首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.

Purpose

This study discusses the significance of the use of non-renewable fossil cumulative energy demand (CED) as proxy indicator in the beverage packaging sector, in order to detect those situations in which companies can benefit from the use of proxy indicators before a full life cycle assessment (LCA) application. Starting from a case study of two milk containers, the objectives of this paper are to assess if the use of this inventory indicator can be a suitable proxy indicator both (1) to decide which is the packaging alternative with the lowest environmental impact and (2) to identify the most impacting process units of the two products under study.

Method

The analysis was made according to ISO14040-44. The goal of the comparative LCA was to evaluate and to compare the potential environmental impacts from cradle to grave of a laminated carton container and a HDPE bottle. The results of the comparative LCA obtained with the non-renewable CED indicator are compared with a selection of impact categories: climate change, particulate matter formation, terrestrial acidification, fossil depletion, photochemical oxidant formation. A further analysis is made for the two products under study in order to determine which are the environmental hot spots in terms of life cycle stages, by the means of a contribution analysis.

Results and discussion

From the comparative LCA, the use of non-renewable CED revealed to be useful for a screening as the results given by the non-renewable CED indicator are confirmed by all the impact categories considered, even if underestimated. If the aim of the LCA study was to define which is the packaging solution with a lower environmental impact, the choice of this inventory indicator could have led to the same decision as if a comprehensive LCIA method was used. The contribution analysis, focusing on the identification of environmental hot spots in the packaging value chain, revealed that the choice of an inventory indicator as non-renewable CED can lead to misleading results, if compared with another impact category, such as climate change.

Conclusions

As in the future development of beverage packaging system, LCA will be necessarily integrated in the design process, it is important to define other ways of simplifying its application and spread its use among companies. The LCI indicator non-renewable fossil CED can effectively be used in order to obtain a preliminary estimation of the life cycle environmental impacts of two or more competing products in the beverage packaging sector.  相似文献   

2.
基于能值分析的煤炭矿区复合生态系统评价   总被引:1,自引:0,他引:1  
王广成  李鹏飞  王菡  李恭建 《生态学报》2015,35(13):4367-4376
煤炭矿区复合生态系统评价是对其进行有效管理及调控的手段之一。研究了煤炭矿区复合生态系统内涵,剖析了煤炭矿区复合生态系统的典型特征,论述了运用能值分析方法评价复合生态系统的特殊性;进而,构建了煤炭矿区复合生态系统及其子系统的能值评价指标。选择山东省龙口矿区北皂煤矿为研究对象,进行了实证研究。应用实际数据,测算了2006—2012年复合生态系统及子系统各个能值评价指标。研究结果表明,能值理论与能值分析是评价煤炭矿区复合生态系统的有效方法,各项指标变化反映了复合生态系统的演进趋势;不可再生煤炭资源的过度消耗、可再资源利用率低是这一系统的典型特征;能值评价指标的测算结果表征环境子系统负荷较小。研究结果可为实施有效的煤炭矿区复合生态系统管理提供智力支持和决策参考依据。  相似文献   

3.
No life cycle assessment (LCA) of artisanal and small‐scale mining activities (A&Sma) has been identified as of today, and there are limited studies about large‐scale mining and alluvial mining. The A&Sma are relevant economic sectors in countries with large reserves of mineral resources. Gold is the most representative metal mined with these practices and is used not only in jewelry but also in several electronics appliances. South America accounted for 17% of the total worldwide gold extraction in 2005; A&Sma occurred mostly in Colombia, Peru, and Brazil. The aim of this study is to estimate environmental indicators using methodologies for life cycle inventories (LCIs) in one of the two largest producers of gold through A&Sma in South America, Peru, and to discuss possible indicators for A&Sma in South America. Different functional units were used for each case study, as gold with different concentrations was produced and it was not possible to collect data for downstream processes for both bases. The product systems start in the mining and end with the gold production. Data were collected in two mining sites and, later on, related to the functional units. The results showed the amount of energy and water consumed as well as mercury used and released, carbon dioxide (CO2) emissions, and solid wastes for each type of gold produced.  相似文献   

4.

