首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 407 毫秒
1.
We estimate the mitigation potential of local use of bioenergy from harvest residues for the 2.3 × 10km2 (232 Mha) of Canada's managed forests from 2017 to 2050 using three models: Carbon Budget Model of the Canadian Forest Sector (CBM‐CFS3), a harvested wood products (HWP) model that estimates bioenergy emissions, and a model of emission substitution benefits from the use of bioenergy. We compare the use of harvest residues for local heat and electricity production relative to a base case scenario and estimate the climate change mitigation potential at the forest management unit level. Results demonstrate large differences between and within provinces and territories across Canada. We identify regions with increasing benefits to the atmosphere for many decades into the future and regions where no net benefit would occur over the 33‐year study horizon. The cumulative mitigation potential for regions with positive mitigation was predicted to be 429 Tg CO2e in 2050, with 7.1 TgC yr ?1 of harvest residues producing bioenergy that met 3.1% of the heat demand and 2.9% of the electricity demand for 32.1 million people living within these regions. Our results show that regions with positive mitigation produced bioenergy, mainly from combined heat and power facilities, with emissions intensities that ranged from roughly 90 to 500 kg CO2e MWh?1. Roughly 40% of the total captured harvest residue was associated with regions that were predicted to have a negative cumulative mitigation potential in 2050 of ?152 Tg CO2e. We conclude that the capture of harvest residues to produce local bioenergy can reduce GHG emissions in populated regions where bioenergy, mainly from combined heat and power facilities, offsets fossil fuel sources (fuel oil, coal and petcoke, and natural gas).  相似文献   

2.
Forests and forest industries can contribute to climate change mitigation by sequestering carbon from the atmosphere, by storing it in biomass, and by fabricating products that substitute more greenhouse gas emission intensive materials and energy. The objectives of the study are to specify alternative scenarios for the diversification of wood product markets and to determine how an increasingly diversified market structure could impact the net carbon emissions (NCEs) of forestry in Finland. The NCEs of the Finnish forest sector were modelled for the period 2016–2056 by using a forest management simulation and optimization model for the standing forests and soil and separate models for product carbon storage and substitution impacts. The annual harvest was fixed at approximately 70 Mm3, which was close to the level of roundwood removals for industry and energy in 2016. The results show that the substitution benefits for a reference scenario with the 2016 market structure account for 9.6 Mt C (35.2 Mt CO2 equivalent [CO2 eq]) in 2056, which could be further increased by 7.1 Mt C (26 Mt CO2 eq) by altering the market structure. As a key outcome, increasing the use of by‐products for textiles and wood–plastic composites in place of kraft pulp and biofuel implies greater overall substitution credits compared to increasing the level of log harvest for construction.  相似文献   

3.
In the global transition to a sustainable low‐carbon economy, CO2 capture and storage technology still plays a critical role for deep emission reduction, particularly for the stationary sources in power generation and industry. However, for small and mobile emission sources in transportation, CO2 capture is not suitable and it is more practical to use relatively clean energy, such as natural gas. In these two low‐carbon energy technologies, designing highly selective sorbents is one of the key and most challenging steps. Toward this end, metal‐organic frameworks (MOFs) have received continuously intensive attention in the past decades for their highly porous and diversified structures. In this review, the recent progress in developing MOFs for selective CO2 capture from post‐combustion flue gas and CH4 storage for vehicle applications are summarized. For CO2 capture, several promising strategies being used to improve CO2 adsorption uptake at low pressures are highlighted and compared. In addition, the conventional and novel regeneration techniques for MOFs are also discussed. In the case of CH4 storage, the flexible and rigid MOFs, whose CH4 storage capacity is close to the target set by U.S. Department of Energy are particularly emphasized. Finally, the challenge of using MOFs for CH4 storage is discussed.  相似文献   

