首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
生命周期管理研究述评   总被引:5,自引:2,他引:3  
黄和平 《生态学报》2017,37(13):4587-4598
生命周期管理起源于生命周期思想,它是生命周期思想在实践中的具体应用,是面向可持续生产和消费,对产品、工艺和服务的全生命周期环境影响进行的综合管理,是解决复合生态系统中结构无序、效率不高和代谢冗余的有效途径,是基于生命周期评价原则与框架的一种环境管理手段或环境管理体系。全面回顾了生命周期管理的起源与内涵,阐述了生命周期管理与生命周期评价的区别与联系,梳理了生命周期管理与环境管理体系的关系。对生命周期管理在产品、企业、行业及城市等层次上的具体应用进行了总结与述评,并对其今后需深入研究的方向进行了展望。  相似文献   

2.
Practitioners of life cycle assessment (LCA) have recently turned their attention to social issues in the supply chain. The United Nations life cycle initiative's social LCA task force has completed its guidelines for social life cycle assessment of products, and awareness of managing upstream corporate social responsibility (CSR) issues has risen due to the growing popularity of LCA. This article explores one approach to assessing social issues in the supply chain—life cycle attribute assessment (LCAA). The approach was originally proposed by Gregory Norris in 2006, and we present here a case study. LCAA builds on the theoretical structure of environmental LCA to construct a supply chain model. Instead of calculating quantitative impacts, however, it asks the question “What percentage of my supply chain has attribute X?” X may represent a certification from a CSR body or a self‐defined attribute, such as “is locally produced.” We believe LCAA may serve as an aid to discussions of how current and popular CSR indicators may be integrated into a supply chain model. The case study demonstrates the structure of LCAA, which is very similar to that of traditional environmental LCA. A labor hours data set was developed as a satellite matrix to determine number of worker hours in a greenhouse tomato supply. Data from the Quebec tomato producer were used to analyze how the company performed on eight sample LCAA indicators, and conclusions were drawn about where the company should focus CSR efforts.  相似文献   

3.
赵薇  梁赛  于杭  邓娜 《生态学报》2017,37(24):8197-8206
结合城市生活垃圾管理系统特征,系统归纳基于生命周期评价(Life cycle assessment,LCA)方法的城市生活垃圾管理模型的发展现状,并对LCA方法在城市生活垃圾管理中的实践以及在我国开展城市生活垃圾管理LCA研究的应用前景进行评述。分析表明,LCA是城市生活垃圾管理领域的重要工具之一,基于LCA方法的城市生活垃圾管理模型在全生命周期环境影响评价与识别、处置工艺选择与改进、可持续生活垃圾管理决策支持等方面具有十分重要的应用价值。中国在本地化生活垃圾管理系统LCA模型开发、清单数据库和评价指标体系构建以及与其他研究方法集成等方面面临挑战。  相似文献   

4.
Three assessment methods, material flow analysis (MFA), life cycle analysis (LCA), and multiattribute utility theory (MAUT) are systematically combined for supporting the choice of best end‐of‐life scenarios for polyethylene terephthalate (PET) waste in a municipality of a developing country. MFA analyzes the material and energy balance of a firm, a region, or a nation, identifying the most relevant processes; LCA evaluates multiple environmental impacts of a product or a service from cradle to grave; and MAUT allows for inclusion of other aspects along with the ecological ones in the assessment. We first systematically coupled MFA and LCA by defining “the service offered by the total PET used during one year in the region” as the functional unit. Inventory and impacts were calculated by multiplying MFA flows with LCA impacts per kilogram. We used MAUT to include social and economic aspects in the assessment. To integrate the subjective point of view of stakeholders in the MAUT, we normalized the environmental, social, and economic variables with respect to the magnitude of overall impacts or benefits in the country. The results show large benefits for recycling scenarios from all points of view and also provide information about waste treatment optimization. The combination of the three assessment methods offers a powerful integrative assessment of impacts and benefits. Further research should focus on data collection methods to easily determine relevant material flows. LCA impact factors specific to Colombia should be developed, as well as more reliable social indicators.  相似文献   

