的生物学活性.此外,VEGF/VEGFR-2信号通路还可以下调树突细胞(DC)的活性.对VEGF/VEGFR-2信号通路作用的深入了解,将有助于新药的研发.  相似文献   

11.
The vascular endothelial growth factor (VEGF) receptor tyrosine kinase subtype kinase insert domain receptor (KDR) contains seven extracellular Ig-like domains, of which the three most amino-terminal contain the necessary structural features required for VEGF binding. To clarify the functional role of KDR Ig-like domains 4-7, we compared VEGF-induced signaling in human embryonic kidney and porcine aortic endothelial cells expressing native versus mutant receptor proteins in which Ig-like domains 4-7, 4-6, or 7 had been deleted. Western blotting using an anti-receptor antibody indicated equivalent expression levels for each of the recombinant proteins. As expected, VEGF treatment robustly augmented native receptor autophosphorylation. In contrast, receptor autophosphorylation, as well as downstream signaling events, were VEGF-independent for cells expressing mutant receptors. (125)I-VEGF(165) bound with equal or better affinity to mutant versus native receptor, although the number of radioligand binding sites was significantly reduced because a significant percentage of mutant, but not native, receptors were localized to the cell interior. As was the case for native KDR, (125)I-VEGF(165) binding to the mutant receptors was dependent upon cell surface heparan sulfate proteoglycans, and (125)I-VEGF(121) bound with an affinity equal to that of (125)I-VEGF(165) to the native and mutant receptors. It is concluded that KDR Ig-like domains 4-7 contain structural features that inhibit receptor signaling by a mechanism that is independent of neuropilin-1 and heparan sulfate proteoglycans. We speculate that this provides a cellular mechanism for blocking unwanted signaling events in the absence of VEGF.  相似文献   

12.
The stimulation of vascular endothelial growth factor receptor-2 (VEGFR-2) by tumor-derived VEGF represents a key event in the initiation of angiogenesis. In this work, we report that VEGFR-2 is localized in endothelial caveolae, associated with caveolin-1, and that this complex is rapidly dissociated upon stimulation with VEGF. The kinetics of caveolin-1 dissociation correlated with those of VEGF-dependent VEGFR-2 tyrosine phosphorylation, suggesting that caveolin-1 acts as a negative regulator of VEGF R-2 activity. Interestingly, we observed that in an overexpression system in which VEGFR-2 is constitutively active, caveolin-1 overexpression inhibits VEGFR-2 activity but allows VEGFR-2 to undergo VEGF-dependent activation, suggesting that caveolin-1 can confer ligand dependency to a receptor system. Removal of caveolin and VEGFR-2 from caveolae by cholesterol depletion resulted in an increase in both basal and VEGF-induced phosphorylation of VEGFR-2, but led to the inhibition of VEGF-induced ERK activation and endothelial cell migration, suggesting that localization of VEGFR-2 to these domains is crucial for VEGF-mediated signaling. Dissociation of the VEGFR-2/caveolin-1 complex by VEGF or cyclodextrin led to a PP2-sensitive phosphorylation of caveolin-1 on tyrosine 14, suggesting the participation of Src family kinases in this process. Overall, these results suggest that caveolin-1 plays multiple roles in the VEGF-induced signaling cascade.  相似文献   

13.
Vascular endothelial growth factor receptor-1 (VEGFR-1/Flt-1) is structurally a typical tyrosine kinase receptor of about 180 kDa, and carries seven Ig-like domains in the extracellular region and a tyrosine kinase domain with a long kinase insert. Recent studies have revealed that the VEGFR-1 gene and its gene product have several unique characteristics structurally and functionally. In addition to the full length receptor, VEGFR-1 gene encodes for a soluble form carrying only six Ig domains via an alternative splicing. Both the full length and soluble form of VEGFR-1 show strong binding affinity for VEGF, but the kinase activity of the full length receptor is one order of magnitude lower than that of VEGFR-2 (KDR/Flk-1). Early in embryogenesis, null mutation of VEGFR-1 gene results in lethality due to a disorganization of blood vessels and an overgrowth of endothelial-like cells, suggesting a regulatory role in vivo. Mice carrying the extracellular domain of VEGFR-1 gene without the tyrosine kinase domain develop an almost normal circular system and survive. Thus, the extracellular region of VEGFR-1 is necessary and sufficient for physiological angiogenesis at the early stage of embryogenesis, possibly acting to trap VEGF and suppress VEGF levels to an appropriate range. The tyrosine kinase domain of VEGFR-1, although much weaker than that of VEGFR-2, transduces signals for endothelial cells. Furthermore, VEGFR-1 is involved in the VEGF-dependent migration and gene expression of monocyte/macrophages. Therefore, VEGFR-1 functions both in a positive and negative manner in different cellular systems and biological conditions.  相似文献   