4.
This is the second part of a two‐article series examining California almond production. The part I article describes development of the analytical framework and life cycle–based model and presents typical energy use and greenhouse gas (GHG) emissions for California almonds. This part II article builds on this by exploring uncertainty in the life cycle model through sensitivity and scenario analysis, and by examining temporary carbon storage in the orchard. Sensitivity analysis shows life cycle GHG emissions are most affected by biomass fate and utilization, followed by nitrous oxide emissions rates from orchard soils. Model sensitivity for net energy consumption is highest for irrigation system parameters, followed by biomass fate and utilization. Scenario analysis shows utilization of orchard biomass for electricity production has the greatest potential effect, assuming displacement methods are used for co‐product allocation. Results of the scenario analysis show that 1 kilogram (kg) of almond kernel and associated co‐products are estimated to cause between ?3.12 to 2.67 kg carbon dioxide equivalent (CO2‐eq) emissions and consume between 27.6 to 52.5 megajoules (MJ) of energy. Co‐product displacement credits lead to avoided emissions of between ?1.33 to 2.45 kg CO2‐eq and between ?0.08 to 13.7 MJ of avoided energy use, leading to net results of ?1.39 to 3.99 kg CO2‐eq and 15.3 to 52.6 MJ per kg kernel (net results are calculated by subtracting co‐product credits from the results for almonds and co‐products). Temporary carbon storage in orchard biomass and soils is accounted for by using alternative global warming characterization factors and leads to a 14% to 18% reduction in CO2‐eq emissions. Future studies of orchards and other perennial cropping systems should likely consider temporary carbon storage.  相似文献   

5.
Increasing bioenergy production from forest harvest residues decreases litter input to the soil and can thus reduce the carbon stock and sink of forests. This effect may negate greenhouse gas savings obtained by using bioenergy. We used a spatially explicit modelling framework to assess the reduction in the forest litter and soil carbon stocks across Europe, assuming that a sustainable potential of bioenergy from forest harvest residues is taken into use. The forest harvest residue removal reduced the carbon stocks of litter and soil on average by 3% over the period from 2016 to 2100. The reduction was small compared to the size of the carbon stocks but significant in comparison to the amount of energy produced from the residues. As a result of these land-use-related emissions, bioenergy production from forest harvest residues would need to be continued for 60–80 years to achieve a 60% carbon dioxide (CO2) emission reduction in heat and power generation compared to the fossil fuels it replaces in most European countries. The emission reductions achieved and their timings varied among countries because of differences in the litter and soil carbon loss. Our results show that extending the current sustainability requirements for bioliquids and biofuels to solid bioenergy does not guarantee efficient reductions in greenhouse gas emissions in the short-term. In the longer-term, bioenergy from forest harvest residues may pave the way to low-emission energy systems.  相似文献   

6.
This first article of a two‐article series describes a framework and life cycle–based model for typical almond orchard production systems for California, where more than 80% of commercial almonds on the world market are produced. The comprehensive, multiyear, life cycle–based model includes orchard establishment and removal; field operations and inputs; emissions from orchard soils; and transport and utilization of co‐products. These processes are analyzed to yield a life cycle inventory of energy use, greenhouse gas (GHG) emissions, criteria air pollutants, and direct water use from field to factory gate. Results show that 1 kilogram (kg) of raw almonds and associated co‐products of hulls, shells, and woody biomass require 35 megajoules (MJ) of energy and result in 1.6 kg carbon dioxide equivalent (CO2‐eq) of GHG emissions. Nitrogen fertilizer and irrigation water are the dominant causes of both energy use and GHG emissions. Co‐product credits play an important role in estimating the life cycle environmental impacts attributable to almonds alone; using displacement methods results in net energy and emissions of 29 MJ and 0.9 kg CO2‐eq/kg. The largest sources of credits are from orchard biomass and shells used in electricity generation, which are modeled as displacing average California electricity. Using economic allocation methods produces significantly different results; 1 kg of almonds is responsible for 33 MJ of energy and 1.5 kg CO2‐eq emissions. Uncertainty analysis of important parameters and assumptions, as well as temporary carbon storage in orchard trees and soils, are explored in the second article of this two‐part article series.  相似文献   