5.
The application of life cycle assessment (LCA) in a policy context highlights the need for a “consequential” LCA (CLCA), which differs from an “attributional” LCA (ALCA). Although CLCA offers some advantages over ALCA, such as a capacity to account for emissions resulting from both substitution and price effects, it entails additional assumptions and cost and may yield estimates that are more uncertain (e.g., estimates of impact of biofuel policies on greenhouse gas [GHG] emissions). We illustrate how a CLCA that relies on simple partial equilibrium models could provide important insights on the direction and magnitude of price effects while limiting the complexity of CLCA. We describe how such a CLCA, when applied early in the policy life cycle, could help identify policy formulations that reduce the magnitude of adverse price effects relative to the beneficial substitution effect on emissions because—as the experience with biofuel regulations indicates—regulating price effects is costly and controversial. We conclude that the salient contribution of CLCA in the policy process might lie in warning policy makers about the vulnerabilities in a policy with regard to environmental impact and to help modify potentially counterproductive formulations rather than in deriving the precise estimates for uncertain variables, such as the life cycle GHG intensity of product or average indirect emissions.  相似文献   

6.
Establishing a comprehensive environmental footprint that indicates resource use and environmental release hotspots in both direct and indirect operations can help companies formulate impact reduction strategies as part of overall sustainability efforts. Life cycle assessment (LCA) is a useful approach for achieving these objectives. For most companies, financial data are more readily available than material and energy quantities, which suggests a hybrid LCA approach that emphasizes use of economic input‐output (EIO) LCA and process‐based energy and material flow models to frame and develop life cycle emission inventories resulting from company activities. We apply a hybrid LCA framework to an inland marine transportation company that transports bulk commodities within the United States. The analysis focuses on global warming potential, acidification, particulate matter emissions, eutrophication, ozone depletion, and water use. The results show that emissions of greenhouse gases, sulfur, and particulate matter are mainly from direct activities but that supply chain impacts are also significant, particularly in terms of water use. Hotspots were identified in the production, distribution, and use of fuel; the manufacturing, maintenance, and repair of boats and barges; food production; personnel air transport; and solid waste disposal. Results from the case study demonstrate that the aforementioned footprinting framework can provide a sufficiently reliable and comprehensive baseline for a company to formulate, measure, and monitor its efforts to reduce environmental impacts from internal and supply chain operations.  相似文献   

7.
Life cycle assessment (LCA) is a quantitative tool used to evaluate the environmental impacts of products or processes. With respect to buildings, LCA can be used to evaluate the environmental impacts of an entire building's life cycle. Currently LCA in the building area is used in a limited capacity, primarily to select building products. In order to determine the causality for the lack of whole‐building LCAs, focus groups with members of the architecture, engineering, and construction (AEC) communities were held. This article investigates the current level of knowledge of LCA in the AEC community and then discusses the benefits and barriers to the practice of LCA. In summary, the goal of the research was to identify why LCA is not used to its fullest potential in a whole‐building LCA. In an open forum and moderated setting, focus group participants were asked individually to self‐identify their experience with LCA, a brief education session on LCA was held, and then benefits and barriers to LCA were discussed. The focus group sessions were transcribed and systematically coded by social researchers in order to analyze the results. Hybrid flow and radar charts were developed. From the focus group results, the most important benefit to LCA was “provides information about environmental impacts.” The results did not identify a prominent barrier; however, building‐related metrics were ascertained to be one of the more crucial barriers. The benefits and barriers classified by this analysis will be utilized to develop a subsequent online survey to further understand the LCA and AEC community.  相似文献   

