首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The dinoflagellate Alexandrium tamarense (Lebour) Balech 1985 is responsible for recurrent outbreaks of paralytic shellfish poisoning in the St. Lawrence Estuary. In July 1998, an A. tamarense red tide developed in the estuary with maximum cell concentrations reaching 2.3 × 106 cells·L?1 in brackish surface waters. To estimate the growth rate of these cells, surface water samples from different locations and days during the bloom were incubated for 5 to 9 days under in situ temperature and light conditions. Growth rates varied both spatially and temporally between 0 and 0.55 day?1, reaching the maximum growth rate reported for this species in culture. High growth rates were measured even during the peak of the red tide, suggesting that the extremely high cell concentrations observed did not solely result from aggregation or physical concentration but also involved active cellular growth. Alexandrium tamarense cells were found over a large range of salinity (20.8–29.5 psu), but high densities and significant growth were only measured when salinity was lower than 24.5 psu. Under these conditions, the number of divisions achieved by A. tamarense was proportional to the amount of nitrate available at the beginning of the incubations, whereas variations in growth rate were apparently controlled by the availability of phosphate. We hypothesize that the ability of A. tamarense to perform vertical migrations and acquire nitrate at night pushes this species toward phosphate limitation in the St. Lawrence Estuary.  相似文献   

2.
The reuse of wastewater is important for reducing costs involved with algal lipid production. However, nutrient limitations, wastewater‐borne microbes, and mixotrophic growth can significantly affect biomass yields and lipid/biomass ratios. This research compared the growth performances of both Chlorella vulgaris and Pseudokirchneriella subcapitata on domestic wastewater effluent. The experiments were conducted in the presence and absence of wastewater‐borne bacteria, while additionally assessing the impact of distinct nitrate and glucose supplementations. When compared to the sterilized controls, the presence of wastewater‐borne bacteria in the effluent reduced C. vulgaris and P. subcapitata total biomass production by 37% and 46%, respectively. In the corresponding treatments supplemented with glucose and nitrate, total biomass production increased by 12% and 61%, respectively. The highest biomass production of 1.11 and 0.72 g · L?1 was, however, observed in the sterilized treatments with both glucose and nitrate supplementations for C. vulgaris and P. subcapitata, respectively. Lipid to biomass ratios were, on average, threefold higher when only nitrate was introduced in the sterilized treatments for both species (0.4 and 0.5, respectively). Therefore, the combination of nitrate and glucose supplementation is shown to be an important strategy for enhancing algal lipid and biomass production when those algae are grown in the presence of wastewater‐borne bacteria. On the other hand, in the absence of wastewater‐borne bacteria, only nitrate supplementation can significantly improve lipid/biomass ratios.  相似文献   

3.
To investigate harmful effects of the dinoflagellate Alexandrium species on microzooplankton, the rotifer Brachionus plicatilis was chosen as an assay species, and tested with 10 strains of Alexandrium including one known non-PSP-producer (Alexandrium tamarense, AT-6). HPLC analysis confirmed the PSP-content of the various strains: Alexandrium lusitanicum, Alexandrium minutum and Alexandrium tamarense (ATHK, AT5-1, AT5-3, ATCI02, ATCI03) used in the experiment were PSP-producers. No PSP toxins were detected in the strains Alexandrium sp1, Alexandrium sp2.Exposing rotifer populations to the densities of 2000 cells ml−1 of each of these 10 Alexandrium strains revealed that the (non-PSP) A. tamarense (AT-6) and two other PSP-producing algae: A. lusitanicum, A. minutum, did not appear to adversely impact rotifer populations. Rotifers exposed to these three strains were able to maintain their population numbers, and in some cases, increase them. Although some increases in rotifer population growth following exposures to these three algal species were noted, the rate was less than for the non-exposed control rotifer groups.In contrast, the remaining seven algal strains (A. tamarense ATHK, AT5-1, AT5-3, ATCI02, ATCI03; also Alexandrium sp1 and Alexandrium sp2) all have adverse effects on the rotifers. Dosing rotifers with respective algal cell densities of 2000 cells ml−1 each, for Alexandrium sp1, Alexandrium sp2, and A. tamarense strains ATHK and ATCI03 showed mean lethal time (LT50) on rotifer populations of 21, 28, 29, and 36h, respectively. The remaining three species (A. tamarense strains AT5-1, AT5-3, ATCI02) caused respective mean rotifer LT50s of 56, 56, and 71 h, compared to 160 h for the unexposed “starved control” rotifers. Experiments to determine ingestion rates for the rotifers, based on changes in their Chlorophyll a content, showed that the rotifers could feed on A. lusitanicum, A. minutum and A. tamarense strain AT-6, but could graze to little or no extent upon algal cells of the other seven strains. The effects on rotifers exposed to different cell densities, fractions, and growth phases of A. tamarense algal culture were respectively compared. It was found that only the whole algal cells had lethal effects, with strongest impact being shown by the early exponential growth phase of A. tamarense. The results indicate that some toxic mechanism(s), other than PSP and present in whole algal cells, might be responsible for the adverse effects on the exposed rotifers.  相似文献   