Purpose

Introducing a geopolitical-related supply risk (GeoPolRisk) into the life cycle sustainability assessment (LCSA) framework adds a criticality aspect to the current life cycle assessment (LCA) framework to more meaningfully address direct impacts on Natural Resource AoP. The weakness of resource indicators in LCA has been the topic of discussion within the life cycle community for some time. This paper presents a case study on how to proceed towards the integration of resource criticality assessment into LCA under the LCSA. The paper aims at highlighting the significance of introducing the GeoPolRisk indicator to complement and extend the established environmental LCA impact categories.

Methods

A newly developed GeoPolRisk indicator proposed by Gemechu et al., J Ind Ecol (2015) was applied to metals used in the life cycle of an electric vehicle, and the results are compared with an attributional LCA of the same resources. The inventory data is based on the publication by Hawkins et al., J Ind Ecol 17:53–64 (2013), which provides a current, transparent, and detailed life cycle inventory data of a European representative first-generation battery small electric vehicle.

Results and discussion

From the 14 investigated metals, copper, aluminum, and steel are the most dominant elements that pose high environmental impacts. On the other hand, magnesium and neodymium show relatively higher supply risk when geopolitical elements are considered. While, the environmental indicator results all tend to point the same hotspots which arise from the substantial use of resources in the electric vehicle’s life cycle, the GeoPolRisk highlights that there are important elements present in very small amounts but crucial to the overall LCSA. It provides a complementary sustainability dimension that can be added to conventional LCA as an important extension within LCSA.

Conclusions

Resource challenges in a short-term time perspective can be better addressed by including social and geopolitical factors in addition to the conventional indicators which are based on their geological availability. This is more significant for modern technologies such as electronic devices in which critical resources contribute to important components. The case study advances the use of the GeoPolRisk assessment method but does still face certain limitations that need further elaboration; however, directions for future research are promising.
  相似文献   

5.
While the community of life cycle assessment (LCA) practitioners in Australia has developed relatively recently and is naturally smaller than in Europe or the United States, it is a vibrant community. The idea for this article was to examine the contribution made to LCA development by Australians, the rate of growth of this work, and its industry sectoral focus by quantitative analysis of publication data from four key LCA journals. Although these data suggest that the country’s publication rate has not changed much in the last 8 years and fallen relative to the international rate, applied LCA is playing an increasing role in the work of Australian industry and government. Current efforts of the Australian LCA Society are focused on the renewal and expansion of available inventory resources, standardization of life cycle inventory methodology, and improvement of impact assessment processes.  相似文献   

6.
赵薇  梁赛  于杭  邓娜 《生态学报》2017,37(24):8197-8206
结合城市生活垃圾管理系统特征,系统归纳基于生命周期评价(Life cycle assessment,LCA)方法的城市生活垃圾管理模型的发展现状,并对LCA方法在城市生活垃圾管理中的实践以及在我国开展城市生活垃圾管理LCA研究的应用前景进行评述。分析表明,LCA是城市生活垃圾管理领域的重要工具之一,基于LCA方法的城市生活垃圾管理模型在全生命周期环境影响评价与识别、处置工艺选择与改进、可持续生活垃圾管理决策支持等方面具有十分重要的应用价值。中国在本地化生活垃圾管理系统LCA模型开发、清单数据库和评价指标体系构建以及与其他研究方法集成等方面面临挑战。  相似文献   

7.
A method is presented that allows for a life cycle assessment (LCA) to provide environmental information on an energy infrastructure system while it evolves. Energy conversion facilities are represented in an agent-based model (ABM) as distinct instances of technologies with owners capable of making decisions based on economic and environmental information. This simulation setup allows us to explore the dynamics of assembly, disassembly, and use of these systems, which typically span decades, and to analyze the effect of using LCA information in decision making.
We were able to integrate a simplified LCA into an ABM by aligning and connecting the data structures that represent the energy infrastructure and the supply chains from source to sink. By using an appropriate database containing life cycle inventory (LCI) information and by solving the scaling factors for the technology matrix, we computed the contribution to global warming in terms of carbon dioxide (CO2) equivalents in the form of a single impact indicator for each instance of technology at each discrete simulation step. These LCAs may then serve to show each agent the impact of its activities at a global level, as indicated by its contribution to climate change. Similar to economic indicators, the LCA indicators may be fed back to the simulated decision making in the ABM to emulate the use of environmental information while the system evolves. A proof of concept was developed that is illustrated for a simplified LCA and ABM used to generate and simulate the evolution of a bioelectricity infrastructure system.  相似文献   

