首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The article presents a method for the calculation of selected economy‐wide material flow indicators (namely, direct material input [DMI] and raw material input [RMI]) for economic sectors. Whereas sectoral DMI was calculated using direct data from statistics, we applied a concept of total flows and a hybrid input‐output life cycle assessment method to calculate sectoral RMI. We calculated the indicators for the Czech Republic for 2000–2011. We argue that DMI of economic sectors can be used for policies aiming at decreasing the direct input of extracted raw materials, and imported raw materials and products, whereas sectoral RMI can be better used for justifying support for or weakening the role of individual sectors within the economy. High‐input material flows are associated in the Czech Republic with the extractive industries (agriculture and forestry, the mining of fossil fuels [FFs], other types of mining, and quarrying), with several manufacturing industries (manufacturing of beverages, basic metals, motor vehicles or electricity, and gas and steam supply) and with construction. Viable options for reducing inputs of agricultural biomass include changes in people's diet toward a lower amount of animal‐based food and a decrease in the wasting of food. For FFs, one should think of changing the structure of total primary energy supply toward cleaner gaseous and renewable energy sources, innovations in transportation systems, and improvements in overall energy efficiency. For metal ores, viable options include technological changes leading to smaller and lighter products, as well as consistent recycling and use of secondary metals.  相似文献   

2.
This article applies a combined input−output and life cycle inventory (LCI) method to the calculation of emissions and material requirements of the Czech economy in 2003. The main focus is on materials and emissions embodied in the international trade of the Czech Republic. Emissions and material extraction avoided due to imports are calculated according to an input−output approach that assumes the same production technology for imports as for domestic production. Because not all products are provided by the domestic economy, the LCI data are incorporated into the monetary input−output model.
The results show that incorporating the LCI data into an input−output model is reasonable. The emissions embodied in the international trade of the Czech Republic are comparable to the domestic emissions. We compare the economy-wide material flow indicators, such as direct material input, domestic material consumption, and physical trade balance, to their raw material equivalents. The results of our calculation show that the Czech Republic exerts environmental pressure on the environment in other countries through international trade.
We argue that raw material equivalents should be used to express the flows across national boundaries. Furthermore, we recommend a raw material consumption indicator for international comparisons.  相似文献   

3.
This article deals with the economy‐wide material flows in the Czech Republic in 1990–2006. It presents in brief the overall trends of the material flow indicators in 1990–2002. The major part of the article is focused on the years 2002–2006, which immediately preceded and followed the accession of the Czech Republic to the European Union in 2004. It is shown that this accession had quite a significant impact on the volume and character of the material flows of the Czech Republic. The accession was beneficial from an economic point of view, as it allowed for an increased supply of materials needed for economic growth. Furthermore, it was accompanied by an improvement in the efficiency of material transformation into economic output. From an environmental and broader sustainability point of view, however, this accession brought about some controversial outcomes. There was a significant increase in the net export of environmental pressure, on one hand, and an increase in net additions to the physical stock of the economy, on the other. Although the former is controversial from the viewpoint of equity in sharing area and resources, the latter places an additional burden on future generations because all physical stocks will turn into waste and emissions at some point, when their life span expires.  相似文献   

4.
The study described in this article presents the first‐ever physical supply and use tables (PSUTs) based on the recently published methodological standard for the System of Environmental‐Economic Accounting (SEEA). The tables were compiled for the Czech Republic for 2014. The compilation procedure followed was described in detail so that it can serve as a source of inspiration and a benchmark for other researchers and/or statisticians. The major shortcoming of the PSUTs is that not all needed data were readily available in physical units and required estimations based on proxies. Some parts of the tables are therefore burdened with a degree of uncertainty. In order to address the price inhomogeneity of sectoral prices for commodity outputs, imports, and exports, which tends to be typical for monetary supply and use tables (MSUTs), the PSUTs and MSUTs were further used for the calculation of raw material equivalents of import, exports, and raw material input (RMI) and raw material consumption (RMC) indicators. A comparison of results showed that the total indicators do not differ that much: the largest difference of 5% was recorded for raw material equivalents of exports, while RMC, for instance, remained nearly the same. However, we still argue for the use of PSUTs for the calculation of raw material equivalents, as changes in total volume of the indicators were accompanied with changes in their material structure. This can have significant consequences for the assessment of environmental impacts related to material consumption, as environmental impacts are very material specific.  相似文献   