8.
9.
A normalization step is widely exercised in life cycle assessment (LCA) studies in order to better understand the relative significance of impact category results. In the normalization stage, normalization references (NRs) are the characterized results of a reference system, typically a national or regional economy. Normalization is widely practiced in LCA‐based decision support and policy analysis (e.g., LCA cases in municipal solid waste treatment technologies, renewable energy technologies, and environmentally preferable purchasing programs, etc.). The compilation of NRs demands significant effort and time as well as an intimate knowledge of data availability and quality. Consequently only one set of published NRs is available for the United States, and has been adopted by various studies. In this study, the completeness of the previous NRs was evaluated and significant data gaps were identified. One of the reasons for the significant data gaps was that the toxic release inventory (TRI) data significantly underestimate the potential impact of toxic releases for some sectors. Also the previous NRs did not consider the soil emissions and nitrogen (N) and phosphorus (P) runoffs to water and chemical emissions to soils. Filling in these data gaps increased the magnitude of NRs for “human health cancer,” “human health noncancer,” “ecotoxicity,” and “eutrophication” significantly. Such significant changes can alter or even reverse the outcome of an LCA study. We applied the previous and updated NRs to conventional gasoline and corn ethanol LCAs. The results demonstrate that NRs play a decisive role in the interpretation of LCA results that use a normalization step.  相似文献   

10.
Ecological footprint (EF) is a metric that estimates human consumption of biological resources and products, along with generation of waste greenhouse gas (GHG) emissions in terms of appropriated productive land. There is an opportunity to better characterize land occupation and effects on the carbon cycle in life cycle assessment (LCA) models using EF concepts. Both LCA and EF may benefit from the merging of approaches commonly used separately by practitioners of these two methods. However, few studies have compared or integrated EF with LCA. The focus of this research was to explore methods for improving the characterization of land occupation within LCA by considering the EF method, either as a complementary tool or impact assessment method. Biofuels provide an interesting subject for application of EF in the LCA context because two of the most important issues surrounding biofuels are land occupation (changes, availability, and so on) and GHG balances, two of the impacts that EF is able to capture. We apply EF to existing fuel LCA land occupation and emissions data and project EF for future scenarios for U.S. transportation fuels. We find that LCA studies can benefit from lessons learned in EF about appropriately modeling productive land occupation and facilitating clear communication of meaningful results, but find limitations to the EF in the LCA context that demand refinement and recommend that EF always be used along with other indicators and metrics in product‐level assessments.  相似文献   

11.
12.
The multifunctional character of resource recovery in waste management systems is commonly addressed through system expansion/substitution in life cycle assessment (LCA). Avoided burdens credited based on expected displacement of other product systems can dominate the overall results, making the underlying assumptions particularly important for the interpretation and recommendations. Substitution modeling, however, is often poorly motivated or inadequately described, which limits the utility and comparability of such LCA studies. The aim of this study is therefore to provide a structure for the systematic reporting of information and assumptions expected to contribute to the substitution potential in order to make substitution modeling and the results thereof more transparent and interpretable. We propose a reporting framework that can also support the systematic estimation of substitution potentials related to resource recovery. Key components of the framework include waste‐specific (physical) resource potential, recovery efficiency, and displacement rate. End‐use–specific displacement rates can be derived as the product of the relative functionality (substitutability) of the recovered resources compared to potentially displaced products and the expected change in consumption of competing products. Substitutability can be determined based on technical functionality and can include additional constraints. The case of anaerobic digestion of organic household waste illustrates its application. The proposed framework enables well‐motivated substitution potentials to be accounted for, regardless of the chosen approach, and improves the reproducibility of comparative LCA studies of resource recovery.  相似文献   

13.
A Life Cycle Assessment (LCA) was carried out for milk production extending from the origin of the inputs to the agricultural step to the consumer phase and the waste management of the packaging. Three Norwegian dairies of different sizes and degree of automation were studied. The main objectives were to find any hot spots in the life cycle of milk, to determine the significance of the dairy size and degree of automation, and to study the influence of transport. The agriculture was found to be the main hot spot for almost all the environmental themes studied, although the dairy processing, packaging, consumer phase and waste management were also of importance. The consumer phase was the main contributor to photo-oxidant formation and important regarding eutrophication. The small dairy was found to have a greater environmental impact than the middle-sized and the largest dairies. The transport did not have any major influence.  相似文献   