8.
The aim of this article is to develop a methodological approach allowing to assess the influence of parameters of one or more elementary processes in the foreground system, on the outcomes of a life cycle assessment (LCA) study. From this perspective, the method must be able to: (1) include foreground process modeling in order to avoid the assumption of proportionality between inventory data and reference flows; (2) quantify influences of foreground processes’ parameters (and, possibly, interactions between parameters); and (3) identify trends (either increasing or decreasing) for each parameter on each indicator in order to determine the most favorable direction for parametric variation. These objectives can be reached by combining foreground system modeling, a set of two different sensitivity analysis methods (each one providing different and complementary information), and LCA. The proposed method is applied to a case study of hemp‐based insulation materials for buildings. The present study will focus on the agricultural stage as a foreground system and as a first step encompassing the entire life cycle. A set of technological recommendations were identified for hemp farmers in order to reduce the crop's environmental impacts (from –11% to –89% according to the considered impact category). One of the main limitations of the approach is the need for a detailed model of the foreground process. Further, the method is, at present, rather time‐consuming. However, it offers long‐term advantages given that the higher level of model detail adds robustness to the LCA results.  相似文献   

9.
10.
Integrating occupational safety and health (OSH) into life cycle assessment (LCA) may provide decision makers with insights and opportunities to prevent burden shifting of human health impacts between the nonwork environment and the work environment. We propose an integration approach that uses industry‐level work environment characterization factors (WE‐CFs) to convert industry activity into damage to human health attributable to the work environment, assessed as disability‐adjusted life years (DALYs). WE‐CFs are ratios of work‐related fatal and nonfatal injuries and illnesses occurring in the U.S. worker population to the amount of physical output from U.S. industries; they represent workplace hazards and exposures and are compatible with the life cycle inventory (LCI) structure common to process‐based LCA. A proof of concept demonstrates application of the WE‐CFs in an LCA of municipal solid waste landfill and incineration systems. Results from the proof of concept indicate that estimates of DALYs attributable to the work environment are comparable in magnitude to DALYs attributable to environmental emissions. Construction and infrastructure‐related work processes contributed the most to the work environment DALYs. A sensitivity analysis revealed that uncertainty in the physical output from industries had the most effect on the WE‐CFs. The results encourage implementation of WE‐CFs in future LCA studies, additional refinement of LCI processes to accurately capture industry outputs, and inclusion of infrastructure‐related processes in LCAs that evaluate OSH impacts.  相似文献   

11.
A qualitative, quantitative, and overall quality assessment of life cycle inventory is suggested. The method is composed of five indicators which are set up at three levels of the inventory quality: flows, processes, and the system. The method allows one to assess the reliability of the method generating inventory data (justness of data, completeness of data, representativity of processes, repeatability of system definition) and at the same time to quantify the uncertainty of the resulting data made under the data generation method. LCA practitioners can finally decide the overall inventory quality through the information for the acceptability of the inventory result comparing the objective of quality and the cost necessary to improve the quality. The operation of the method was verified in the application to the production of polyethylene bottles. The proposed method was also found applicable for the validation of data in the ISO’s LCA data documentation format.  相似文献   

12.
Electrical and electronic waste (e-waste) has become one of the fastest growing waste streams in the world, and many countries have established e-waste treatment enterprises to solve their e-waste problems. Because of the potential environmental pollution from e-waste, evaluating the overall sustainability of e-waste enterprises is critical to both nations and cities, although a great challenge academically. In this study, a combined approach of emergy analysis and life cycle assessment (LCA) was undertaken, to quantitatively investigate the effectiveness of an e-waste treatment trial project in Macau. In the emergy analysis, we also introduced two new indices (emergy recovery and technical efficiency) in order to evaluate the technical level of e-waste treatment in Macau. The research results show that the trial project has low competitive ability, due to high input emergy and low economic benefits. The emergy environmental efficiency analysis and LCA analysis together indicated that the trial project will indeed produce a low impact on the local environment, and because of the recovery of some resources in the e-waste treatment process, can even generate some environmental benefits. The analysis on the emergy recovery efficiency and technical efficiency shows that trial project has a relatively higher emergy recovery rate (52.78%) and technical level (72.36%) than the e-waste treatment enterprises in mainland China. However, based on both the emergy sustainability index (ESI) and the emergy–LCA sustainability index, it was found that the e-waste treatment trial project is not sustainable over the long term, due to low economic efficiency. Compared to ESI, the emergy–LCA sustainability index is more intuitive and easier to understand. Relevant results and data from this study could provide decision support to enterprise managers and government sectors, so that they could implement appropriate policies on e-waste treatment, to promote sustainable development and improved e-waste processing technologies.  相似文献   