5.
This study looks into material flow trends in the Philippines from 1985 to 2010 by utilizing the methodology of economy‐wide material flow analysis. Using domestic data sources, this study presents disaggregated annual material flow trends in terms of four major material categories, namely: biomass; fossil energy carriers; ores and industrial minerals; and construction minerals. The results describe in detail the growth of material flows in a high‐density country at the onset of its development and reveal the shift of material consumption from dominance of renewable materials in 1985 to nonrenewable materials in 2010. IPAT analysis shows that the increase in material consumption was driven by population growth from 1985 to 1998 and by growth in affluence from 1999 to 2010. However, high inequalities amidst the growing economy suggest that a small group of wealthy people have influenced the acceleration of material consumption in the Philippines. The results of this research are intended to provide a thorough analysis of the processes occurring in Philippine economic growth in order to assist in tackling implications for the important issue of sustainable resource management.  相似文献   

6.
In 2007, imports accounted for approximately 34% of the material input (domestic extraction and imports) into the Austrian economy and almost 60% of the GDP stemmed from exports. Upstream material inputs into the production of traded goods, however, are not yet included in the standard framework of material flow accounting (MFA). We have reviewed different approaches accounting for these upstream material inputs, or raw material equivalents (RME), positioning them in a wider debate about consumption‐based perspectives in environmental accounting. For the period 1995–2007, we calculated annual RME of Austria's trade and consumption applying a hybrid approach. For exports and competitive imports, we used an environmentally extended input‐output model of the Austrian economy, based on annual supply and use tables and MFA data. For noncompetitive imports, coefficients for upstream material inputs were extracted from life cycle inventories. The RME of Austria's imports and exports were approximately three times larger than the trade flows themselves. In 2007, Austria's raw material consumption was 30 million tonnes or 15% higher than its domestic material consumption. We discuss the material composition of these flows and their temporal dynamics. Our results demonstrate the need for a consumption‐based perspective in MFA to provide robust indicators for dematerialization and resource efficiency analysis of open economies.  相似文献   

7.
Abstract: Net additions to stock (NAS) are an indicator based on economy-wide material flow accounting and analysis. NAS, a measure of the physical growth rate of an economy, can be used for estimates of future waste flows. It is calculated using two methods: The indirect method of calculation is a simple difference between all input and output flows, whereas the direct method involves measuring the amounts of materials added to particular categories of physical stock and the amounts of waste flows from these stocks.
The study described in this article had one leading objective: to make available direct NAS data for the Czech Republic, which could later be used for predicting future waste flows. Two additional objectives emerged from the first: (1) to develop a method for direct NAS calculation from data availability in the Czech Republic; (2) to calculate NAS directly, compare the results with those achieved in indirect NAS calculation, and discuss the identified differences.
The NAS for the Czech Republic calculated by the direct method is equal to approximately 65 million tonnes on average in 2000–2002 and is approximately 27% lower than the NAS acquired by the indirect method of calculation. The actual values of directly calculated NAS and its uncertainties suggest that the indirect NAS is more likely to be an overestimation than an underestimation. Durables account for about 2% of the total direct NAS, whereas the rest is attributed to infrastructure and buildings. The direct NAS is dominated by nonmetal construction commodities such as building stone and bricks, which equal approximately 89% of the total direct NAS.
Calculation of NAS by the direct method has been proved to be feasible in the Czech Republic. Moreover, uncertainties related to direct NAS are lower than those related to indirectly acquired NAS.  相似文献   

8.
Alloying elements in steel add a wide range of valuable properties to steel materials that are indispensable for the global economy. However, they are likely to be effectively irretrievably blended into the steel when recycled because of (among other issues) the lack of information about the composition of the scrap. This results in the alloying elements dissipating in slag during steelmaking and/or becoming contaminants in secondary steel. We used the waste input‐output material flow analysis model to quantify the unintentional flows of alloying elements (i.e., chromium, nickel, and molybdenum) that occur in steel materials and that result from mixing during end‐of‐life (EOL) processes. The model can be used to predict in detail the flows of ferrous materials in various phases, including the recycling phase by extending steel, alloying element source, and iron and steel scrap sectors. Application of the model to Japanese data indicates the critical importance of the recycling of EOL vehicles (ELVs) in Japan because passenger cars are the final destination of the largest share of these alloying elements. However, the contents of alloying elements are rarely considered in current ELV recycling. Consequently, the present study demonstrates that considerable amounts of alloying elements, which correspond to 7% to 8% of the annual consumption in electric arc furnace (EAF) steelmaking, are unintentionally introduced into EAFs. This result suggests the importance of quality‐based scrap recycling for efficient management of alloying elements.  相似文献   

