首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The Canary archipelago, located on the northwestern Atlantic coast of Africa, is comprised of seven islands aligned from east to west, plus seven minor islets. All the islands were formed by volcanic eruptions and their geological history is well documented providing a historical framework to study colonization events. The Canary Island pine (Pinus canariensis C. Sm.), nowadays restricted to the westernmost Canary Islands (Gran Canaria, Tenerife, La Gomera, La Palma and El Hierro), is considered an old (Lower Cretaceous) relic from an ancient Mediterranean evolutionary centre. Twenty seven chloroplast haplotypes were found in Canary Island pine but only one of them was common to all populations. The distribution of haplotypic variation in P. canariensis suggested the colonization of western Canary Islands from a single continental source located close to the Mediterranean Basin. Present-day populations of Canary Island pine retain levels of genetic diversity equivalent to those found in Mediterranean continental pine species, Pinus pinaster and Pinus halepensis. A hierarchical analysis of variance (AMOVA) showed high differentiation among populations within islands (approximately 19%) but no differentiation among islands. Simple differentiation models such as isolation by distance or stepping-stone colonization from older to younger islands were rejected based on product-moment correlations between pairwise genetic distances and both geographic distances and population-age divergences. However, the distribution of cpSSR diversity within the islands of Tenerife and Gran Canaria pointed towards the importance of the role played by regional Pliocene and Quaternary volcanic activity and long-distance gene flow in shaping the population genetic structure of the Canary Island pine. Therefore, conservation strategies at the population level are strongly recommended for this species.Communicated by D.B. NealeA. Gómez and S.C. González-Martínez as joint authors  相似文献   

2.
Quaternary climatic oscillations have been considered decisive in shaping much of the phylogeographic structure around the Mediterranean Basin. Within this paradigm, peripheral islands are usually considered as the endpoints of the colonization processes. Here, we use nuclear and mitochondrial markers to investigate the phylogeography of the blue tit complex (blue tit Cyanistes caeruleus, Canary blue tit C. teneriffae and azure tit C. cyanus), and assess the role of the Canary Islands for the geographic structuring of genetic variation. The Canary blue tit exhibits strong genetic differentiation within the Canary Islands and, in combination with other related continental species, provides an ideal model in which to examine recent differentiation within a closely related group of continental and oceanic island avian species. We analysed DNA sequences from 51 breeding populations and more than 400 individuals in the blue tit complex. Discrepancies in the nuclear and mitochondrial gene trees provided evidence of a complex evolutionary process around the Mediterranean Basin. Coalescent analyses revealed gene flow between C. caeruleus and C. teneriffae suggesting a dynamic process with multiple phases of colonization and geographic overlapping ranges. Microsatellite data indicated strong genetic differentiation among the Canary Islands and between the Canary archipelago and the close continental areas, indicating limited contemporary gene flow. Diversification of the blue tit complex is estimated to have started during the early Pliocene (≈ 5 Ma), coincident with the end of Messinian salinity crisis. Phylogenetic analyses indicated that the North African blue tit is derived from the Canary blue tits, a pattern is avian 'back colonization' that contrasts with more traditionally held views of islands being sinks rather than sources.  相似文献   

3.
We examine surname distribution, origin, and association with Y-chromosome haplogroups in native communities from the Aleutian archipelago. The underlying hypothesis is that surnames and Y-chromosome haplogroups should be associated because both are paternally inherited markers. We used Lasker's coefficient of relationship through isonymy (R(ib) ) to identify the distribution of 143 surnames in the Aleutian Islands. The geographic distribution of surnames was explored both through frequency distribution and through the use of Mantel tests. Multidimensional scaling, chi-square, and Mantel tests were used to examine the relationship between surname and Y-chromosome markers. Overall, we observed that the distribution of surnames in the Aleutian archipelago is culturally driven rather than being one of paternal inheritance. Surnames follow a gradient from east to west, with high frequencies of Russian surnames found in western Aleut communities and high levels of non-Russian surnames found in eastern Aleut communities. A nonsignificant correlation (r = -0.0132; P = 0.436) was found between distance matrices based on haplogroups of the nonrecombining portion of the Y chromosome and surnames, although an association was found between non-Russian surnames and the predominantly non-Russian haplogroups (R1b, I1a, and I).  相似文献   

