首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Evolutionary transitions between sex‐determining mechanisms (SDMs) are an enigma. Among vertebrates, individual sex (male or female) is primarily determined by either genes (genotypic sex determination, GSD) or embryonic incubation temperature (temperature‐dependent sex determination, TSD), and these mechanisms have undergone repeated evolutionary transitions. Despite this evolutionary lability, transitions from GSD (i.e. from male heterogamety, XX/XY, or female heterogamety, ZZ/ZW) to TSD are an evolutionary conundrum, as they appear to require crossing a fitness valley arising from the production of genotypes with reduced viability owing to being homogametic for degenerated sex chromosomes (YY or WW individuals). Moreover, it is unclear whether alternative (e.g. mixed) forms of sex determination can persist across evolutionary time. It has previously been suggested that transitions would be easy if temperature‐dependent sex reversal (e.g. XX male or XY female) was asymmetrical, occurring only in the homogametic sex. However, only recently has a mechanistic model of sex determination emerged that may allow such asymmetrical sex reversal. We demonstrate that selection for TSD in a realistic sex‐determining system can readily drive evolutionary transitions from GSD to TSD that do not require the production of YY or WW individuals. In XX/XY systems, sex reversal (female to male) occurs in a portion of the XX individuals only, leading to the loss of the Y allele (or chromosome) from the population as XX individuals mate with each other. The outcome is a population of XX individuals whose sex is determined by incubation temperature (TSD). Moreover, our model reveals a novel evolutionarily stable state representing a mixed‐mechanism system that has not been revealed by previous approaches. This study solves two long‐standing puzzles of the evolution of sex‐determining mechanisms by illuminating the evolutionary pathways and endpoints.  相似文献   

2.
Sex‐determining mechanisms are broadly categorised as being based on either genetic or environmental factors. Vertebrate sex determination exhibits remarkable diversity but displays distinct phylogenetic patterns. While all eutherian mammals possess XY male heterogamety and female heterogamety (ZW) is ubiquitous in birds, poikilothermic vertebrates (fish, amphibians and reptiles) exhibit multiple genetic sex‐determination (GSD) systems as well as environmental sex determination (ESD). Temperature is the factor controlling ESD in reptiles and temperature‐dependent sex determination (TSD) in reptiles has become a focal point in the study of this phenomenon. Current patterns of climate change may cause detrimental skews in the population sex ratios of reptiles exhibiting TSD. Understanding the patterns of variation, both within and among populations and linking such patterns with the selection processes they are associated with, is the central challenge of research aimed at predicting the capacity of populations to adapt to novel conditions. Here we present a conceptual model that innovates by defining an individual reaction norm for sex determination as a range of incubation temperatures. By deconstructing individual reaction norms for TSD and revealing their underlying interacting elements, we offer a conceptual solution that explains how variation among individual reaction norms can be inferred from the pattern of population reaction norms. The model also links environmental variation with the different patterns of TSD and describes the processes from which they may arise. Specific climate scenarios are singled out as eco‐evolutionary traps that may lead to demographic extinction or a transition to either male or female heterogametic GSD. We describe how the conceptual principles can be applied to interpret TSD data and to explain the adaptive capacity of TSD to climate change as well as its limits and the potential applications for conservation and management programs.  相似文献   