4.
Despite their potential impact on phytoplankton dynamics and biogeochemical cycles, biological associations between algae and bacteria are still poorly understood. The aim of the present work was to characterize the influence of bacteria on the growth and function of the dinoflagellate Alexandrium tamarense. Axenic microalgal cultures were inoculated with a microbial community and the resulting cultures were monitored over a 15-month period, in order to allow for the establishment of specific algal–bacterial associations. Algal cells maintained in these new mixed cultures first experienced a period of growth inhibition. After several months, algal growth and cell volume increased, and indicators of photosynthetic function also improved. Our results suggest that community assembly processes facilitated the development of mutualistic relationships between A. tamarense cells and bacteria. These interactions had beneficial effects on the alga that may be only partly explained by mixotrophy of A. tamarense cells. The potential role of organic exudates in the establishment of these algal–bacterial associations is discussed. The present results do not support a role for algal–bacterial interactions in dinoflagellate toxin synthesis. However, variations observed in the toxin profile of A. tamarense cells during culture experiments give new clues for the understanding of biosynthetic pathways of saxitoxin, a potent phycotoxin.  相似文献   

5.
Experiments were carried out to investigate interspecific interactions between the rotifer Brachionus plicatilis and two harmful algal bloom (HAB) species using single and mixed culture methods. B. plicatilis populations and the growth of two algae were compared at different algal cell densities. The results demonstrate that B. plicatilis obtained sufficient nutrition from Alexandrium tamarense to support net population increase. When exposed to a density of 8 × 104 cells ml−1 A. tamarense, the number of B. plicatilis increased faster than it did when exposed to other four algal densities (16 × 104, 24 × 104, 32 × 104, and 40 × 104 cells ml−1). Cell densities of A. tamarense decreased due to the grazing of B. plicatilis. In contrast, Heterosigma akashiwo had an adverse effect on the B. plicatilis population and its growth was largely unaffected by rotifer grazing. In this case, the B. plicatilis population decreased and H. akashiwo grew at a rate similar to that of a control without addition of rotifers. Mixed culture experiments showed that A. tamarense could partly counteract the effect of H. akashiwo in limiting the rate of population increase of rotifer. In addition, the effect of different initial cell densities on interspecific competition between A. tamarense and H. akashiwo in mixed culture(s) was also investigated. The results show that A. tamarense competed very successfully when the inoculation proportions of A. tamarense and H. akashiwo were 40:5 and 40:30. Handling editor: D. Hamilton  相似文献   