9.
Wastewater treatment infrastructure (WWTI) construction in China has entered an accelerated stage of development in recent years as a result of rapid economic growth, urbanization, and the demand for improving water quality. As a result, a large amount of resources and materials will be allocated for the WWTI, and it is particularly important to find ways to reduce resource consumption effectively so that social dematerialization and sustainable development can be achieved. In this study, we employed the dynamic material flow model to estimate the material flows and stocks of WWTIs and the associated carbon dioxide (CO2) emissions through 2050, considering effects of a rise in water consumption, a longer lifetime, and an increased material recycling rate. Our results indicate that material consumption in WWTIs will increase rapidly through 2025 to meet the needs of the increased volume of discharged wastewater as well as to overcome the shortage of existing wastewater treatment plants. In contrast with the moderate effects of rise in water consumption, prolonging the lifetime will greatly reduce material consumption in WWTI construction during the period 2030–2050, and approximately 60% of the total material input will be saved in the medium‐lifetime scenario, compared with the short‐lifetime scenario. Material output and CO2 emissions associated with WWTIs will be reduced by 87% and 37%, respectively, in the medium‐lifetime scenario, compared with the short‐lifetime scenario, under high‐water‐consumption growth. Our results highlight the great importance of pipeline construction and cement consumption in resource consumption associated with WWTI construction in China. Moreover, this study also examined the potential ways to reduce material consumption in WWTI construction in the context of the demand chain, the design, construction, operation and management, and demolition.  相似文献   

10.
In various international policy processes such as the UN Sustainable Development Goals, an urgent demand for robust consumption‐based indicators of material flows, or material footprints (MFs), has emerged over the past years. Yet, MFs for national economies diverge when calculated with different Global Multiregional Input–Output (GMRIO) databases, constituting a significant barrier to a broad policy uptake of these indicators. The objective of this paper is to quantify the impact of data deviations between GMRIO databases on the resulting MF. We use two methods, structural decomposition analysis and structural production layer decomposition, and apply them for a pairwise assessment of three GMRIO databases, EXIOBASE, Eora, and the OECD Inter‐Country Input–Output (ICIO) database, using an identical set of material extensions. Although all three GMRIO databases accord for the directionality of footprint results, that is, whether a countries’ final demand depends on net imports of raw materials from abroad or is a net exporter, they sometimes show significant differences in level and composition of material flows. Decomposing the effects from the Leontief matrices (economic structures), we observe that a few sectors at the very first stages of the supply chain, that is, raw material extraction and basic processing, explain 60% of the total deviations stemming from the technology matrices. We conclude that further development of methods to align results from GMRIOs, in particular for material‐intensive sectors and supply chains, should be an important research priority. This will be vital to strengthen the uptake of demand‐based material flow indicators in the resource policy context.  相似文献   

11.
经济系统物质流分析研究述评   总被引:2,自引:0,他引:2  
余亚东  陈定江  胡山鹰  朱兵 《生态学报》2015,35(22):7274-7285
作为研究经济系统物质代谢的重要方法,经济系统物质流分析方法近年来在资源与环境管理领域得到了广泛的应用,理论发展非常迅速。对经济系统物质流分析进行了系统综述,以期为更深入的理论研究提供参考。系统回顾了经济系统物质流分析的发展历史,介绍了其核算框架和指标体系。重点对经济系统物质流分析的研究现状进行了总结和述评,研究表明:(1)在经济系统物质流分析指标的核算研究方面:国家层面的核算研究多、方法较为成熟,而区域层面的核算研究尚未形成成熟的核算框架;针对直接流指标的核算研究多,而包含间接流或隐藏流的综合指标的核算方法研究不足;(2)在经济系统物质流分析指标的变化原因研究方面,目前的研究较少,研究方法包括分解分析法和回归分析法:前者多基于IPAT方程的直接分解法,难以考察经济系统内部的结构和技术的变化对经济系统物质流分析指标的影响,而后者则在所识别的经济系统物质流分析指标的影响因素方面具有较大差异。提出了经济系统物质流分析的未来研究方向。  相似文献   

12.
This article aims at estimating the raw material equivalents (RMEs)—the upstream used material flows required along the production chain—of imports and exports for some Latin American countries: Brazil, Chile, Colombia, Ecuador, and Mexico. Furthermore, the United States is included in the analysis as a reference for a high‐income economy. The RME concept and the empirical evidence are articulated by use of an input?output methodology. Results are set out for the year 2003 for each of the countries and in time series for the years 1977, 1986, 1996, and 2003 in the case of Chile. The findings show not only the physical dimensions behind direct material traded but also how the previous exporter (importer) position of a country (based on standard material flow analysis indicators) deteriorates, alleviates, or changes. Implications for material consumption indicators, such as direct material consumption (DMC) and raw material consumption (RMC), are also drawn. The results suggest basing the discussion of material flows on a broader set of indicators to obtain a more comprehensive picture of the implications of international trade and its impacts on the environment.  相似文献   