4.
Isolated oceanic archipelagos are excellent model systems to study speciation, biogeography, and evolutionary factors underlying the generation of biological diversity. Despite the wealth of studies documenting insular speciation, few of them focused on marine organisms. Here, we reconstruct phylogenetic relationships among species of the marine venomous gastropod genus Conus from the Cape Verde archipelago. This small island chain located in the Central Atlantic hosts 10% of the worldwide species diversity of Conus. Analyses were based on mtDNA sequences, and a novel nuclear marker, a megalin-like protein, member of the low-density lipoprotein receptor gene family. The inferred phylogeny recovered two well-defined clades within Conus. One includes Cape Verde endemic species with larger shells, known as the "venulatus" complex together with C. pulcher from the Canary Islands. The other is composed of Cape Verde endemic and West Africa and Canary Island "small" shelled species. In both clades, nonendemic Conus were resolved as sister groups of the Cape Verde endemics, respectively. Our results indicate that the ancestors of "small" and "large" shelled lineages independently colonized Cape Verde. The resulting biogeographical pattern shows the grouping of most Cape Verde endemics in monophyletic island assemblages. Statistical tests supported a recent radiation event within the "small shell" clade. Using a molecular clock, we estimated that the colonization of the islands by the "small" shelled species occurred relatively close to the origin of the islands whereas the arrival of "large" shelled Conus is more recent. Our results suggest that the main factor responsible for species diversity in the archipelago may be allopatric speciation promoted by the reduced dispersal capacity of nonplanktonic lecithotrophic larvae.  相似文献   

5.
Aim To explore the determinants of island occupancy of 48 terrestrial bird species in an oceanic archipelago, accounting for ecological components while controlling for phylogenetic effects. Location The seven main islands of the Canary archipelago. Methods We obtained field data on population density, habitat breadth and landscape distribution in Tenerife, Fuerteventura and La Palma, aiming to sample all available habitats and the gradient of altitudes. In total, 1715 line transects of 0.5 km were carried out during the breeding season. We also reviewed the literature for data on occupancy, the distance between the Canary Islands and the nearest distribution border on the mainland, body size and endemicity of the 48 terrestrial bird species studied. Phylogenetic eigenvector regression was used to quantify (and to control for) the amount of phylogenetic signal. Results The two measurements of occupancy (number of occupied islands or 10 × 10 km UTM squares) were tightly correlated and produced very similar results. The occupancy of the terrestrial birds of the Canary Islands during the breeding season had a very low phylogenetic effect. Species with broader habitat breadth, stronger preferences for urban environments, smaller body size, and a lower degree of endemicity had a broader geographical distribution in the archipelago, occupying a larger number of islands and 10 × 10 UTM squares. Main conclusions The habitat‐generalist species with a tolerance for novel urban environments tend to be present on more islands and to occupy a greater area, whereas large‐sized species that are genetically differentiated within the islands are less widespread. Therefore, some properties of the ranges of these species are explicable from basic biological features. A positive relationship of range size with local abundance, previously shown in continental studies, was not found, probably because it relies on free dispersal on continuous landmasses, which may not be applicable on oceanic islands.  相似文献   

6.
Geographical isolation and polyploidization are central concepts in plant evolution. The hierarchical organization of archipelagos in this study provides a framework for testing the evolutionary consequences for polyploid taxa and populations occurring in isolation. Using amplified fragment length polymorphism and simple sequence repeat markers, we determined the genetic diversity and differentiation patterns at three levels of geographical isolation in Olea europaea : mainland-archipelagos, islands within an archipelago, and populations within an island. At the subspecies scale, the hexaploid ssp. maroccana (southwest Morocco) exhibited higher genetic diversity than the insular counterparts. In contrast, the tetraploid ssp. cerasiformis (Madeira) displayed values similar to those obtained for the diploid ssp. guanchica (Canary Islands). Geographical isolation was associated with a high genetic differentiation at this scale. In the Canarian archipelago, the stepping-stone model of differentiation suggested in a previous study was partially supported. Within the western lineage, an east-to-west differentiation pattern was confirmed. Conversely, the easternmost populations were more related to the mainland ssp. europaea than to the western guanchica lineage. Genetic diversity across the Canarian archipelago was significantly correlated with the date of the last volcanic activity in the area/island where each population occurs. At the island scale, this pattern was not confirmed in older islands (Tenerife and Madeira), where populations were genetically homogeneous. In contrast, founder effects resulted in low genetic diversity and marked genetic differentiation among populations of the youngest island, La Palma.  相似文献   