14.
The receptor for the cytokine leukemia inhibitory factor (LIF) associates the low affinity binding component gp190 and the high affinity converter gp130, both of which are members of the family of hematopoietic receptors characterized by the cytokine receptor homology (CRH) domain. The gp190 is among the very few members of this large family to contain two CRH domains. The membrane-distal one (herein called D1) is followed by an Ig-like domain, a membrane-proximal CRH domain called D2, and three type III fibronectin repeats. We raised a series of monoclonal antibodies specific for the human gp190. Among them was the blocking antibody 1C7, which was directed against the D1Ig region and which impaired the binding of LIF to gp190. Another blocking antibody, called 12D3, was directed against domain D2 and interfered with the reconstitution of the high affinity receptor complex, independently of the interaction between LIF and gp190. The blocking effect of these two antibodies concerned four cytokines known to use gp190, i.e. LIF, oncostatin M, ciliary neurotrophic factor, and cardiotrophin-1. Among 23 antibodies tested alone or in combination (two anti-D2 and 21 anti-D1Ig), only the mixture of the two anti-D2 antibodies displayed agonistic activity in the absence of the cytokine. Taken together, these results demonstrate that the two CRH domains of gp190 play different functions in ligand binding and receptor activation.  相似文献   

15.
Vascular endothelial growth factor (VEGF) is one of the most important factors controlling angiogenesis. It is a homodimeric glycoprotein belonging to the family of cysteine-knot proteins. The biological activity is transduced via membrane-spanning receptors of the tyrosine kinase receptor family. Each biologically active VEGF has two receptor binding sites leading to receptor dimerization as first step following ligand binding. The ligand-binding site of the receptor is localized on extracellular Ig-like domains. The extracellular part of the receptor Flt-1 (VEGFR-1) was expressed as soluble protein and was used as receptor in an optical affinity sensor system (BIAcore). Suitable conditions allowed the determination of the association and dissociation rate constants as k(a)=4+/-1.2 x 10(6) M(-1) s(-1) and k(d)=3+/-0.8 x 10(-5) s(-1), respectively, leading to an affinity constant of K(D)=7.5+/-3 pM, which is within the range published already from other investigations and methods. Increasing receptor loadings of the sensor surface decreased the binding efficiency, as the ratio of bound VEGF-molecules to theoretically available binding sites increased from 1:1.5 to 1:2.6. Increasing the surface loading further, allowed the establishment of a quantitative assay with the analytical performance being influenced by the receptor loading and the contact time between sample and immobilized receptor, i.e. sample volume. This assay was used for VEGF determination during the cultivation of a recombinant Pichia pastoris strain.  相似文献   

16.
KIR3DL1 is a highly polymorphic inhibitory killer cell Ig-like receptor (KIR) implicated in resistance to viral diseases such as AIDS. KIR3DL1 contains three Ig domains and is specific for MHC class I (MHC-I) molecules belonging to the HLA-Bw4 serogroup. The receptor's second and third Ig domains confer the Bw4 specificity, but the role of the first Ig domain (D0) in ligand recognition has remained enigmatic. We found that KIR3DL1 expressed in YTS cells and as a soluble receptor can weakly recognize additional MHC-I molecules including HLA-B*0702 and HLA-G. This interaction is highly sensitive to blocking with Abs to the MHC-I α3-domain and the anti-KIR3DL1 Ab Z27, but not the canonical blocking Ab DX9. Using chimeric receptors between KIR3DL1 and KIR2DL1 expressed on YTS cells and as soluble Fc-fusion proteins, we show that the D0 domain confers the broad functional recognition and binding as well as the reactivity with Z27. These results suggest that the presence of a second and independent site of interaction between D0 and MHC-I and that MHC-I could bridge KIR3DL1 molecules together in a manner that facilitates signaling.  相似文献   