13.
For the utilisation of an energy carrier such as lignite, the whole life cycle including necessary energy supply processes have to be considered. Therefore using the ‘Cumulative Energy Demand’ (CED) is especially suited to determine and compare the energy intensity of processes. The goal of the CED is to calculate the total primary energy input for the generation of a product, taking into account the pertinent front-end process chains. So the CED is in many steps similar to the LCA, especially in the ‘inventory analysis step’. The statements of the CED for energy supply-systems are concerned with the (primary) energy-efficiency of the energy supply and pointing out the life cycle steps with high energy-resources demand. Due to the great environmental impacts of energy supply and use which have to be laboriously assessed in LCA, the CED provides a useful, additional, energy-related ‘screening-indicator’ to LCA. This case study analyses the extraction of lignite in an opencast mine in West-Germany as the first step of energy carrier provision. Our data for the inventory analysis arise from a measuring campaign about the period of one year. The results underline the great energy demand of lignite extraction in West-Germany. With reference to the energy contents of lignite, the fraction of primary energy demands for its’ mining amounts to about 6.2%. This accounts to 93.8 % of the lignite energy content being available as usable energy for further processes, which is obviously worse than other studies have shown.  相似文献   

14.
Purpose

Despite the wide use of LCA for environmental profiling, the approach for determining the system boundary within LCA models continues to be subjective and lacking in mathematical rigor. As a result, life cycle models are often developed in an ad hoc manner, and are difficult to compare. Significant environmental impacts may be inadvertently left out. Overcoming this shortcoming can help elicit greater confidence in life cycle models and their use for decision making.

Methods

This paper describes a framework for hybrid life cycle model generation by selecting activities based on their importance, parametric uncertainty, and contribution to network complexity. The importance of activities is determined by structural path analysis—which then guides the construction of life cycle models based on uncertainty and complexity indicators. Information about uncertainty is from the available life cycle inventory; complexity is quantified by cost or granularity. The life cycle model is developed in a hierarchical manner by adding the most important activities until error requirements are satisfied or network complexity exceeds user-specified constraints.

Results and Discussion

The framework is applied to an illustrative example for building a hybrid LCA model. Since this is a constructed example, the results can be compared with the actual impact, to validate the approach. This application demonstrates how the algorithm sequentially develops a life cycle model of acceptable uncertainty and network complexity. Challenges in applying this framework to practical problems are discussed.

Conclusion

The presented algorithm designs system boundaries between scales of hybrid LCA models, includes or omits activities from the system based on path analysis of environmental impact contribution at upstream network nodes, and provides model quality indicators that permit comparison between different LCA models.