3.
Squamate reptiles possess two general modes of sex determination: (1) genotypic sex determination (GSD), where the sex of an individual is determined by sex chromosomes, i.e. by sex‐specific differences in genotype; and (2) temperature‐dependent sex determination (TSD), where sex chromosomes are absent and sex is determined by nongenetic factors. After gathering information about sex‐determining mechanisms for more than 400 species, we employed comparative phylogenetic analyses to reconstruct the evolution of sex determination in Squamata. Our results suggest relative uniformity in sex‐determining mechanisms in the majority of the squamate lineages. Well‐documented variability is found only in dragon lizards (Agamidae) and geckos (Gekkota). Polarity of the sex‐determining mechanisms in outgroups identified TSD as the ancestral mode for Squamata. After extensive review of the literature, we concluded that to date there is no known well‐documented transition from GSD to TSD in reptiles, although transitions in the opposite direction are plentiful and well corroborated by cytogenetic evidence. We postulate that the evolution of sex‐determining mechanisms in Squamata was probably restricted to the transitions from ancestral TSD to GSD. In other words, transitions were from the absence of sex chromosomes to the emergence of sex chromosomes, which have never disappeared and constitute an evolutionary trap. This evolutionary trap hypothesis could change the understanding of phylogenetic conservatism of sex‐determining systems in many large clades such as butterflies, snakes, birds, and mammals. © 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2009, 156 , 168–183.  相似文献   

4.
Amniote vertebrates, the group consisting of mammals and reptiles including birds, possess various mechanisms of sex determination. Under environmental sex determination (ESD), the sex of individuals depends on the environmental conditions occurring during their development and therefore there are no sexual differences present in their genotypes. Alternatively, through the mode of genotypic sex determination (GSD), sex is determined by a sex‐specific genotype, i.e. by the combination of sex chromosomes at various stages of differentiation at conception. As well as influencing sex determination, sex‐specific parts of genomes may, and often do, develop specific reproductive or ecological roles in their bearers. Accordingly, an individual with a mismatch between phenotypic (gonadal) and genotypic sex, for example an individual sex‐reversed by environmental effects, should have a lower fitness due to the lack of specialized, sex‐specific parts of their genome. In this case, evolutionary transitions from GSD to ESD should be less likely than transitions in the opposite direction. This prediction contrasts with the view that GSD was the ancestral sex‐determining mechanism for amniote vertebrates. Ancestral GSD would require several transitions from GSD to ESD associated with an independent dedifferentiation of sex chromosomes, at least in the ancestors of crocodiles, turtles, and lepidosaurs (tuataras and squamate reptiles). In this review, we argue that the alternative theory postulating ESD as ancestral in amniotes is more parsimonious and is largely concordant with the theoretical expectations and current knowledge of the phylogenetic distribution and homology of sex‐determining mechanisms.  相似文献   

5.
Temperature‐dependent sex determination (TSD) is the predominant form of environmental sex determination (ESD) in reptiles, but the adaptive significance of TSD in this group remains unclear. Additionally, the viability of species with TSD may be compromised as climate gets warmer. We simulated population responses in a turtle with TSD to increasing nest temperatures and compared the results to those of a virtual population with genotypic sex determination (GSD) and fixed sex ratios. Then, we assessed the effectiveness of TSD as a mechanism to maintain populations under climate change scenarios. TSD populations were more resilient to increased nest temperatures and mitigated the negative effects of high temperatures by increasing production of female offspring and therefore, future fecundity. That buffered the negative effect of temperature on the population growth. TSD provides an evolutionary advantage to sea turtles. However, this mechanism was only effective over a range of temperatures and will become inefficient as temperatures rise to levels projected by current climate change models. Projected global warming threatens survival of sea turtles, and the IPCC high gas concentration scenario may result in extirpation of the studied population in 50 years.  相似文献   

6.
The Atlantic silverside, Menidia menidia (Pisces: Atherinidae), exhibits an exceptionally high level of clinal variation in sex determination across its geographic range. Previous work suggested linear changes in the level of temperature‐dependent sex determination (TSD) with increasing latitude. Based on comparisons at 31 sites encompassing the entire species’ range, we find that the change in level of TSD with latitude is instead highly nonlinear. The level of TSD is uniformly high in the south (Florida to New Jersey), then declines rapidly into the northern Gulf of Maine where genotypic sex determination (GSD) predominates and then rebounds to moderate levels of TSD in the northern‐most populations of the Gulf of St. Lawrence. Major latitudinal breakpoints occur in central New Jersey (40oN) and the northern Gulf of Maine (44oN). No populations display pure TSD or GSD. Length of the growing season is the likely agent of selection driving variation in TSD with a threshold at 210 days. Because gene flow among populations is high, such distinct patterns of geographic variation in TSD/GSD are likely maintained by contemporary selection thereby demonstrating the adaptive fine tuning of sex determining mechanisms.  相似文献   