6.
As part of efforts to enhance the strategies employed to manage and mitigate algal blooms and their adverse effects, algicidal bacteria have shown promise as potential suppressors of these events. Nine strains of bacteria algicidal against the toxic dinoflagellate, Alexandrium tamarense, were isolated from the East Sea area, China. Sequence analysis of 16S rDNA showed that all the algicidal bacteria belonged to the γ-proteobacteria subclass and the genera Pseudoalteromonas (strain SP31 and SP44), Alteromonas (strain DH12 and DH46), Idiomarina (strain SP96), Vibrio (strain DH47 and DH51) and Halomonas (strain DH74 and DH77). To assess the algicidal mode of these algicidal bacteria, bacterial cells and the filtrate from bacterial cultures were inoculated into A. tamarense cultures, and fluorescein diacetate vital stain was applied to monitor the growth of the algal cells. The results showed that all the algicidal bacteria exhibited algicidal activity through an indirect attack since algicidal activity was only detected in cell free supernatants but not the bacterial cells. This is the first report of bacteria from the genus Idiomarina showing algicidal activity to the toxic dinoflagellate A. tamarense and these findings would increase our knowledge of bacterial–algal interactions and the role of bacteria during the population dynamics of HABs.  相似文献   

7.
The aim of the present study is to test the role of intracellular nitrite in external nitrite suppressing algal growth. We examined the growth of Microcystis aeruginosa at different nitrite levels under high nitrate conditions and without nitrate conditions. There were higher intracellular nitrite and lower Pmchla, Rd chla, αchl, maximum cell density and specific growth rate in high nitrate group than nitrate absence group at 5 mg NO2?‐N L?1. At 10 and 15 mg NO2?‐N L?1, Pmchla, Rd chla, αchl, maximum cell densities and specific growth rates in the high nitrate group became higher than those of the nitrate absence group, while a lower intracellular nitrite in the high nitrate group than nitrate absence group was observed. In addition, the intracellular nitrite and the growth of M. aeruginosa in the high nitrate group did not change from 5 to 10 mg NO2?‐N L?1. In the nitrite uptake experiment, with nitrite concentration increasing from 5 to 15 mg NO2?‐N L?1, maximum nitrite uptake rate of alga increased, and half‐saturation constant of alga decreased. These results indicate that external nitrite inhibited algal growth through stimulating intracellular nitrite rise, which resulted from overexpression of nitrite transporter.  相似文献   

8.
Growing algae to scrub nutrients from manure presents an alternative to the current practice of land application and provides utilizable algal biomass as an end product. The objective of this study was to assess algal growth, nutrient removal, and nitrification using higher light intensities and manure loading rates than in the previous experiments. Algal turfs, with periphyton mainly composed of green algal species, were grown under two light regimes (270 and 390 μmol photons·m?2· s?1) and anaerobically digested flushed dairy manure wastewater (ADFDMW) loading rates ranging from 0.8 to 3.7 g total N and 0.12 to 0.58 g total P·m?2·d?1. Filamentous cyanobacteria (Oscillatoria spp.) and diatoms (Navicula, Nitzschia, and Cyclotella sp.) partially replaced the filamentous green algae at relatively high ADFDMW loading rates and more prominently under low incident light. Mean algal production increased with loading rate and irradiance from 7.6±2.71 to 19.1±2.73 g dry weight· m?2·d?1. The N and P content of algal biomass generally increased with loading rate and ranged from 2.9%–7.3% and 0.5%–1.3% (by weight), respectively. Carbon content remained relatively constant at all loading rates (42%–47%). The maximum removal rates of N and P per unit algal biomass were 70 and 13 mg·g?1 dry weight·m?2·d?1, respectively. Recovery of nutrients in harvested algal biomass accounted for about 31%–52% for N and 30%–59% for P. Recovery of P appeared to be uncoupled with N at higher loading rates, suggesting that algal potential for accumulation of P may have already been saturated. It appears that higher irradiance level enhancing algal growth was the overriding factor in controlling nitrification in the algal turf scrubber units.  相似文献   