7.
Carine & Schaefer (Journal of Biogeography, 2010, 37 , 77–89) suggest that the lack of past climate oscillations in the Azores may have contributed to the low plant endemism in this archipelago compared to that of the Canary Islands, a pattern they term the Azorean diversity enigma. Here we challenge their hypothesis, and discuss how the particular characteristics of the Azores may have driven current diversification patterns in this archipelago. We argue that the restricted number of Azorean endemic species and their wide distribution is explicable by the geological, geographical and ecological attributes of the archipelago. That is, the Azores are too young, too small, and too environmentally homogeneous to have hosted many in situ diversification events, so they do not host as many endemic species as other Macaronesian archipelagos, such as Madeira and especially the Canary Islands.  相似文献   

8.
The Azores archipelago (Portugal) is formed by nine islands whose relative positions define them as three geographical groups: Eastern (S. Miguel and Sta. Maria), Central (Terceira, Faial, Pico, Graciosa and S. Jorge) and Western (Flores and Corvo). Using the father's surname of 187,398 individuals living on the nine Azorean Islands, a population analysis based on inter-island relationship and hierarchical organization was conducted. The relation between islands was investigated using summary statistics, analysis of molecular variance (AMOVA) as well as graphical methods. When the values of heteronymy were contrasted with values of gene diversity based on haplogroup frequencies of the Y chromosome, it was possible to verify that Graciosa and Sta. Maria appeared to have the least diverse populations, and that Flores, despite its smaller population size and geographical isolation, has considerably higher levels of diversity. As for inter-island relationships, the difficulty of directly interpreting summary statistics values was evidenced. The AMOVA revealed that only 0.77% of the variation in surnames can be attributed to among-island variation, a value that, although small, can be considered significant. Application of Malécot's model revealed that geographic distance has an important impact in the genetic structure of the archipelago. Monmonier's maximum-difference algorithm demonstrated that the most isolated island of the archipelago appears to be Graciosa, followed by the islands of the Western group and by Sta. Maria. After integrating values of summary statistics with results from AMOVA and graphical methods, a more accurate genetic profile of the Azores, highly supported by genetic data, has emerged.  相似文献   

9.
Aim To identify the biogeographical factors underlying spider species richness in the Macaronesian region and assess the importance of species extinctions in shaping the current diversity. Location The European archipelagos of Macaronesia with an emphasis on the Azores and Canary Islands. Methods Seven variables were tested as predictors of single‐island endemics (SIE), archipelago endemics and indigenous spider species richness in the Azores, Canary Islands and Macaronesia as a whole: island area; geological age; maximum elevation; distance from mainland; distance from the closest island; distance from an older island; and natural forest area remaining per island – a measure of deforestation (the latter only in the Azores). Different mathematical formulations of the general dynamic model of oceanic island biogeography (GDM) were also tested. Results Island area and the proportion of remaining natural forest were the best predictors of species richness in the Azores. In the Canary Islands, area alone did not explain the richness of spiders. However, a hump‐shaped relationship between richness and time was apparent in these islands. The island richness in Macaronesia was correlated with island area, geological age, maximum elevation and distance to mainland. Main conclusions In Macaronesia as a whole, area, island age, the large distance that separates the Azores from the mainland, and the recent disappearance of native habitats with subsequent unrecorded extinctions seem to be the most probable explanations for the current observed richness. In the Canary Islands, the GDM model is strongly supported by many genera that radiated early, reached a peak at intermediate island ages, and have gone extinct on older, eroded islands. In the Azores, the unrecorded extinctions of many species in the oldest, most disturbed islands seem to be one of the main drivers of the current richness patterns. Spiders, the most important terrestrial predators on these islands, may be acting as early indicators for the future disappearance of other insular taxa.  相似文献   

10.

Background

Population genetic theory holds that oceanic island populations are expected to have lower levels of genetic variation than their mainland counterparts, due to founder effect after island colonization from the continent. Cistus monspeliensis (Cistaceae) is distributed in both the Canary Islands and the Mediterranean region. Numerous phylogenetic results obtained in the last years allow performing further phylogeographic analyses in Cistus.

Methodology/Principal Findings

We analyzed sequences from multiple plastid DNA regions in 47 populations of Cistus monspeliensis from the Canary Islands (21 populations) and the Mediterranean basin (26 populations). The time-calibrated phylogeny and phylogeographic analyses yielded the following results: (1) a single, ancestral haplotype is distributed across the Mediterranean, whereas 10 haplotypes in the Canary Islands; (2) four haplotype lineages are present in the Canarian Islands; (3) multiple colonization events across the archipelago are inferred; (4) the earliest split of intraspecific lineages occurred in the Early to Middle Pleistocene (<930,000 years BP).