  相似文献   

15.
Cradle-to-gate study of red clay for use in the ceramic industry   总被引:2,自引:1,他引:1  
Background, Goal and Scope  The ceramic tile industry is one of the most important industries in Spain, with the highest concentration of firms to be found in the province of Castellón on the Mediterranean coast. The basic input material for this industry is red clay. The aim of this study was to carry out an LCA of the process of mining, treating and marketing this clay in order to identify the stages and unit processes that have the greatest impact on the environment. This LCA examines all the stages of the red clay from cradle to the customer’s gate, including the process of mining and treating the clay in the mining facilities and its later distribution to end users. Methods  Life cycle inventory (LCI): An exhaustive LCI was performed by collecting data from the mine run by Watts Blake Bearne Spain, S.A. (WBB-Spain) in Castellón. Inputs and outputs were collected for all the unit processes involved in the mining, treatment and marketing of the clay:
–  Mining the clay, which embraces the unit processes of removing the layer of vegetation covering the chosen area, preparing the area to allow access for the firm’s vehicles, and boring or blasting the place the clay is to be extracted from.
–  Treating the clay that is mined to make the finished product, which entails all unit processes required to separate out the waste material and transport it to the tip (which will later be reconditioned), excavating and transporting the clay to the crushing plant and later storing it in heaps before delivery to customers. All the internal transport that takes place between each unit process has also considered.
–  Distribution of the final product, where the clay is loaded onto dumper trucks and delivered to the customer.
Life cycle impact assessment (LCIA): According to ISO 1404X standards, the LCIA is performed at two levels. Firstly, the emissions accounted for in the inventory stage are sorted into impact categories to obtain an indicator for each category (mandatory elements). Secondly, the weighting of environmental data to a single unit is applied (optional elements). In compliance with ISO 14042, a sensitivity analysis is performed and three different impact assessment methods (Eco-Indicator’95, Eco-Indicator’99 and EPS’2000) are applied in order to analyse their influence on the results. Results  The processes that involve the movement of clay within the mine (excavation and loading and transport to the crushing facilities and heaps) are the ones that make the greatest contribution to impact categories for pollutant emissions. As weighting methods in LCA remain a controversial issue, a recommendation when robust results are required, can be to use several methods to examine the sensitivity of the results to different values and worldviews. In our application case, in spite of the differences between the three impact assessment methods applied (Eco-Indicator’95, Eco-Indicator’99 and EPS’2000), the same conclusions can be established from the environmental point of view and we can conclude that the ultimate results are not sensitive in the transformation of mid-points to end-points. Discussion  Taking into account the characteristics of the product being analysed, in addition to the impact categories for pollutant emissions that are traditionally considered in LCA studies, environmental parameters related to resource use (fuel, electricity and water consumption), waste generation (dangerous and non-dangerous wastes) and land use (natural resource appreciation and land use efficiency) and its later rehabilitation (degree of rehabilitation) have been defined. These parameters can be used as additional criteria for an environmental product declaration or criteria for a future eco-labelling of red clay. Conclusion  The results of this study made it possible to identify the unit processes that make the greatest contribution to environmental impact that being, specifically, excavation and loading and transport to the crushing facilities and heaps. Such processes are directly related to the fuel consumption, category that faithfully reproduces the environmental profile of most of the impact categories related to pollution emissions. Special interest has the consideration of additional parameters to quantify the land use and its later rehabilitation. Recommendations  The ceramic tile industry has a basis to market and promote tile products with improved environmental impacts. Given that transport and extraction are dominant underlying issues, it is quite likely that such environmental improvements are also win-win in the economic sense. The availability of exhaustive life cycle inventories is the key to allow this industry to, rapidly, incorporate LCA during product development. Complimentary life cycle costings would also be relatively minimal in terms of effort. Perspectives  Although this study performs the LCI for the basic raw material (clay), future studies should be conducted to complete an LCI for the remaining elements employed by the ceramic tile industry, with the aim of developing a characteristic LCI database for this industry. This includes data on raw materials (feldspar, silicious and feldspars sand, boron, glaze, frit, etc.) and processes (enamelling, firing, water waste treatment, etc.).  相似文献   

16.
This article presents a framework to evaluate emerging systems in life cycle assessment (LCA). Current LCA methods are effective for established systems; however, lack of data often inhibits robust analysis of future products or processes that may benefit the most from life cycle information. In many cases the life cycle inventory (LCI) of a system can change depending on its development pathway. Modeling emerging systems allows insights into probable trends and a greater understanding of the effect of future scenarios on LCA results. The proposed framework uses Bayesian probabilities to model technology adoption. The method presents a unique approach to modeling system evolution and can be used independently or within the context of an agent‐based model (ABM). LCA can be made more robust and dynamic by using this framework to couple scenario modeling with life cycle data, analyzing the effect of decision‐making patterns over time. Potential uses include examining the changing urban metabolism of growing cities, understanding the development of renewable energy technologies, identifying transformations in material flows over space and time, and forecasting industrial networks for developing products. A switchgrass‐to‐energy case demonstrates the approach.  相似文献   