7.
Use of biomass‐based electricity and hydrogen in alternative transport could provide environmentally sustainable transport options with possible improvements in greenhouse gas balance. We perform a life cycle assessment of electric vehicle (EV) and fuel cell vehicle (FCV) powered by bioelectricity and biohydrogen, respectively, derived from Norwegian boreal forest biomass, considering the nonclimate neutrality of biological carbon dioxide (CO2) emissions and alteration in surface albedo resulting from biomass harvesting—both with and without CO2 capture and storage (CCS)—while benchmarking these options against EVs powered by the average European electricity mix. Results show that with due consideration of the countering effects from global warming potential (GWP) factors for biogenic CO2 emissions and change in radiative forcing of the surface for the studied region, bioenergy‐based EVs and FCVs provide reductions of approximately 30%, as compared to the reference EV powered by the average European electricity mix. With CCS coupled to bioenergy production, the biomass‐based vehicle transport results in a net global warming impact reduction of approximately 110% to 120% (giving negative GWP and creating a climate‐cooling benefit from biomass use). Other environmental impacts vary from ?60% to +60%, with freshwater eutrophication showing maximum reductions (40% for the EV case and 60% for the FCV case) and photochemical oxidation showing a maximum increase (60% in the FCV value chain).  相似文献   

8.
杭州市公交车油改电项目碳排放效益核算   总被引:1,自引:0,他引:1  
应紫敏  吴旭  杨武 《生态学报》2018,38(18):6452-6464
以减少碳排放为核心的应对气候变化行动已成为全球趋势,中国政府积极践行减少碳排放的国际承诺,出台多项鼓励新能源的政策措施,其中包括对新能源产业的补偿以及将燃油汽车改装为电动汽车。但是这些政策的实施效果并不太清楚。举例来说,煤电为主的供电类型极大削弱了碳减排的效果,充电桩等配套基础设施建设和旧车报废等过程还会产生额外碳排放,不同城市之间的这些情况差别也较大。因此,城市层面生命周期尺度上的电动车碳减排效果尚未明确。基于生命周期理论,以杭州市为例,在构建公交车生命周期模型下分别核算纯电动和柴油车生命周期碳排放量,并在基准情景、低碳情景和强化低碳情景下进行公交车油改电碳排模拟。研究结果表明:(1)杭州市单辆纯电动和柴油公交车生命周期CO2排放量分别为1103.237t和1401.319t,减排比例达21.27%。其中,电力生产约占纯电动车生命周期碳排量74.10%,柴油生产与消耗约占柴油车生命周期碳排量86.96%;(2)目前杭州市在营运的2312辆纯电动公交车生命周期内(13年)碳减排总量约达到68.917万t,年均5.301万t;(3)在油改电过程中,纯电动公交车需运行约3.5年后才能相对柴油公交车真正起到碳减排效果;(4)在不同新煤电技术及能源结构优化下,2020、2035和2050年杭州市公交车油改电项目每辆车碳减排量将达到354.071—884.339t,年均27.236—68.026t,减排比例25.27%—63.11%,且2050年强化情景下纯公交车生命周期碳排量仅为当前纯电动公交车和柴油公交车的46.86%和36.89%,潜在碳减排效益显著。  相似文献   

9.

Background

If biofuels are to be a viable substitute for fossil fuels, it is essential that they retain their potential to mitigate climate change under future atmospheric conditions. Elevated atmospheric CO2 concentration [CO2] stimulates plant biomass production; however, the beneficial effects of increased production may be offset by higher energy costs in crop management.

Methodology/Main Findings

We maintained full size poplar short rotation coppice (SRC) systems under both current ambient and future elevated [CO2] (550 ppm) and estimated their net energy and greenhouse gas balance. We show that a poplar SRC system is energy efficient and produces more energy than required for coppice management. Even more, elevated [CO2] will increase the net energy production and greenhouse gas balance of a SRC system with 18%. Managing the trees in shorter rotation cycles (i.e., 2 year cycles instead of 3 year cycles) will further enhance the benefits from elevated [CO2] on both the net energy and greenhouse gas balance.