14.
Goal, Scope and Background Life Cycle Assessment (LCA) remains an important tool in Dutch waste management policies. In 2002 the new National Waste Management Plan 2002–2012 (NWMP) became effective. It was supported by some 150 LCA studies for more than 20 different waste streams. The LCA results provided a benchmark level for new waste management technologies. Although not new, operational techniques using combined pyrolysis/gasification are still fairly rare in Europe. The goal of this study is to determine the environmental performance of the only full scale pyrolysis/gasification plant in the Netherlands and to compare it with more conventional techniques such as incineration. The results of the study support the process of obtaining environmental permits. Methods In this study we used an impact assessment method based on the guidelines described by the Centre of Environmental Science (CML) of Leiden University. The functional unit is defined as treatment of 1 ton of collected hazardous waste (paint packaging waste). Similar to the NWMP, not only normalized scores are presented but also 7 aggegated scores. All interventions from the foreground process (land use, emissions, final waste) are derived directly from the site with the exception of emissions to soil which were calculated. Interventions are accounted to each of the different waste streams by physical relations. Data from background processes are taken from the IVAM LCA database 4.0 mostly originating from the Swiss ETH96 database and adapted to the Dutch situation. Allocation was avoided by using system enlargement. The study has been peer reviewed by an external expert. Results and Discussion It was possible to determine an environmental performance for the pyrolysis/ gasification of paint packaging waste. The Life Cycle Inventory was mainly hampered by the uncertainty occurred with estimated air emissions. Here several assumptions had to be made because several waste inputs and two waste treatment installations profit from one flue gas cleaning treatment thus making it difficult to allocate the emission values from the flue gasses. Compared to incineration in a rotary kiln, pyrolysis/gasification of hazardous waste showed better scores for most of the considered impact categories. Only for the impact categories biodiversity and life support the incineration option proved favorable due to a lower land use. Several impact categories had significant influence on the conclusions: acidification, global warming potential, human toxicity and terrestrial ecotoxicity. The first three are related to a better energy efficiency for pyrolysis/gasification leading to less fossil energy consumption. Terrestrial ecotoxicity in this case is related to specific emissions of mercury and chromium (III). A sensitivity analysis has been performed as well. It was found that the environmental performance of the gasification technique is sensitive to the energy efficiency that can be reached as well as the choice for the avoided fossil energy source. In this study a conservative choice for diesel oil was made whereas a choice for heavy or light fuel oil would further improve the environmental profile. Conclusions Gasification of hazardous waste has a better environmental performance compared to the traditional incineration in rotary kilns mainly due to the high energy efficiency. As was determined by sensitivity analysis the differences in environmental performance are significant. Improvement options for a better performance are a decrease of process emissions (especially mercury) and a further improvement of the energy balance by decreasing the electricity consumption for shredders and oxygen consumption or making more use of green electricity. Recommendations and Perspectives Although the life cycle inventory was sufficiently complete, still some assumptions had to be made in order to establish sound mass balances on the level of individual components and substances. The data on input of waste and output of emissions and final waste were not compatible. It was recommended that companies put more emphasis on data storage accounted to particular waste streams. This is even more relevant since more companies in the future are expected to include life cycle impacts in their environmental performance.  相似文献   

15.

-

DOI: http://dx.doi.org/10.1065/lca2006.04.020

-

UNEP DTIE, through its Life Cycle Initiative, aims to enhance the skills of small and medium sized enterprises (SMEs) in developing countries on Life Cycle Management (LCM). This is part of its contribution to the 10-year framework of program on Sustainable Consumption and Production as a follow-up of the World Summit on Sustainable Development (2002). Apart from the potential of improving their environmental performance, life cycle thinking and the use of LCA can be a business opportunity for SMEs. The development of environmental management expertise may help them to position themselves as reliable suppliers. The Life Cycle Initiative has promoted and facilitated the establishment of regional life cycle networks, and UNEP has started a training program on LCM targeted at National Cleaner Production Centers (NCPCs) and other national institutes that are able to pass on the information to the target groups. Some multinational companies have started to provide capacity building on life cycle management for suppliers in developing countries. More companies could use this approach to help developing countries to tackle environmental requirements in the supply chain and thus the private sector may contribute significantly to eco-efficiency, cost savings and finding new markets for sustainable products and services in developing countries. Life cycle thinking applied to basic services such as water, waste and energy could be another way to directly contribute with life cycle management to human development.
  相似文献   

