首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new biomechanical three-dimensional (3D) model for the human mandible based on computer-generated virtual model is proposed. Using maps obtained from the special kinds of photos of the face of the real subject, it is possible to attribute personality to the virtual character, while computer animation offers movements and characteristics within the confines of space and time of the virtual world. A simple two-dimensional model of the jaw cannot explain the biomechanics, where the muscular forces through occlusion and condylar surfaces are in the state of 3D equilibrium. In the model all forces are resolved into components according to a selected coordinate system. The muscular forces act on the jaw, along with the necessary force level for chewing as some kind of mandible balance, preventing dislocation and loading of nonarticular tissues. In the work is used new approach to computer-generated animation of virtual 3D characters (called "Body SABA"), using in one object package of minimal costs and easy for operation.  相似文献   

2.

Background  

Current imaging methods such as Magnetic Resonance Imaging (MRI), Confocal microscopy, Electron Microscopy (EM) or Selective Plane Illumination Microscopy (SPIM) yield three-dimensional (3D) data sets in need of appropriate computational methods for their analysis. The reconstruction, segmentation and registration are best approached from the 3D representation of the data set.  相似文献   

3.
Summary: Traditional two-dimensional (2D) software programsfor drawing pedigrees are limited when dealing with extendedpedigrees. In successive generations, the number of individualsgrows exponentially, leading to an unworkable amount of spacerequired in the horizontal direction for 2D displays. In addition,it is not always possible to place closely related individualsnear each other due to the lack of space in 2Ds. To addressthese issues we have developed three-dimensional (3D) pedigreedrawing techniques to enable clearer visualization of extendedpedigrees. Currently no other methods are available for displayingextended pedigrees in 3Ds. We have made freely available a softwaretool—‘Celestial3D’—that implements thesenovel techniques. Availability: Freely available to non-commercial users Contact: celestial3d{at}genepi.org.au Supplementary information: www.genepi.org.au/celestial3d Associate Editor: Martin Bishop 1A more extensive list of software tools appears in the SupplementaryMaterial.  相似文献   

4.
To visualize a bird’s-eye view of an ensemble of proteomes for various species, we recently developed a novel method of mapping a proteome ensemble into Three-Dimensional (3D) vector space. In this study, the “proteome” is defined as the entire set of all proteins encoded in a genome sequence, and these proteins were dealt with at the level of the SCOP Fold. First, we represented the proteome of a species s by a 1053-dimensional vector x(s), where its length ∣x(s)∣ represents the overall amount of all the SCOP Folds in the proteome, and its unit vector x(s)/∣x(s)∣ represents the relative composition of the SCOP Folds in the proteome and the size of the dimension, 1053, is the number of all possible Folds in the proteome ensemble given. Second, we mapped the vector x(s) to the 3D vector y(s), based on the two simple principles: (1) ∣y(s)∣ = ∣x(s)∣, and (2) the angle between y(s) and y(t) maximally correlates with the angle between x(s) and x(t). We applied to the mapping of a proteome ensemble for 456 species, which were retrieved from the Genomes TO Protein structures and functions (GTOP) database. As a result, we succeeded in the mapping in that the properties of the 1053-dimensional vectors were quantitatively conserved in the 3D vectors. Particularly, the angles between vectors before and after the mapping highly correlated with each other (correlation coefficients were 0.95–0.96). This new mapping method will allow researchers to intuitively interpret the visual information presented in the maps in a highly effective manner.  相似文献   

5.
TopoICE-R: 3D visualization modeling the topology of DNA recombination   总被引:1,自引:0,他引:1  
TopoICE-R is a three-dimensional visualization and manipulation software for solving 2-string tangle equations and can be used to model the topology of DNA bound by proteins such as recombinases and topoisomerases. AVAILABILITY: This software, manual and example files are available at www.knotplot.com/download for Linux, Windows and Mac.  相似文献   

6.
Calcium biominerals occur in all major animal phyla, and through biomolecular control, exhibit such diverse structures as exoskeletons, shells, bones, teeth and earstones (otoliths). Determining the three-dimensional expression of key biomineral proteins, however, has proven challenging as typical protein identification methods either lose spatial resolution during dissolution of the mineral phase or are costly and limited to two-dimensional expression of high abundance proteins. Here we present a modification of the CLARITY and ACT-PRESTO protocols to visualize and confirm, for the first time, the timing of expression and function of two key regulators of biomineralization.  相似文献   