7.
Sex in many organisms is a dichotomous phenotype--individuals are either male or female. The molecular pathways underlying sex determination are governed by the genetic contribution of parents to the zygote, the environment in which the zygote develops or interaction of the two, depending on the species. Systems in which multiple interacting influences or a continuously varying influence (such as temperature) determines a dichotomous outcome have at least one threshold. We show that when sex is viewed as a threshold trait, evolution in that threshold can permit novel transitions between genotypic and temperature-dependent sex determination (TSD) and remarkably, between male (XX/XY) and female (ZZ/ZW) heterogamety. Transitions are possible without substantive genotypic innovation of novel sex-determining mutations or transpositions, so that the master sex gene and sex chromosome pair can be retained in ZW-XY transitions. We also show that evolution in the threshold can explain all observed patterns in vertebrate TSD, when coupled with evolution in embryonic survivorship limits.  相似文献   

8.
Sex is determined genetically in some species (genotypic sex determination, or GSD) and by the environment (environmental sex determination, or ESD) in others. The two systems are generally viewed as incompatible alternatives, but we have found that sex determination in a species of montane lizard ( Bassiana duperreyi , Scincidae) in south-eastern Australia is simultaneously affected by sex chromosomes and incubation temperatures, as well as being related to egg size. This species has strongly heteromorphic sex chromosomes, and yet incubation at thermal regimes characteristic of cool natural nests generates primarily male offspring. We infer that incubation temperatures can over-ride genetically determined sex in this species, providing a unique opportunity to explore these alternative sex-determining systems within a single population.  相似文献   

9.
At present, most turtles, all crocodilians, and several lizards are known to have temperature-dependent sex determination (TSD). Due to the dependence of sex determination on incubation temperature, the long-term survival of TSD species may be jeopardized by global climate changes. The current study was designed to assess the degree to which this concern is justified by examining nest-site selection in two species of Pattern II TSD geckos (Eublepharis macularius and Hemitheconyx caudicinctus) and comparing these preferences with those of a species with genotypic sex determination (GSD) (Coleonyx mitratus). Temperature preferences for nest sites were found to be both species-specific and female-specific. While H. caudicinctus females selected a mean nest-site temperature (32.4°) very close to the upper pivotal temperature (32°C) for the species, E. macularius females selected a mean nest-site temperature (28.7°C) well below this species' lower pivotal temperature (30.5°C). Thus, the resultant sex ratios are expected to differ between these two TSD species. Additionally, nest-site temperatures for the GSD species were significantly more variable (SE=+0.37) than were temperatures for either of the TSD species (E. macularius SE=±0.10; H. caudicinctus SE =+ 0.17), diereby further demonstrating temperature preferences within the TSD species.  相似文献   

10.
Sex determination and differentiation in reptiles is complex. Temperature-dependent sex determination (TSD), genetic sex determination (GSD) and the interaction of both environmental and genetic cues (sex reversal) can drive the development of sexual phenotypes. The jacky dragon (Amphibolurus muricatus) is an attractive model species for the study of gene–environment interactions because it displays a form of Type II TSD, where female-biased sex ratios are observed at extreme incubation temperatures and approximately 50 : 50 sex ratios occur at intermediate temperatures. This response to temperature has been proposed to occur due to underlying sex determining loci, the influence of which is overridden at extreme temperatures. Thus, sex reversal at extreme temperatures is predicted to produce the female-biased sex ratios observed in A. muricatus. The occurrence of ovotestes during development is a cellular marker of temperature sex reversal in a closely related species Pogona vitticeps. Here, we present the first developmental data for A. muricatus, and show that ovotestes occur at frequencies consistent with a mode of sex determination that is intermediate between GSD and TSD. This is the first evidence suggestive of underlying unidentified sex determining loci in a species that has long been used as a model for TSD.  相似文献   