17.
18.
Life-cycle assessment (LCA) is a technique for systematically analyzing a product from cradle-to-grave, that is, from resource extraction through manufacture and use to disposal. LCA is a mixed or hybrid analytical system. An inventory phase analyzes system inputs of energy and materials along with outputs of emissions and wastes throughout life cycle, usually as quantitative mass loadings. An impact assessment phase then examines these loadings in light of potential environmental issues using a mixed spectrum of qualitative and quantitative methods. The constraints imposed by inventory's loss of spatial, temporal, dose-response, and threshold information raise concerns about the accuracy of impact assessment. The degree of constraint varies widely according to the environmental issue in question and models used to extrapolate the inventory data. LCA results may have limited value in two areas: (I) local and/ortransient biophysical processes and (2) issues involving biological parameters, such as biodiversity, habitat alteration, and toxicity. The end result is that impact assessment does not measure actual effects or impacts, nor does it calculate the likelihood of an effect or risk Rather, LCA impact assessment results are largely directional environmental indicaton. The accuracy and usefulness of indicators need to be assessed individually and in a circumstance-specific manner prior to decision making. This limits LCAs usefulness as the sole basis for comprehensive assessments and the comparisons of alternatives. In conclusion, LCA may identify potential issues from a systemwide perspective, but more-focused assessments using other analytical techniques are often necessary to resolve the issues.  相似文献   

19.
基于能值理论的有色金属矿产资源开采生态补偿机制   总被引:1,自引:0,他引:1  
刘文婧  耿涌  孙露  田旭  张黎明 《生态学报》2016,36(24):8154-8163
矿产资源为中国经济的高速增长提供了不竭的动力,但在其开采过程中也带来了诸多的环境问题。在当今资源、环境的约束下,如何采取适宜的量化方法来表征矿产资源开采所带来的生态环境损失,并在此基础上确定合理的生态补偿标准,成为了一项重要的研究课题。选取我国有色金属采选业为研究案例,并基于能值分析方法,核算了矿产资源开采过程中造成的直接、间接环境损失,提出了生态补偿指数,用以为生态补偿标准的制定提供参考依据。对能值分析指标的计算和分析结果表明,从可持续发展角度,生态补偿指数为89.18%,说明我国有色金属采选业的环境投入较高,需要的补偿费用较多;能值产出率为9.24,表明有色金属采选业的生产效率高;环境承载率为238,呈现高负荷状态,区域环境所承受的压力巨大;可持续发展指数为0.039,表明我国有色金属采选业处于不可持续状态,急需采取相关环境保护措施进行调整。从经济成本角度,我国有色金属采选业需要的生态环境补偿费用约为4.38×109元,现阶段征收的资源税费远低于生态恢复的治理费用,不能够覆盖生态修复治理成本。最后根据本文研究内容得出我国有色金属采选业面临的主要问题,分别从宏观角度、微观角度及长远角度3个方面给出了相应的政策建议。  相似文献   

20.
An input‐output‐based life cycle inventory (IO‐based LCI) is grounded on economic environmental input‐output analysis (IO analysis). It is a fast and low‐budget method for generating LCI data sets, and is used to close data gaps in life cycle assessment (LCA). Due to the fact that its methodological basis differs from that of process‐based inventory, its application in LCA is a matter of controversy. We developed a German IO‐based approach to derive IO‐based LCI data sets that is based on the German IO accounts and on the German environmental accounts, which provide data for the sector‐specific direct emissions of seven airborne compounds. The method to calculate German IO‐based LCI data sets for building products is explained in detail. The appropriateness of employing IO‐based LCI for German buildings is analyzed by using process‐based LCI data from the Swiss Ecoinvent database to validate the calculated IO‐based LCI data. The extent of the deviations between process‐based LCI and IO‐based LCI varies considerably for the airborne emissions we investigated. We carried out a systematic evaluation of the possible reasons for this deviation. This analysis shows that the sector‐specific effects (aggregation of sectors) and the quality of primary data for emissions from national inventory reporting (NIR) are the main reasons for the deviations. As a rule, IO‐based LCI data sets seem to underestimate specific emissions while overestimating sector‐specific aspects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号