7.
We offer a tool, denoted VISTAL, for two-dimensional visualization of protein structural alignments. VISTAL describes aligned structures as a series of matched secondary structure elements, colored according to the three-dimensional distance of their Calpha atoms. AVAILABILITY: VISTAL can be downloaded from http://trantor.bioc.columbia.edu/~kolodny/software.html.  相似文献   

8.
MOTIVATION: Many tools have been developed to visualize protein structures. Tools that have been based on Java 3D((TM)) are compatible among different systems and they can be run remotely through web browsers. However, using Java 3D for visualization has some performance issues with it. The primary concerns about molecular visualization tools based on Java 3D are in their being slow in terms of interaction speed and in their inability to load large molecules. This behavior is especially apparent when the number of atoms to be displayed is huge, or when several proteins are to be displayed simultaneously for comparison. RESULTS: In this paper we present techniques for organizing a Java 3D scene graph to tackle these problems. We have developed a protein visualization system based on Java 3D and these techniques. We demonstrate the effectiveness of the proposed method by comparing the visualization component of our system with two other Java 3D based molecular visualization tools. In particular, for van der Waals display mode, with the efficient organization of the scene graph, we could achieve up to eight times improvement in rendering speed and could load molecules three times as large as the previous systems could. AVAILABILITY: EPV is freely available with source code at the following URL: http://www.cs.ucsb.edu/~tcan/fpv/  相似文献   

9.

Background  

Genomics research produces vast amounts of experimental data that needs to be integrated in order to understand, model, and interpret the underlying biological phenomena. Interpreting these large and complex data sets is challenging and different visualization methods are needed to help produce knowledge from the data.  相似文献   

10.
11.
SUMMARY: We describe the application of distance geometry methods to the three-dimensional visualization of sequence relationships, with examples for mumps virus SH gene cDNA and prion protein sequences. Sequence-sequence distance measures may be obtained from either a multiple sequence alignment or from sets of pairwise alignments. AVAILABILITY: C/Perl code and HTML/VRML files from http://www.nibsc.ac.uk/dg3dseq/  相似文献   

12.
The action of various DNA topoisomerases frequently results in characteristic changes in DNA topology. Important information for understanding mechanistic details of action of these topoisomerases can be provided by investigating the knot types resulting from topoisomerase action on circular DNA forming a particular knot type. Depending on the topological bias of a given topoisomerase reaction, one observes different subsets of knotted products. To establish the character of topological bias, one needs to be aware of all possible topological outcomes of intersegmental passages occurring within a given knot type. However, it is not trivial to systematically enumerate topological outcomes of strand passage from a given knot type. We present here a 3D visualization software (TopoICE-X in KnotPlot) that incorporates topological analysis methods in order to visualize, for example, knots that can be obtained from a given knot by one intersegmental passage. The software has several other options for the topological analysis of mechanisms of action of various topoisomerases.  相似文献   

13.
Recent technical improvements, such as 3D microscopy imaging, have shown the necessity of studying 3D biological tissue architecture during carcinogenesis. In the present paper a computer simulation model is developed allowing the visualization of the microscopic biological tissue architecture during the development of metaplastic and dysplastic lesions.The static part of the model allows the simulation of the normal, metaplastic and dysplastic architecture of an external epithelium. This model is associated to a knowledge base which contains only data on the nasal epithelium. The latter has been well studied by numerous authors and its lesional states are well known. An inference engine allows the initialization of the static model parameters. A statistical comparison between simulated epithelia and real epithelia is achieved by adjusting the parameter values during the simulation.The dynamic part of the model allows the simulation of a growth process on a 3D representation based on the static model. The main hypothesis is that nasal epithelium is submitted to a continuous transformation from normal to cancer through metaplasia and dysplasia. The evolution of each cell (represented by its nucleus) depends on its local environment and also on its heritage from its mother-cell.Simulation of tissue renewal of the nasal pseudostratified epithelium has been achieved. The evolution from normal to hyperplasia has been simulated. After modification of the cell cycle modelling, the simulation of the development of metaplastic foci has been obtained.  相似文献   