11.
Several New World atheriniforms have been recognized as temperature‐dependent sex determined (TSD) and yet possess a genotypic sex determinant (amhy) which is primarily functional at mid‐range temperatures. In contrast, little is known about the sex determination in Old World atheriniforms, even though such knowledge is crucial to understand the evolution of sex determination mechanisms in fishes and to model the effects of global warming and climate change on their populations. This study examined the effects of water temperature on sex determination of an Old World atheriniform, the cobaltcap silverside Hypoatherina tsurugae, in which we recently described an amhy homologue. We first assessed the occurrence of phenotypic/genotypic sex mismatches in wild specimens from Tokyo Bay for three years (2014–2016) and used otolith analysis to estimate their birth dates and approximate thermal history during the presumptive period of sex determination. Phenotypic sex ratios became progressively biased towards males (47.3%–78.2%) during the period and were associated with year‐to‐year increases in the frequency of XX‐males (7.3%–52.0%) and decreases in XY/YY‐females (14.5%–0%). The breeding season had similar length but was delayed by about 1 month per year between 2014 and 2016, causing larvae to experience higher temperatures during the period of sex determination from year to year. Larval rearing experiments confirmed increased likelihood of feminization and masculinization at low and high temperatures, respectively. The results suggest that cobaltcap silverside has TSD, or more specifically the coexistence of genotypic and environmental sex determinants, and that it affects sex ratios in wild populations.  相似文献   

12.
The evolution of sex determination remains one of the most fascinating enigmas in biology. Transitions between genotypic sex determination (GSD) and temperature‐dependent sex determination (TSD) have occurred multiple times during vertebrate evolution, however, the molecular basis and consequences of these transitions in closely related taxa remain unresolved. Here I address a critical question: Do species with GSD derived from ancestors possessing TSD retain any ancestral thermal sensitivity in the developmental pathways underlying gonadal differentiation? Results from an expression study of a gene involved in early gonadogenesis in GSD (Apalone mutica) and TSD (Chrysemys picta) turtles, support the hypothesis that Wt1 in A. mutica displays such a relic thermal sensitivity. This retention is likely enabled by Sf1, a gene immediately downstream from Wt1 whose expression is independent of temperature in this species. My results constitute the first empirical evidence of a GSD vertebrate exhibiting thermal sensitivity in the expression of a gene regulating gonadogenesis. This novel finding reveals an undocumented source of raw material for future evolutionary change that may exist in other GSD taxa, and one that enhances the evolutionary potential of the gene networks underlying sexual differentiation and contributes to the astonishing ability of sex‐determining mechanisms.  相似文献   

13.
It has been suggested that climate change at the Cretaceous-Palaeogene (K-Pg) boundary, initiated by a bolide impact or volcanic eruptions, caused species with temperature-dependent sex determination (TSD), including dinosaurs, to go extinct because of a skewed sex ratio towards all males. To test this hypothesis, the sex-determining mechanisms (SDMs) of Cretaceous tetrapods of the Hell Creek Formation (Montana, USA) were inferred using parsimony optimizations of SDMs on a tree, including Hell Creek species and their extant relatives. Although the SDMs of non-avian dinosaurs could not be inferred, we were able to determine the SDMs of 62 species; 46 had genotypic sex determination (GSD) and 16 had TSD. The TSD hypothesis for extinctions performed poorly, predicting between 32 and 34 per cent of survivals and extinctions. Most surprisingly, of the 16 species with TSD, 14 of them survived into the Early Palaeocene. In contrast, 61 per cent of species with GSD went extinct. Possible explanations include minimal climate change at the K-Pg, or if climate change did occur, TSD species that survived had egg-laying behaviour that prevented the skewing of sex ratios, or had a sex ratio skewed towards female rather than male preponderance. Application of molecular clocks may allow the SDMs of non-avian dinosaurs to be inferred, which would be an important test of the pattern discovered here.  相似文献   