16.
Life cycle assessment (LCA) has enabled consideration of environmental impacts beyond the narrow boundary of traditional engineering methods. This reduces the chance of shifting impacts outside the system boundary. However, sustainability also requires that supporting ecosystems are not adversely affected and remain capable of providing goods and services for supporting human activities. Conventional LCA does not account for this role of nature, and its metrics are best for comparing alternatives. These relative metrics do not provide information about absolute environmental sustainability, which requires comparison between the demand and supply of ecosystem services (ES). Techno‐ecological synergy (TES) is a framework to account for ES, and has been demonstrated by application to systems such as buildings and manufacturing activities that have narrow system boundaries. This article develops an approach for techno‐ecological synergy in life cycle assessment (TES‐LCA) by expanding the steps in conventional LCA to incorporate the demand and supply of ecosystem goods and services at multiple spatial scales. This enables calculation of absolute environmental sustainability metrics, and helps identify opportunities for improving a life cycle not just by reducing impacts, but also by restoring and protecting ecosystems. TES‐LCA of a biofuel life cycle demonstrates this approach by considering the ES of carbon sequestration, air quality regulation, and water provisioning. Results show that for the carbon sequestration ecosystem service, farming can be locally sustainable but unsustainable at the global or serviceshed scale. Air quality regulation is unsustainable at all scales, while water provisioning is sustainable at all scales for this study in the eastern part of the United States.  相似文献   

17.
The leather industry needs to switch from the traditional chemically based dehairing process to an environmentally friendly one so that the overall burdens to the environment are reduced. The primary goal of the work was thus to compare the chemical leather dehairing process to an enzymatically based one using the enzymes that are extracted after the application of solid state fermentation (SSF) on hair wastes generated after dehairing. The environmental burdens of the dehairing stage were determined using a life cycle assessment (LCA) approach by comparing the two aforementioned management scenarios. The first scenario was the commonly used technology in which hair is removed via a chemical process and then composted in open piles. This scenario included two subscenarios where hair waste is either incinerated or landfilled. In the second scenario, the proteolytic enzymes extracted during the SSF of the residual hair are used to dehair the new rawhides instead of chemicals. Industrial and laboratory data were combined with international databases using the SimaPro 8.0 LCA software to make comparisons. The environmental impacts associated with the enzymatic dehairing were significantly lower than the ones associated to the conventional chemical dehairing process. This difference is attributed to the impacts associated with the original production of the chemicals and to the electricity consumed in the conventional method. A sensitivity analysis revealed that the results are affected by the amounts of chemicals used during dehairing.  相似文献   