9.
The composition of algal species and pigments and the structural and functional characteristics of the algal community were investigated in an acid stream of southwestern Spain, the Río Tinto. The algal community had low diversity and showed few seasonal differences. It was mainly made up of Klebsormidium flaccidum Kütz. (Silva, Mattox & Blackwell) that produced long greenish or purplish filaments, Pinnularia acoricola Hust. (producing brown patches) and Euglena mutabilis Schmitz. The algal filaments made up a consistent biofilm that also included fungal hyphae, iron bacterial sheaths, diatoms, and mineral particles. HPLC analyses on Río Tinto samples showed that undegraded chl accounted for 67% of the total chl in the filamentous patches but were a minority in the brown patch (2.6%). The brown patch had a concentration of carotenoids eight times lower than that observed in the green patch. When chl concentrations were weighted for the proportion of the different patches on the streambed, undegraded chl a accounted for 89.2 mg chl a·m ? 2 of stream surface area (5.4 g C·m ? 2). This high algal biomass was supported by relatively high nutrient concentrations and by a high phosphatase activity (Vmax = 137.7 nmol methylumbelliferyl substrate·cm ? 2·h ? 1 1 Received 15 July 2002. Accepted 17 February 2003. , Km = 0.0045 μM). The remarkable algal biomass in Río Tinto potentially contributed to the bacterial–fungal community and to the macroinvertebrate community and emphasizes the role that the algae may have in the organic matter cycling and energy flow in extreme systems dominated by heterotrophic microorganisms.  相似文献   

10.
The effects of the triazine herbicide, simazine, on photosynthetic oxygen evolution and growth rate in photoacclimated populations of Anabaena circinalis Rabenhorst were investigated. Chemostat populations were acclimated to photon flux densities (PFDs) of 50, 130, and 230 μmol·m?2·s?1 of photosynthetic active radiation (PAR), Decreases in chlorophyll a (Chl a). c-phycocyanin (CPC), and total carotenoid (TCar) contents and CPC: Chl a and CPC: TCar ratios of populations coincided with increasing PFD, Polynomial regression models that characterize inhibition of photosynthesis for populations acclimated to 50 and 130 μmol photons·m?2·s?1 PAR were distinct from the model for populations acclimated to 230 μmol photons·m?2·s?1 PAR. Simazine concentrations that, depressed oxygen evolution 50% compared to controls decreased with increasing PFD. Increases and decreases in both biomass and growth rate coincided with increasing PFD and simazine concentration, respectively. Simazine concentrations that depressed growth rate 50% compared to controls increased with decreasing PFD. The differences in photosynthetic and growth inhibition among photoacclimated populations indicate that sensitivity to photosystem II inhibitors is affected by alterations in pigment contents.  相似文献   

11.
The growth and photosynthesis of Alexandrium tamarense (Lebour) Balech in different nutrient conditions were investigated. Low nitrate level (0.0882 mmol/L) resulted in the highest average growth rate from day 0 to day 10 (4.58 × 102 cells mL?1 d?1), but the lowest cell yield (5420 cells mL?1) in three nitrate level cultures. High nitrate‐grown cells showed lower levels of chlorophyll a‐specific and cell‐specific light‐saturated photosynthetic rate (Pmchl a and Pmcell), dark respiration rate (Rdchla and Rdcell) and chlorophyll a‐specific apparent photosynthetic efficiency (αchla) than was seen for low nitrate‐grown cells; whereas the cells became light saturated at higher irradiance at low nitrate condition. When cultures at low nitrate were supplemented with nitrate at 0.7938 mmol/L in late exponential growth phase, or with nitrate at 0.7938 mmol/L and phosphate at 0.072 mmol/L in stationary growth phase, the cell yield was drastically enhanced, a 7–9 times increase compared with non‐supplemented control culture, achieving 43 540 cells mL?1 and 52 300 cells mL?1, respectively; however, supplementation with nitrate in the stationary growth phase or with nitrate and phosphate in the late exponential growth phase increased the cell yield by no more than 2 times. The results suggested that continuous low level of nitrate with sufficient supply of phosphate may facilitate the growth of A. tamarense.  相似文献   