14.
B3LYP/6-31 G(d) level of theory has been used for the examination of substituent effect in the concerted step of the Meerwein-Eschenmoser-Claisen rearrangement. In this regard, the effect of NO2 and NH2 groups in different positions has been investigated. The obtained results show that substituent effect is very sensitive to its position and configuration. Electron withdrawing and electron donating groups in different positions and various configurations show different and sometimes opposite results.  相似文献   

15.
虚拟森林景观中林火蔓延模型及三维可视化表达   总被引:15,自引:2,他引:13  
传统上的林火模拟通常只选用一种林火模型,用一个简单的椭圆预测林火蔓延时火场各个位置的情况,与现实中火灾蔓延状况相差甚远,而且以往的林火蔓延是基于二维可视化表达,表达信息有限.本系统采用现今运用最广泛的Rothermel模型,利用Huygen原理,并以改进的粒子系统方法三维模拟在不同的风速、坡度下林火在火场不同位置的扩散行为.采用该方法模拟林火扩散行为,不仅能实时显示受灾面积、火势蔓延的方向、火势大小,且能给人以真实感.并将该方法成功地应用于福建漳浦林区.  相似文献   

16.

Background  

Macromolecular visualization as well as automated structural and functional annotation tools play an increasingly important role in the post-genomic era, contributing significantly towards the understanding of molecular systems and processes. For example, three dimensional (3D) models help in exploring protein active sites and functional hot spots that can be targeted in drug design. Automated annotation and visualization pipelines can also reveal other functionally important attributes of macromolecules. These goals are dependent on the availability of advanced tools that integrate better the existing databases, annotation servers and other resources with state-of-the-art rendering programs.  相似文献   

17.
The Gene Expression Viewer is a web-launched three-dimensional visualization tool, tailored to compare surface reconstructions of multi-channel image volumes generated by confocal microscopy or micro-CT.  相似文献   

18.
Summary The absence of the methyl substituent at the 2position of the cyclohexene ring of TCHP enhances the conversion rate as well as the yields of the 3-hydroxy product obtained byStreptomyces natalensis and the 3-keto product obtained byMycobacterium smegmatis.Abbreviations TCHP 1-(2-thienyl)-3-(1-cyclohexen-1-yl)-1-propanone - TCHP-OH 1-(2-thienyl)-3-(3-hydroxyl-1-cyclohexen-1-yl)-1-propanone - TCHP-ketone 1-(2-thienyl)-3-(1-cyclohexen-1-yl-3-one)-1-propane - TMCHP 1-(2-thienyl)-3-(2-methyl-1-cyclohexen-1-yl)-propanone  相似文献   

19.
We carried out Hartree–Fock (HF) and density functional theory calculations on the conjugated bases of phenols and alcohols for 23 compounds and analysed their acid–base behaviour using molecular orbital (MO) energies and their dependence on solvent effects. Despite the well-known correlation between highest-occupied MO (HOMO) energies and proton affinity (PA), we observed that HOMO energies are inadequate to describe the acid–base behaviour of these compounds. Therefore, we established a criterion to identify the best frontier MO for describing PA values and also to understand why the HOMO approach fails. The MO that fits our criterion provided very good correlations with PA values, much better than those obtained by the HOMO energies. Since the frontier MOs are those which drive the acid–base reactions in each compound, they were called frontier effective-for-reaction MOs, or FERMOs. By using the FERMO concept, the reactions that are HOMO driven, and those that are not, can be better explained, independent of the calculation method used, since both HF and Kohn–Sham methodologies lead to the same FERMO.  相似文献   

20.
Recent releases of genome three-dimensional (3D) structures have the potential to transform our understanding of genomes. Nonetheless, the storage technology and visualization tools need to evolve to offer to the scientific community fast and convenient access to these data. We introduce simultaneously a database system to store and query 3D genomic data (3DBG), and a 3D genome browser to visualize and explore 3D genome structures (3DGB). We benchmark 3DBG against state-of-the-art systems and demonstrate that it is faster than previous solutions, and importantly gracefully scales with the size of data. We also illustrate the usefulness of our 3D genome Web browser to explore human genome structures. The 3D genome browser is available at http://3dgb.cs.mcgill.ca/.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号