13.
With increased understanding of the effects of human activities on the environment and added awareness of the increasing societal value of natural resources, researchers have begun to focus on the characterization of elemental cycles. Indium has captured significant attention due to the potential for supply shortages and nonexistent recycling at end of life. Such a combination of potentially critical features is magnified for countries that depend on imports of indium, notably many European countries. With the aims of analyzing the dynamics of material flows and of estimating the magnitude of secondary indium sources available for recycling, the anthropogenic indium cycle in Europe has been investigated by material flow analysis. The results showed that the region is a major consumer of finished goods containing indium, and the cumulative addition of indium in urban mines was estimated at about 500 tonnes of indium. We discuss these results from the perspective of closing the metal cycle in the region. Securing access to critical raw materials is a priority for Europe, but the preference for recycling metal urban mines risks to remain only theoretical for indium unless innovations in waste collection and processing unlock the development of technologies that are economically feasible and environmentally sustainable.  相似文献   

14.
Modern society depends on the use of many diverse materials. Effectively managing these materials is becoming increasingly important and complex, from the analysis of supply chains, to quantifying their environmental impacts, to understanding future resource availability. Material stocks and flows data enable such analyses, but currently exist mainly as discrete packages, with highly varied type, scope, and structure. These factors constitute a powerful barrier to holistic integration and thus universal analysis of existing and yet to be published material stocks and flows data. We present the Unified Materials Information System (UMIS) to overcome this barrier by enabling material stocks and flows data to be comprehensively integrated across space, time, materials, and data type independent of their disaggregation, without loss of information, and avoiding double counting. UMIS can therefore be applied to structure diverse material stocks and flows data and their metadata across material systems analysis methods such as material flow analysis (MFA), input‐output analysis, and life cycle assessment. UMIS uniquely labels and visualizes processes and flows in UMIS diagrams; therefore, material stocks and flows data visualized in UMIS diagrams can be individually referenced in databases and computational models. Applications of UMIS to restructure existing material stocks and flows data represented by block flow diagrams, system dynamics diagrams, Sankey diagrams, matrices, and derived using the economy‐wide MFA classification system are presented to exemplify use. UMIS advances the capabilities with which complex quantitative material systems analysis, archiving, and computation of material stocks and flows data can be performed.  相似文献   

15.
Economy-wide material flow analysis (MFA) and derived indicators have been developed to monitor and assess the metabolic performance of economies, that is, with respect to the internal economic flows and the exchange of materials with the environment and with other economies. Indicators such as direct material input (DMI) and direct material consumption (DMC) measure material use related to either production or consumption. Domestic hidden flows (HF) account for unused domestic extraction, and foreign HF represent the upstream primary resource requirements of the imports. DMI and domestic and foreign HF account for the total material requirement (TMR) of an economy. Subtracting the exports and their HF provides the total material consumption (TMC).
DMI and TMR are used to measure the (de-) coupling of resource use and economic growth, providing the basis for resource efficiency indicators. Accounting for TMR allows detection of shifts from domestic to foreign resource requirements. Net addition to stock (NAS) measures the physical growth of an economy. It indicates the distance from flow equilibrium of inputs and outputs that may be regarded as a necessary condition of a sustainable mature metabolism.
We discuss the extent to which MFA-based indicators can also be used to assess the environmental performance. For that purpose we consider different impacts of material flows, and different scales and perspectives of the analysis, and distinguish between turnover-based indicators of generic environmental pressure and impact-based indicators of specific environmental pressure. Indicators such as TMR and TMC are regarded as generic pressure indicators that may not be used to indicate specific environmental impacts. The TMR of industrial countries is discussed with respect to the question of whether volume and composition may be regarded as unsustainable.  相似文献   

16.
Material flows of the economic cycle can contain toxic substances, which enter the economy as impurities in raw materials or are intentionally added as minor or even main constituents during the manufacture of industrial or consumer goods. Cadmium, predominantly associated with zinc minerals, is a by-product of the primary zinc production. Cadmium is generated when zinc is extracted from zinc ores and concentrates, an intermediate product resulting from flotation processing after the zinc ore has been mined and milled. Information on the amount of cadmium generated from zinc extraction is rarely published. In this article, we assess generation and fate of cadmium accumulating worldwide in the production of primary zinc from ores and concentrates. Model calculations for the beginning of the 21st century show that annually about 30,000 tonnes of cadmium were generated, but only approximately 16,000 tonnes were converted to primary cadmium metal, key material for the production of other cadmium compounds (e.g., cadmium oxide), and cadmium-containing goods (e.g., nickel−cadmium batteries). Hence, about 14,000 tonnes of cadmium must have been transferred somewhere else. The fate of about 5,500 tonnes can be plausibly explained, but it is difficult to determine what happens to the rest.  相似文献   