14.
For many species of reptile, crucial demographic parameters such as embryonic survival and individual sex (male or female) depend on ambient temperature during incubation. While much has been made of the role of climate on offspring sex ratios in species with temperature‐dependent sex determination (TSD), the impact of variable sex ratio on populations is likely to depend on how limiting male numbers are to female fecundity in female‐biased populations, and whether a climatic effect on embryonic survival overwhelms or interacts with sex ratio. To examine the sensitivity of populations to these interacting factors, we developed a generalized model to explore the effects of embryonic survival, hatchling sex ratio, and the interaction between these, on population size and persistence while varying the levels of male limitation. Populations with TSD reached a greater maximum number of females compared to populations with GSD, although this was often associated with a narrower range of persistence. When survival depended on temperature, TSD populations persisted over a greater range of temperatures than GSD populations. This benefit of TSD was greatly reduced by even modest male limitation, indicating very strong importance of this largely unmeasured biologic factor. Finally, when males were not limiting, a steep relationship between sex ratio and temperature favoured population persistence across a wider range of climates compared to the shallower relationships. The opposite was true when males were limiting – shallow relationships between sex ratio and temperature allowed greater persistence. The results highlight that, if we are to predict the response of populations with TSD to climate change, it is imperative to 1) accurately quantify the extent to which male abundance limits female fecundity, and 2) measure how sex ratios and peak survival coincide over climate.  相似文献   

15.
The great diversity of sex determination mechanisms in animals and plants ranges from genetic sex determination (GSD, e.g. mammals, birds, and most dioecious plants) to environmental sex determination (ESD, e.g. many reptiles) and includes a mixture of both, for example when an individual’s genetically determined sex is environmentally reversed during ontogeny (ESR, environmental sex reversal, e.g. many fish and amphibia). ESD and ESR can lead to widely varying and unstable population sex ratios. Populations exposed to conditions such as endocrine‐active substances or temperature shifts may decline over time due to skewed sex ratios, a scenario that may become increasingly relevant with greater anthropogenic interference on watercourses. Continuous exposure of populations to factors causing ESR could lead to the extinction of genetic sex factors and may render a population dependent on the environmental factors that induce the sex change. However, ESR also presents opportunities for population management, especially if the Y or W chromosome is not, or not severely, degenerated. This seems to be the case in many amphibians and fish. Population growth or decline in such species can potentially be controlled through the introduction of so‐called Trojan sex genes carriers, individuals that possess sex chromosomes or genes opposite from what their phenotype predicts. Here, we review the conditions for ESR, its prevalence in natural populations, the resulting physiological and reproductive consequences, and how these may become instrumental for population management.  相似文献   

16.
Sexual reproduction is one of the most taxonomically conserved traits, yet sex‐determining mechanisms (SDMs) are quite diverse. For instance, there are numerous forms of environmental sex determination (ESD), in which an organism’s sex is determined not by genotype, but by environmental factors during development. Important questions remain regarding transitions between SDMs, in part because the organisms exhibiting unique mechanisms often make difficult study organisms. One potential solution is to utilize mutant strains in model organisms better suited to answering these questions. We have characterized two such strains of the model nematode Caenorhabditis elegans. These strains harbour temperature‐sensitive mutations in key sex‐determining genes. We show that they display a sex ratio reaction norm in response to rearing temperature similar to other organisms with ESD. Next, we show that these mutations also cause deleterious pleiotropic effects on overall fitness. Finally, we show that these mutations are fundamentally different at the genetic sequence level. These strains will be a useful complement to naturally occurring taxa with ESD in future research examining the molecular basis of and the selective forces driving evolutionary transitions between sex determination mechanisms.  相似文献   