17.
Binding of vascular endothelial growth factor (VEGF) to its receptor, VEGFR-2 (Flk-1/KDR), induces dimerization and activation of the tyrosine kinase domain of the receptor, resulting in autophosphorylation of cytoplasmic tyrosine residues used as docking sites for signaling proteins that relay the signals for cell proliferation, migration, and permeability enhancement. We explored the VEGF/receptor signaling pathway by performing a two-hybrid screen of a rat lung cDNA library in yeast using the intracellular domain of rat VEGFR-2 as bait. Two clones encoding lipocortin V were isolated. Subsequent studies with the yeast two-hybrid assay showed that the complete intracellular domain of VEGFR-2 was required for the interaction. Co-immunoprecipitation of translated proteins confirmed the interaction between the VEGF receptor and lipocortin V. VEGF induced a rapid tyrosine phosphorylation of lipocortin V in human umbilical vein endothelial cells (HUVEC). Pretreatment of HUVEC with antisense oligodeoxyribonucleotide (ODN) for lipocortin V significantly inhibited VEGF-induced cell proliferation, which was accompanied by a decrease in protein synthesis and tyrosine phosphorylation of lipocortin V. Our results indicate that lipocortin V may function as a signaling protein for VEGFR-2 by directly interacting with the intracellular domain of the receptor and appears to be involved in regulation of vascular endothelial cell proliferation mediated by VEGFR-2.  相似文献   

18.
It is known that VEGF receptors (VEGFR) and integrins interact with each other to regulate angiogenesis. We reported previously that the fasciclin 1 (FAS1) domain-containing protein, TGFBIp/βig-h3 (TGF-β-induced protein) is an angiogenesis regulator that inhibits both endothelial cell migration and growth via αvβ3 integrin. In an attempt to target the interaction between VEGFR-2 and αvβ3 integrin, we determined whether the FAS1 domain region of TGFBIp/βig-h3 (FAS1 domain protein) can block the interaction between the two receptors, leading to the suppression of angiogenesis. In this study, we showed that FAS1 domain protein inhibits VEGF(165)-induced endothelial cell proliferation and migration via αvβ3 integrin, resulting in the inhibition of VEGF(165)-induced angiogenesis. We also defined a molecular mechanism by which FAS1 domain protein blocks the association between αvβ3 integrin and VEGFR-2, showing that it binds to αvβ3 integrin but not to VEGFR-2. Blocking the association of these major angiogenic receptors with FAS1 domain protein inhibits signaling pathways downstream of VEGFR-2. Collectively, our results indicate that FAS1 domain protein, in addition to its inhibitory effect on αvβ3 integrin-mediated angiogenesis, also inhibits VEGF(165)-induced angiogenesis. Thus, FAS1 domain protein can be further developed into a potent anticancer drug that targets two principal angiogenic pathways. Mol Cancer Res; 10(8); 1010-20. ?2012 AACR.  相似文献   

19.
The formation of blood vessels (angiogenesis) is a highly orchestrated sequence of events involving crucial receptor-ligand interactions. Angiogenesis is critical for physiological processes such as development, wound healing, reproduction, tissue regeneration, and remodeling. It also plays a major role in sustaining tumor progression and chronic inflammation. Vascular endothelial growth factor (VEGF)-B, a member of the VEGF family of angiogenic growth factors, effects blood vessel formation by binding to a tyrosine kinase receptor, VEGFR-1. There is growing evidence of the important role played by VEGF-B in physiological and pathological vasculogenesis. Development of VEGF-B antagonists, which inhibit the interaction of this molecule with its cognate receptor, would be important for the treatment of pathologies associated specifically with this growth factor. In this study, we present the crystal structure of the complex of VEGF-B with domain 2 of VEGFR-1 at 2.7 Å resolution. Our analysis reveals that each molecule of the ligand engages two receptor molecules using two symmetrical binding sites. Based on these interactions, we identify the receptor-binding determinants on VEGF-B and shed light on the differences in specificity towards VEGFR-1 among the different VEGF homologs.  相似文献   

20.
The recently identified vascular endothelial growth factor C (VEGF-C) belongs to the platelet-derived growth factor (PDGF)/VEGF family of growth factors and is a ligand for the endothelial-specific receptor tyrosine kinases VEGFR-3 and VEGFR-2. The VEGF homology domain spans only about one-third of the cysteine-rich VEGF-C precursor. Here we have analysed the role of post-translational processing in VEGF-C secretion and function, as well as the structure of the mature VEGF-C. The stepwise proteolytic processing of VEGF-C generated several VEGF-C forms with increased activity towards VEGFR-3, but only the fully processed VEGF-C could activate VEGFR-2. Recombinant 'mature' VEGF-C made in yeast bound VEGFR-3 (K[D] = 135 pM) and VEGFR-2 (K[D] = 410 pM) and activated these receptors. Like VEGF, mature VEGF-C increased vascular permeability, as well as the migration and proliferation of endothelial cells. Unlike other members of the PDGF/VEGF family, mature VEGF-C formed mostly non-covalent homodimers. These data implicate proteolytic processing as a regulator of VEGF-C activity, and reveal novel structure-function relationships in the PDGF/VEGF family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号