12.
Aims: This study aimed to evaluate the effect of lead (Pb) on growth of bacterial species related to dental diseases in vitro. Methods and Results: The effects of lead acetate on representative species of the oral flora were examined at 0·1–10 mmol l?1 and compared with the effect of silver nitrate and ferrous sulfate. The minimal inhibitory concentration of lead acetate was between 0·15 and 5 mmol l?1 for the bacterial strains tested. The minimal bactericidal concentration of lead acetate for most oral species was detected in the range of 5–10 mmol l?1. Silver nitrate at a concentration of 1·25 mmol l?1 was sufficient to exhibit antibacterial activity against almost all bacteria tested. Ferrous sulfate had the lowest effect. Conclusions: The study indicated a general antimicrobial effect of lead on oral bacterial species in the range of 0·15–10 mmol l?1. The toxicity of silver nitrate was the highest, whereas that of ferrous sulfate was the lowest. Gram‐positive species had a tendency to be less susceptible for metals than Gram‐negatives. Significance and Impact of the Study: The study shows that it is possible that microbiological changes may occur in the dental plaque in children because of toxic exposure of environmental lead.  相似文献   

13.
Reflectance and vertical attenuation coefficient spectra from 400 to 1100 nm were investigated in detail on dense algal cultures of Spirulina in order to create algorithms for remote estimation of pigment and biomass concentration. Reflectance and the vertical attenuation coefficients were compared with biomass and pigment concentration in outdoor algal cultures. For assessing biomass concentration, the sum of reflectance above the base line from 670 to 950 nm was used. This allows the estimation of biomass with an error of less than 0.06 g·L?1 For chlorophyll a and phycocyanin estimation, vertical attenuation coefficients at the wavelengths 440 nm (or 676 nm) and 624 nm, respectively, were employed. The developed algorithms were tested by using independent data sets in the range of chlorophyll a from 0.2 to 20mg·L?1 and biomass from 0.15 to 1.1 g·L?1. An error of pigment estimation of less than 0.80 mg·L?1 was achieved. The potential use of the algorithms in algal biotechnology is further discussed.  相似文献   

14.
Fu  Lijun  An  Xinli  Li  Dong  Zhou  Lijian  Tian  Yun  Zheng  Tianling 《World journal of microbiology & biotechnology》2011,27(12):2949-2956
The bacterium BS02 which is closely related to the genus Vibrio sp. and capable of inhibiting the toxic dinoflagellate Alexandrium tamarense was isolated from a mangrove area in Zhangjiangkou, Fujian Province, China. The bacterium was not species-specific since it displayed varying degrees of lysing activities against eight of the eighteen algae tested. There was a close interaction between initial bacterial and A. tamarense cell densities, indicating that algal growth was prompted at low bacterial concentrations, while the number of the alga cells was reduced at high concentrations. Alga-lysing characterization of Vibrio sp. BS02 suggested that the alga-lysing substance was extracellularly produced, less than 500 in molecular weight, as well as non proteinaceous, stable under wide range of temperature and pH conditions, UV radiation, repeated freezing and thawing and heavy metal treatments. These findings suggested that BS02 could play an important role in controlling harmful algal blooms.  相似文献   