Conclusions/Significance

Adapting coppice management to the future atmospheric [CO2] is necessary to fully benefit from the climate mitigation potential of bio-energy systems. Further, a future increase in potential biomass production due to elevated [CO2] outweighs the increased production costs resulting in a northward extension of the area where SRC is greenhouse gas neutral. Currently, the main part of the European terrestrial carbon sink is found in forest biomass and attributed to harvesting less than the annual growth in wood. Because SRC is intensively managed, with a higher turnover in wood production than conventional forest, northward expansion of SRC is likely to erode the European terrestrial carbon sink.  相似文献   

10.
Energy derived from second generation perennial energy crops is projected to play an increasingly important role in the decarbonization of the energy sector. Such energy crops are expected to deliver net greenhouse gas emissions reductions through fossil fuel displacement and have potential for increasing soil carbon (C) storage. Despite this, few empirical studies have quantified the ecosystem‐level C balance of energy crops and the evidence base to inform energy policy remains limited. Here, the temporal dynamics and magnitude of net ecosystem carbon dioxide (CO2) exchange (NEE) were quantified at a mature short rotation coppice (SRC) willow plantation in Lincolnshire, United Kingdom, under commercial growing conditions. Eddy covariance flux observations of NEE were performed over a four‐year production cycle and combined with biomass yield data to estimate the net ecosystem carbon balance (NECB) of the SRC. The magnitude of annual NEE ranged from ?147 ± 70 to ?502 ± 84 g CO2‐C m?2 year?1 with the magnitude of annual CO2 capture increasing over the production cycle. Defoliation during an unexpected outbreak of willow leaf beetle impacted gross ecosystem production, ecosystem respiration, and net ecosystem exchange during the second growth season. The NECB was ?87 ± 303 g CO2‐C m?2 for the complete production cycle after accounting for C export at harvest (1,183 g C m?2), and was approximately CO2‐C neutral (?21 g CO2‐C m?2 year?1) when annualized. The results of this study are consistent with studies of soil organic C which have shown limited changes following conversion to SRC willow. In the context of global decarbonization, the study indicates that the primary benefit of SRC willow production at the site is through displacement of fossil fuel emissions.  相似文献   

11.
An end‐point life cycle impact assessment is used to evaluate the damages of electricity generation from fossil fuel‐based power plants with carbon dioxide capture and storage (CCS) technology. Pulverized coal (PC), integrated gasification combined cycle (IGCC), and natural gas combined cycle (NGCC) power plants are assessed for carbon dioxide (CO2) capture, pipeline transport, and storage in a geological formation. Results show that the CCS systems reduce the climate change‐related damages but increase the damages from toxicity, acidification, eutrophication, and resource consumption. Based on the currently available damage calculation methods, it is concluded that the benefit of reducing damage from climate change is larger than the increases in other damage categories, such as health effects from particulates or toxic chemicals. CCS significantly reduces the overall environmental damage, with a net reduction of 60% to 70% in human health damage and 65% to 75% in ecosystem damage. Most of the damage is due to fuel production and combustion processes. The energy and infrastructure demands of CCS cause increases in the depletion of natural resources by 33% for PC, 19% for IGCC, and 18% for NGCC power plants, mostly due to increased fossil fuel consumption.  相似文献   

12.
A carbon (C) balance indicator is presented for the evaluation of forest bioenergy scenarios as a means to reduce greenhouse gas (GHG) emissions. A bioenergy‐intensive scenario with a greater harvest is compared to a baseline scenario. The relative carbon indicator (RC) is defined as the ratio between the difference in terrestrial C stocks – that is the C debt – and the difference in cumulative bioenergy harvest between the scenarios, over a selected time frame T. A value of zero indicates no C debt from additional biomass harvests, while a value of one indicates a C debt equal to the amount of additionally harvested biomass C. Multiplying the RC indicator by the smokestack emission factor of biomass (approximately 110 t CO2/TJ) provides the net cumulative CO2 emission factor of the biomass combustion as a function of T, allowing a direct comparison with the emission factors of comparable fossil fuels. The indicator is applied to bioenergy cases in Finland, where typically the rotation length of managed forests is long and the decay rate of harvest residues is slow. The country‐level examples illustrate that although Finnish forests remain as a C sink in each of the considered scenarios, the efforts of increasing forest bioenergy may still increase the atmospheric CO2 concentrations in comparison with the baseline scenario and use of fossil fuels. The results also show that the net emission factor depends – besides on forest‐growth or residue‐decay dynamics – on the timing and evolution of harvests as well. Unlike for the constant fossil C emission factor, the temporal profile of bioenergy use is of great importance for the net emission factor of biomass.  相似文献   