17.
18.
Theory suggests that genetic conflicts drive turnovers between sex‐determining mechanisms, yet these studies only apply to cases where sex allocation is independent of environment or condition. Here, we model parent–offspring conflict in the presence of condition‐dependent sex allocation, where the environment has sex‐specific fitness consequences. Additionally, one sex is assumed to be more costly to produce than the other, which leads offspring to favor a sex ratio less biased toward the cheaper sex in comparison to the sex ratio favored by mothers. The scope for parent–offspring conflict depends on the relative frequency of both environments: when one environment is less common than the other, parent–offspring conflict can be reduced or even entirely absent, despite a biased population sex ratio. The model shows that conflict‐driven invasions of condition‐independent sex factors (e.g., sex chromosomes) result either in the loss of condition‐dependent sex allocation, or, interestingly, lead to stable mixtures of condition‐dependent and condition‐independent sex factors. The latter outcome corresponds to empirical observations in which sex chromosomes are present in organisms with environment‐dependent sex determination. Finally, conflict can also favor errors in environmental perception, potentially resulting in the loss of condition‐dependent sex allocation without genetic changes to sex‐determining loci.  相似文献   

19.
T Rhen  A Schroeder  J T Sakata  V Huang  D Crews 《Heredity》2011,106(4):649-660
Temperature-dependent sex determination (TSD) was first reported in 1966 in an African lizard. It has since been shown that TSD occurs in some fish, several lizards, tuataras, numerous turtles and all crocodilians. Extreme temperatures can also cause sex reversal in several amphibians and lizards with genotypic sex determination. Research in TSD species indicates that estrogen signaling is important for ovary development and that orthologs of mammalian genes have a function in gonad differentiation. Nevertheless, the mechanism that actually transduces temperature into a biological signal for ovary versus testis development is not known in any species. Classical genetics could be used to identify the loci underlying TSD, but only if there is segregating variation for TSD. Here, we use the ‘animal model'' to analyze inheritance of sexual phenotype in a 13-generation pedigree of captive leopard geckos, Eublepharis macularius, a TSD reptile. We directly show genetic variance and genotype-by-temperature interactions for sex determination. Additive genetic variation was significant at a temperature that produces a female-biased sex ratio (30 °C), but not at a temperature that produces a male-biased sex ratio (32.5 °C). Conversely, dominance variance was significant at the male-biased temperature (32.5 °C), but not at the female-biased temperature (30 °C). Non-genetic maternal effects on sex determination were negligible in comparison with additive genetic variance, dominance variance and the primary effect of temperature. These data show for the first time that there is segregating variation for TSD in a reptile and consequently that a quantitative trait locus analysis would be practicable for identifying the genes underlying TSD.  相似文献   

20.
Sex‐biased genes—genes that are differentially expressed within males and females—are nonrandomly distributed across animal genomes, with sex chromosomes and autosomes often carrying markedly different concentrations of male‐ and female‐biased genes. These linkage patterns are often gene‐ and lineage‐dependent, differing between functional genetic categories and between species. Although sex‐specific selection is often hypothesized to shape the evolution of sex‐linked and autosomal gene content, population genetics theory has yet to account for many of the gene‐ and lineage‐specific idiosyncrasies emerging from the empirical literature. With the goal of improving the connection between evolutionary theory and a rapidly growing body of genome‐wide empirical studies, we extend previous population genetics theory of sex‐specific selection by developing and analyzing a biologically informed model that incorporates sex linkage, pleiotropy, recombination, and epistasis, factors that are likely to vary between genes and between species. Our results demonstrate that sex‐specific selection and sex‐specific recombination rates can generate, and are compatible with, the gene‐ and species‐specific linkage patterns reported in the genomics literature. The theory suggests that sexual selection may strongly influence the architectures of animal genomes, as well as the chromosomal distribution of fixed substitutions underlying sexually dimorphic traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号