15.
Interactions with the bacterial community are increasingly considered to have a significant influence on marine phytoplankton populations. Here we used a simplified dinoflagellate‐bacterium experimental culture model to conclusively demonstrate that the toxic dinoflagellate Gymnodinium catenatum H. W. Graham requires growth‐stimulatory marine bacteria for postgermination survival and growth, from the point of resting cyst germination through to vegetative growth at bloom concentrations (103 cells · mL?1). Cysts of G. catenatum were germinated and grown in unibacterial coculture with antibiotic‐resistant or antibiotic‐sensitive Marinobacter sp. DG879 or Brachybacterium sp., and with mixtures of these two bacteria. Addition of antibiotics to cultures grown with antibiotic‐sensitive strains of bacteria resulted in death of the dinoflagellate culture, whereas cultures grown with antibiotic‐resistant bacteria survived antibiotic addition and continued to grow beyond the 21 d experiment. Removal of either bacterial type from mixed‐bacterial dinoflagellate cultures (using an antibiotic) resulted in cessation of dinoflagellate growth until bacterial concentration recovered to preaddition concentrations, suggesting that the bacterial growth factors are used for dinoflagellate growth or are labile. Examination of published reports of axenic dinoflagellate culture indicate that a requirement for bacteria is not universal among dinoflagellates, but rather that species may vary in their relative reliance on, and relationship with, the bacterial community. The experimental model approach described here solves a number of inherent and logical problems plaguing studies of algal‐bacterium interactions and provides a flexible and tractable tool that can be extended to examine bacterial interactions with other phytoplankton species.  相似文献   

16.
Previous studies have shown major differences in the way biomass of stream periphyton is controlled by spatial variations in velocity. We hypothesize that these differences may be the result of different growth forms within the community. Some dense and coherent growth forms (e.g. mucilaginous diatom/cyanobacterial mats) may be resistant to diffusion and also resistant to dislodgment by shear stress. Higher velocities applied to such communities could therefore be expected to enhance biomass accrual by increasing rates of mass transfer, but without greatly increasing losses through sloughing. Conversely, other growth forms (e.g. long filamentous green algae) have an open matrix, and high rates of diffusion into the mats can potentially occur even at low velocity. However, as velocities increase, high skin friction and form drag should lead to higher rates of sloughing. The overall result of these processes should be that maximum biomass occurs at low velocities. This “subsidy-stress” hypothesis was tested twice with each of three different periphytal growth forms: a coherent, mucilaginous, diatom community; a moderately coherent, stalked/ short, filamentous diatom community; and an open-weave, long, filamentous green algal community. A monotonic increase in chl a biomass occurred as a function of near-bed velocities for the first of the two mucilaginous diatom communities investigated. No biomass-velocity relationship was found, however, with the second mucilaginous community, probably because the waters were highly enriched and mass transfer driven by molecular diffusion was probably high throughout the velocity gradient. Biomass was moderate at low velocities, peaked at near-bed velocities from 0.18 to 0.2 m·s?1 (~0.40–0.45 m·s?1 mean column velocity), and then decreased at higher velocities in both of the stalked/ short filament communities of diatoms analyzed. With the long filamentous green algal communities, a monotonic reduction in biomass occurred as a function of increases in velocity. Proliferations greater than 100 mg·m?2 chl a occurred at low near-bed velocities (i.e. <0.2 m·s?1), after which biomass declined nearly exponentially as a function of increasing velocity to less than 10 mg·m?2 chl a at velocities greater than 0.4 m·s?1. These biomass-velocity trends support our hypothesis that community growth form determines periphytal responses to spatial variations in velocity within stream reaches.  相似文献   

17.
Alexandrium catenella (Whedon et Kofoid) Balech was isolated from Thau lagoon (northern Mediterranean) and its growth and uptake characteristics measured for nitrate, ammonium, and urea. Although affinity constants did not indicate a preference for ammonium over nitrate, there was a strong inhibition of nitrate uptake by ammonium when both nitrogen (N) sources were present. Nitrogen budgets during growth in cultures revealed major imbalances between decreases in dissolved N and increases in particulate N, indicating excretion of dissolved organic N during the early part of the growth phase and uptake during the later part. A quasi‐unialgal bloom in November 2001 (4×106 cells·L?1) allowed measurements of uptake of nitrate, nitrite, ammonium, and urea; net and gross growth rate of A. catenella; and grazing rates on this organism. The affinity constants indicate that it is not a strong competitor for the N nutrients tested when these are in low concentrations (<10 μgat N·L?1), compared with other members of the phytoplankton community. Indirect evidence from cultures indicate that dissolved organic N compounds could be important in triggering those blooms. Finally, the strongly unbalanced growth observed in the field indicates that A. catenella exhibits a storage rather than a growth response to a nutrient pulse and is adapted to low frequency events such as the passage of frontal disturbances. The disappearance of A. catenella was due to grazing that balanced growth at the peak of the bloom.  相似文献   