17.
中国居民消费隐含的碳排放量变化的驱动因素   总被引:1,自引:0,他引:1  
姚亮  刘晶茹  王如松 《生态学报》2011,31(19):5632-5637
应用基于投入产出技术的生命周期评价(EIO-LCA)核算了1997、2000、2002、2005和2007年5a的中国居民消费隐含的二氧化碳排放量,发现其呈现增加趋势。2007年达到18.53亿t,相当于1997年的1.61倍,年平均增长4.89%. 其次采用结构分解分析(SDA)分析了碳排放效率变化、经济内在结构变迁、消费结构转变、人均消费水平变化、城市化进程和人口总量变化等六项因素对碳排放总量变化的驱动作用。研究发现碳排放效率因素和人均消费水平变化是驱动碳排放变化的两大主要力量,并且作用相反。碳排放效率的持续提高,很大程度上缓解了居民消费的隐含碳排放急剧增加的趋势,是减缓碳排放量的主要因素;而人均消费水平的迅速提高成为推动碳排放增加的主要力量,是推动碳排放增加的主要因素。  相似文献   

18.
The aim of this article is to propose a method for forecasting future secondary material flows by combining a product lifetime distribution analysis with a waste input‐output analysis and present a simple case study of automobiles. The case study demonstrates that the proposed method enables us to estimate replacement demand of new vehicles, number of end‐of‐life (EOL) vehicles arising from the aging of vehicles, volume of shredder scraps recovered from EOL vehicles, and volume of shredder scraps required to meet final consumption in the future.  相似文献   

19.
Carbon‐based materials (CBMs) for energetic and material purposes combine biogenic and anthropogenic carbon cycles. In the latter, numerous manufactured products with various in‐use lifespans accumulate as anthropogenic carbon stocks. Understanding the behavior of these stocks is an important requirement to estimate not only future waste amounts, source for secondary raw materials, but also the impacts and effects in carbon emissions and carbon management. Previous models have estimated material stock changes; however, a lack of research in carbon stocks is perceived. Moreover, studies follow in‐use lifespan estimation approaches, such as decay functions, which do not coincide with observed consumption and waste treatment patterns. In the first part of this article, we present a carbon stock‐flow model to analyze inter‐relationships between carbon flows and stocks from raw materials to waste treatment processes considering a consumer perspective, where the dynamics of anthropogenic carbon stocks are completely described. In the second part, we study the pulp and paper industry in Germany under a scenario approach to analyze the behavior, development, and impacts of paper stocks and flows between 2010 and 2040. The model provided coherent results, with industrial data estimating 33.9 million metric tons in 2010 in paper stocks, equivalent to 410 kilograms per person. Consumption per capita and in‐use lifespan of products were identified as the most significant variables in carbon stock building. Model simulations show a sustained growth in stocks for the next 30 years, with increase in waste and carbon emissions. But in combination with recycling and reuse mechanisms and consumption patterns, environmental impacts are reduced.  相似文献   

20.
Dynamic material flow analysis enables the forecasting of secondary raw material potential for waste volumes in future periods, by assessing past, present, and future stocks and flows of materials in the anthroposphere. Analyses of waste streams of buildings stocks are uncertain with respect to data and model structure. Wood construction in Viennese buildings serve as a case study to compare different modeling approaches for determining end‐of‐life (EoL) wood and corresponding contaminant flows (lead, chlorine, and polycyclic aromatic hydrocarbons). A delayed input and a leaching stock modeling approach are used to determine wood stocks and flows from 1950 until 2100. Cross‐checking with independent estimates and sensitivity analyses are used to evaluate the results’ plausibility. In the situation of the given data in the present case study, the delay approach is a better choice for historical observations of EoL wood and for analyses at a substance level. It has some major drawbacks for future predictions at the goods level, though, as the durability of a large number of historical buildings with considerably higher wood content is not reflected in the model. The wood content parameter differs strongly for the building periods and has therefore the highest influence on the results. Based on this knowledge, general recommendations can be derived for analyses on waste flows of buildings at a goods and substance level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号