13.
The study describes an integrated impact assessment tool for the net carbon dioxide (CO2) exchange in forest production. The components of the net carbon exchange include the uptake of carbon into biomass, the decomposition of litter and humus, emissions from forest management operations and carbon released from the combustion of biomass and degradation of wood‐based products. The tool enables the allocation of the total carbon emissions to the timber and energy biomass and to the energy produced on the basis of biomass. In example computations, ecosystem model simulations were utilized as an input to the tool. We present results for traditional timber production (pulpwood and saw logs) and integrated timber and bioenergy production (logging residues, stumps and roots) for Norway spruce, in boreal conditions in Finland, with two climate scenarios over one rotation period. The results showed that the magnitude of management related emissions on net carbon exchange was smaller when compared with the total ecosystem fluxes; decomposition being the largest emission contributor. In addition, the effects of management and climate were higher on the decomposition of new humus compared with old humus. The results also showed that probable increased biomass growth, obtained under the changing climate (CC), could not compensate for decomposition and biomass combustion related carbon loss in southern Finland. In our examples, the emissions allocated for the energy from biomass in southern Finland were 172 and 188 kg CO2 MW h?1 in the current climate and in a CC, respectively, and 199 and 157 kg CO2 MW h?1 in northern Finland. This study concludes that the tool is suitable for estimating the net carbon exchange of forest production. The tool also enables the allocation of direct and indirect carbon emissions, related to forest production over its life cycle, in different environmental conditions and for alternative time periods and land uses. Simulations of forest management regimes together with the CC give new insights into ecologically sustainable forest bioenergy and timber production, as well as climate change mitigation options in boreal forests.  相似文献   

14.
Traditionally, wood fuels, like other bioenergy sources, have been considered carbon neutral because the amount of CO2 released can be offset by CO2 sequestration due to the regrowth of the biomass. Thus, until recently, most studies assigned a global warming potential (GWP) of zero to CO2 generated by the combustion of biomass (biogenic CO2). Moreover, emissions of biogenic CO2 are usually not included in carbon tax and emissions trading schemes. However, there is now increasing awareness of the inadequacy of this way of treating bioenergy, especially bioenergy from boreal forests. Holtsmark (2014) recently quantified the GWP of biogenic CO2 from slow‐growing forests (GWPbio), finding it to be significantly higher than the GWP of fossil CO2 when a 100 year time horizon was applied. Hence, the climate impact seems to be even higher for the combustion of slow‐growing biomass than for the combustion of fossil carbon in a 100 year timeframe. The present study extends the analysis of Holtsmark (2014) in three ways. First, it includes the cooling effects of increased surface reflectivity after harvest (albedo). Second, it includes a comparison with the potential warming impact of fossil fuels, taking the CO2 emissions per unit of energy produced into account. Third, the study links the literature estimating GWPbio and the literature dealing with the carbon debt, and model simulations estimating the payback time of the carbon debt are presented. The conclusion is that, also after these extensions of the analysis, bioenergy from slow‐growing forests usually has a larger climate impact in a 100 year timeframe than fossil oil and gas. Whether bioenergy performs better or worse than coal depends on a number of conditions.  相似文献   