18.
Bacteria were counted with acridine orange epifluorescence technique in two humic lakes during 3 years. Less than 1% of the cells were found attached to detritus aggregates. 73% of the total number and 48% of the total volume were smaller than 1 µm. The mean cell volume ranged from 0.10 to 0.35 µm3 with the highest cell volumes occurring during early summer contemporarily with the growth of the bacterial biomass and probably indicating favourable growth conditions. The mean density of bacteria in oligotrophic brown-water lakes is higher than in oligotrophic clear-water lakes. The development of bacterial biomass showed a regular and seasonally dependent pattern with maxima during early summer and autumn. The importance of different factors for the regulation of bacterial biomass is discussed. Three different approaches were used to estimate bacterial production. These resulted in an average production rate of 15–60 µg C · l?1 · d?1 during the growing season. It was concluded that allochthonous sources comprised a significant part of the energy supply to the bacteria in the two humic lakes.  相似文献   

19.
Aims: Algae are favourable as a biofuel source because of the potential high oil content and fast generation of biomass. However, one of the challenges for this technology is achieving high oil content while maintaining exponential or high growth of the organism. Introducing a two‐stage reactor to optimize both growth and oil content of the algae could be a solution to this hurdle. The aim of this study was to determine the reactor design parameters of the first‐stage reactor, which would optimize growth of two algal strains, Oocystis sp. and Amphora sp. Methods and Results: Growth kinetics were monitored by in vivo fluorescence and correlated to dry mass for both cultures under several environmental conditions during exponential growth. Temperatures of 25 and 30°C and light intensities of 150 and 80 μmol m?2 s?1 provided the most robust growth for Oocystis sp. and Amphora sp., respectively. Both strains showed optimized growth at a light : dark cycle of 16 : 08. At these conditions, the doubling rate for Oocystis sp. was 0·333 d?1 and for Amphora sp. was 0·179 d?1. Conclusions: For both cultures, growth rate was more dependent on light : dark cycle and temperature than light intensity. Both strains grew slower in this work than data reported in the literature, however agitation and air/CO2 sparging were not incorporated in the system under study. The highest doubling rate for Amphora sp. was observed near the maximum tolerable temperature, and it is suggested to grow this strain at 30°C for a consistent high growth rate. Significance and Impact of Study: Optimized growth conditions were determined for two lipid producing strains identified in the Aquatic Species Program summary report. An optimized, first‐stage growth reactor operating at these conditions would thus offer the maximum productivity for an algal biomass feed stream into a lipid‐optimized second‐stage reactor.  相似文献   

20.
The growth characteristics of an algo-bacterial community (Chlamydomonas reinhardtii and bacterial satellites) were studied, as well as the mechanism and patterns of bacterial effect on algae. Four strains of predominant bacteria were isolated and partially characterized. They were assigned to the following taxa: Rhodococcus terrea, Micrococcus roseus, and Bacillus spp. A pure culture of the alga under study was obtained by plating serial dilutions on agarized media. Within the algo-bacterial association, the alga had a higher growth rate (0.76 day?1) and yield (60 μg chlorophyll/ml culture) than in pure cultures (0.4 day?1 and 10 μg chlorophyll/ml culture, respectively). The viability of the algal cells within the association was retained longer than in pure culture. Among the isolated bacterial satellites, strains B1 and Y1, assigned to the species Rhodococcus terrae, had the highest stimulatory effect on algal growth. The culture liquid of bacteria incubated under the conditions not permitting growth stimulated algal growth; the culture liquid of actively growing bacteria had an opposite effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号