18.
Goal, Scope and Background Procurement in public and non-public organisations has the potential to influence product development towards more environmentally friendly products. This article focuses on public procurement with procurement in Swedish defence as a special case. In 2003, public procurement in Sweden was 28% of the GDP. In the Swedish defence sector the amount was 2% of the GDP. The total emissions from the sector were of the same order of magnitude as from waste treatment (2% of Sweden's emissions). According to an appropriation letter from the Ministry of Defence in 1998, the Swedish Armed Forces (SAF) and the Swedish Defence Materiel Administration (FMV) are required to take environmental issues into consideration during the entire process of acquiring defence materiel. Environmental aspects are considered today, but without a life-cycle perspective. - The aims of this article are to recommend suitable tools for taking environmental concerns into account, considering a product's life-cycle, in the procurement process for defence materiel in Sweden; to make suggestions for how these tools could be used in the acquisition process; and to evaluate these suggestions through interviews with actors in the acquisition process. The procurement process does not include aspects specific to Swedish defence, and it is therefore likely to be comparable to processes in other countries. Methods The method involved a study of current literature and interviews with various actors in the acquisition process. The life cycle methods considered were quantitative Life Cycle Assessments, a simplified LCA-method called the MECO method and Life Cycle Costing (LCC). Results and Discussion Methodology recommendations for quantitative LCA and simplified LCA are presented in the article, as well as suggestions on how to integrate LCA methods in the acquisition process. We identified four areas for use for LCA in the acquisition process: to learn about environmental aspects of the product; to fulfil requirements from customers; to set environmental requirements and to choose between alternatives. Therefore, tools such as LCAs are useful in several steps in the acquisition process. Conclusion From the interviews, it became clear that the actors in the acquisition process think that environmental aspects should be included early in the process. The actors are interested in using LCA methods, but there is a need for an initiative from one or several of them if the method is to be used regularly in the process. Environmental and acquisition issues are handled with very little interaction in the controlling and ordering organisation. An integration of environmental and acquisition parts in these organisations is probably needed in order to integrate environmental aspects in general and life-cycle thinking in particular. Other difficulties identified are costs and time constraints. Recommendation and Perspective In order to include the most significant aspects when procuring materiel, it is important to consider the whole life-cycle of the products. Our major recommendation is that the defence sector should work systematically through different product groups. For each product group, quantitative, traditional LCAs or simplified LCAs (in this case modified MECOs) should be performed for reference products within each product group. The results should be an identification of critical aspects in the life-cycles of the products. The studies will also form a database that can be used when making new LCAs. This knowledge should then be used when writing specifications of what to procure and setting criteria for procurement. The reports should be publicly available to allow reviews and discussions of results. To make the work more cost-effective, international co-operation should be sought. In addition, LCAs can also be performed as an integrated part of the acquisition process in specific cases.  相似文献   

19.
The aim of this article is to help confront uncertainty in life cycle assessments (LCAs) used for decision support. LCAs offer a quantitative approach to assess environmental effects of products, technologies, and services and are conducted by an LCA practitioner or analyst (AN) to support the decision maker (DM) in making the best possible choice for the environment. At present, some DMs do not trust the LCA to be a reliable decision‐support tool—often because DMs consider the uncertainty of an LCA to be too large. The standard evaluation of uncertainty in LCAs is an ex‐post approach that can be described as a variance simulation based on individual data points used in an LCA. This article develops and proposes a taxonomy for LCAs based on extensive research in the LCA, management, and economic literature. This taxonomy can be used ex ante to support planning and communication between an AN and DM regarding which type of LCA study to employ for the decision context at hand. This taxonomy enables the derivation of an LCA classification matrix to clearly identify and communicate the type of a given LCA. By relating the LCA classification matrix to statistical principles, we can also rank the different types of LCA on an expected inherent uncertainty scale that can be used to confront and address potential uncertainty. However, this article does not attempt to offer a quantitative approach for assessing uncertainty in LCAs used for decision support.  相似文献   

20.
赵薇  孙一桢  张文宇  梁赛 《生态学报》2016,36(22):7208-7216
我国生活垃圾产量大但处理能力不足,产生多种环境危害,对其资源化利用能够缓解环境压力并回收资源。为探讨生活垃圾资源化利用策略,综合生命周期评价与生命周期成本分析方法,建立生态效率模型。以天津市为例,分析和比较焚烧发电、卫生填埋-填埋气发电、与堆肥+卫生填埋3种典型生活垃圾资源化利用情景的生态效率。结果表明,堆肥+卫生填埋情景具有潜在最优生态效率;全球变暖对总环境影响贡献最大,而投资成本对经济影响贡献最大。考虑天津市生活垃圾管理现状,建议鼓励发展生活垃圾干湿组分分离及厨余垃圾堆肥的资源化利用策略。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号