15.
Using a slightly modified IPCC method, we examined changes in annual fluxes of CO2 and contributions of energy consumption, limestone use, waste combustion, land-use change, and forest growth to the fluxes in South Korea from 1990 to 1997. Our method required less data and resulted in a larger estimate of CO2 released by industrial processes, comparing with the original IPCC guideline. However, net CO2 emission is not substantially different from the estimates of IPCC and modified methods. Net CO2 emission is intimately related to GDP as Korean economy has heavily relied on energy consumption and industrial activities, which are major sources of CO2. Total efflux of CO2 was estimated to be 63.6 Tg C/a in 1990 and amounted to 112.9 Tg C/a in 1997. Land-use change contributed to annual budget of CO2 in a relatively small portion. Carbon dioxide was sequestered by forest biomass at the rate of 6.5 Tg C/a in 1990 and 8.5 Tg C/a in 1997. Although CO2 storage in the forests increased, the sink effect was overwhelmed by extensive energy consumption, suggesting that energy-saving strategies will be more effective in reducing CO2 emission in Korea than any other practices. It is presumed that plant uptake of CO2 is underestimated as carbon contained in plant detritus and belowground living biomass were not fully considered. Furthermore, the soil organic carbon stored in forest decomposes in various ways in rugged mountains depending on their conditions, such as slope, aspect and elevation, which could have an effect on decomposition rate and carbon stores in soils. Thus, carbon sequestration of forests deserves further attention.  相似文献   

16.
As a controversial strategy to mitigate global warming, biochar application into soil highlights the need for life cycle assessment before large‐scale practice. This study focused on the effect of biochar on carbon footprint of rice production. A field experiment was performed with three treatments: no residue amendment (Control), 6 t ha?1 yr?1 corn straw (CS) amendment, and 2.4 t ha?1 yr?1 corn straw‐derived biochar amendment (CBC). Carbon footprint was calculated by considering carbon source processes (pyrolysis energy cost, fertilizer and pesticide input, farmwork, and soil greenhouse gas emissions) and carbon sink processes (soil carbon increment and energy offset from pyrolytic gas). On average over three consecutive rice‐growing cycles from year 2011 to 2013, the CS treatment had a much higher carbon intensity of rice (0.68 kg CO2‐C equivalent (CO2‐Ce) kg?1 grain) than that of Control (0.24 kg CO2‐Ckg?1 grain), resulting from large soil CH4 emissions. Biochar amendment significantly increased soil carbon pool and showed no significant effect on soil total N2O and CH4 emissions relative to Control; however, due to a variation in net electric energy input of biochar production based on different pyrolysis settings, carbon intensity of rice under CBC treatment ranged from 0.04 to 0.44 kg CO2‐Ckg?1 grain. The results indicated that biochar strategy had the potential to significantly reduce the carbon footprint of crop production, but the energy‐efficient pyrolysis technique does matter.  相似文献   

17.

Purpose

This study seeks to answer the question, “Will the Million Trees LA (Million Trees Los Angeles, MTLA) program be a carbon dioxide (CO2) sink or source?” Because there has never been a full accounting of CO2 emissions, it is unclear if urban tree planting initiatives (TPIs) are likely to be effective means for reaching local reduction targets.

Methods

Using surveys, interviews, field sampling, and computer simulation of tree growth and survival over a 40-year time period, we developed the first process-based life cycle inventory of CO2 for a large TPI. CO2 emissions and reductions from storage and avoided emissions from energy savings were simulated for 91,786 trees planted from 2006 to 2010, of which only 30,813 (33.6 %) were estimated to survive.

Results and discussion

The MTLA program was estimated to release 17,048 and 66,360 t of fossil and biogenic CO2 over the 40-year period, respectively. The total amount emitted (83,408 t) was slightly more than the ?77,942 t CO2 that trees were projected to store in their biomass. The MTLA program will be a CO2 sink if projected 40-year-avoided fossil fuel CO2 emissions from energy savings (?101,679 t) and biopower (?1,939 t) are realized. The largest sources of CO2 emissions were mulch decomposition (65.1 %), wood combustion (14.5 %), and irrigation water (9.7 %).

Conclusions

Although trees planted by the MTLA program are likely to be a net CO2 sink, there is ample opportunity to reduce emissions. Examples of these opportunities include selecting drought-tolerant trees and utilizing wood residue to generate electricity rather than producing mulch.  相似文献   

18.
Carbon dioxide emission from bamboo culms   总被引:1,自引:0,他引:1       下载免费PDF全文
Bamboos are one of the fastest growing plants on Earth, and are widely considered to have high ability to capture and sequester atmospheric carbon, and consequently to mitigate climate change. We tested this hypothesis by measuring carbon dioxide (CO2) emissions from bamboo culms and comparing them with their biomass sequestration potential. We analysed diurnal effluxes from Bambusa vulgaris culm surface and gas mixtures inside hollow sections of various bamboos using gas chromatography. Corresponding variations in gas pressure inside the bamboo section and culm surface temperature were measured. SEM micrographs of rhizome and bud portions of bamboo culms were also recorded. We found very high CO2 effluxes from culm surface, nodes and buds of bamboos. Positive gas pressure and very high concentrations of CO2 were observed inside hollow sections of bamboos. The CO2 effluxes observed from bamboos were very high compared to their carbon sequestration potential. Our measurements suggest that bamboos are net emitters of CO2 during their lifespan.  相似文献   

19.
顾佰和  谭显春  穆泽坤  曾元 《生态学报》2015,35(19):6405-6413
电力行业低碳转型是中国低碳经济转型进程中关键行业之一,如何科学分析电力行业的碳减排潜力,确定操作性强的低碳转型路线、提出有效的政策措施是中国政府亟待解决的焦点问题之一。考虑终端电力消费、低碳能源发电占比、火力发电结构、火力发电效率、线损率等因素,构建了自底向上的电力行业CO2排放核算模型,在此基础上,利用情景分析方法探索中国电力行业2015和2020年的CO2减排潜力,进一步利用对数平均权重分解法(LMDI,Logarithmic Mean weight Divisia Index method)对电力行业CO2减排影响因素的贡献度做了归因分析。结果显示,相比基准情景,在当前政策情景和低碳政策情景下,电力行业将分别带来27.0亿t和36.9亿t的CO2减排量。低碳能源发电和火力发电效率是未来对CO2减排最重要的两个贡献因素。终端电力消费量一直是促进电力行业CO2排放增长最重要的贡献因素,因此通过电力需求侧管理等手段控制电力消费量对电力行业的低碳发展至关重要。最后结合减排贡献因素分析的结果为中国电力行业低碳发展提出了相应的政策建议。  相似文献   

20.
A reduction in the length of the snow‐covered season in response to a warming of high‐latitude and high‐elevation ecosystems may increase soil carbon availability both through increased litter fall following longer growing seasons and by allowing early winter soil frosts that lyse plant and microbial cells. To evaluate how an increase in labile carbon during winter may affect ecosystem carbon balance we investigated the relationship between carbon availability and winter CO2 fluxes at several locations in the Colorado Rockies. Landscape‐scale surveys of winter CO2 fluxes from sites with different soil carbon content indicated that winter CO2 fluxes were positively related to carbon availability and experimental additions of glucose to soil confirmed that CO2 fluxes from snow‐covered soil at temperatures between 0 and ?3°C were carbon limited. Glucose added to snow‐covered soil increased CO2 fluxes by 52–160% relative to control sites within 24 h and remained 62–70% higher after 30 days. Concurrently a shift in the δ13C values of emitted CO2 toward the glucose value indicated preferential utilization of the added carbon confirming the presence of active heterotrophic respiration in soils at temperatures below 0°C. The sensitivity of these winter fluxes to substrate availability, coupled with predicted changes in winter snow cover, suggests that feedbacks between growing season carbon uptake and winter heterotrophic activity may have unforeseen consequences for carbon and nutrient cycling in northern forests. For example, published winter CO2 fluxes indicate that on average 50% of growing season carbon uptake currently is respired during the winter; changes in winter CO2 flux in response to climate change have the potential to reduce substantially the net carbon sink in these ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号