Conclusions/Significance

The contrasting pattern of cpDNA variation is best explained by genetic bottlenecks in the Mediterranean during Quaternary glaciations, while the Canarian archipelago acted as a refugium of high levels of genetic diversity. Active colonization across the Canarian islands is supported not only by the distribution of C. monspeliensis in five of the seven islands, but also by our phylogeographic reconstruction in which unrelated haplotypes are present on the same island. Widespread distribution of thermophilous habitats on every island, as those found throughout the Mediterranean, has likely been responsible for the successful colonization of C. monspeliensis, despite the absence of a long-distance dispersal mechanism. This is the first example of a plant species with higher genetic variation among oceanic island populations than among those of the continent.  相似文献   

11.
The Stone-curlew Burhinus oedicnemus, a steppe bird species, is mainly distributed in the Mediterranean and Macaronesian regions, which are considered hotspots of biodiversity with priority for animal and plant species richness conservation. In this study, we investigated the genetic diversity of the Stone-curlew in the Mediterranean basin and in the Canary Islands by applying a multilocus approach. We analysed mitochondrial and nuclear markers in order to evaluate the genetic structure and the congruence between morphological subspecies and geographic samples. We found a significant level of genetic differentiation between Mediterranean and Canary Island populations with all markers. Both in the Mediterranean basin and in the Canary Islands, we found a significant level of genetic diversity with nuclear markers only. We identified seven population groups, including insular populations. The four subspecies described for the Western Palaearctic were confirmed with some changes in distribution range. In spite of habitat fragmentation and negative population trend, the Stone-curlew showed a significant level of genetic diversity and gene flow among continental populations. However, islands constitute important reservoirs of genetic diversity and a potential for the evolution of the species.  相似文献   

12.
Aim  The aim of this paper is to investigate the causes of the current restricted distribution of a narrow-range endemic bird species, the Canary Islands stonechat, Saxicola dacotiae .
Location  Eastern islands of the Canary Islands archipelago.
Methods  We compared climatic patterns (temperature and rainfall), habitat and microhabitat structure, food availability during a full annual cycle, and the abundance of native avian competitors and predators inside and outside the species' range. Three study areas, located in similar habitats on nearby islands, were studied: northern Fuerteventura, close to the northern border of the species' range; southern Lanzarote, 22 km from the nearest site occupied by stonechats; and the Lobos islet, 10 km from the nearest occupied site and 2 km from the coast of Fuerteventura.
Results  The cover of suitable habitats (slopes with high cover of large shrubs, stony fields and ravines) and microhabitats (shrubs and boulders) and the abundance of arthropods during the breeding period of Canary Islands stonechats were lower outside than inside the species' range. Temperature, rainfall and the abundance of competitors and predators inside and outside the species' range did not differ significantly.
Main conclusions  Ecological requirements explaining the distribution of the Canary Islands stonechat within its range seem to be the main factor hindering its settlement on nearby islands. Geological and palaeoclimatic processes, as well as past and current human impact, could also have constrained the distribution of this narrow-range endemic bird species.  相似文献   

13.
The Hawaiian archipelago is often cited as the premier setting to study biological diversification, yet the evolution and phylogeography of much of its biota remain poorly understood. We investigated crab spiders (Thomisidae, Mecaphesa ) that demonstrate contradictory tendencies: (i) dramatic ecological diversity within the Hawaiian Islands, and (ii) accompanying widespread distribution of many species across the archipelago. We used mitochondrial and nuclear genetic data sampled across six islands to generate phylogenetic hypotheses for Mecaphesa species and populations, and included penalized likelihood molecular clock analyses to estimate arrival times on the different islands. We found that 17 of 18 Hawaiian Mecaphesa species were monophyletic and most closely related to thomisids from the Marquesas and Society Islands. Our results indicate that the Hawaiian species evolved from either one or two colonization events to the archipelago. Estimated divergence dates suggested that thomisids may have colonized the Hawaiian Islands as early as ~10 million years ago, but biogeographic analyses implied that the initial diversification of this group was restricted to the younger island of Oahu, followed by back-colonizations to older islands. Within the Hawaiian radiation, our data revealed several well-supported genetically distinct terminal clades corresponding to species previously delimited by morphological taxonomy. Many of these species are codistributed across multiple Hawaiian Islands and some exhibit genetic structure consistent with stepwise colonization of islands following their formation. These results indicate that dispersal has been sufficiently limited to allow extensive ecological diversification, yet frequent enough that interisland migration is more common than speciation.  相似文献   

14.
Analysis of biogeographic affinities is a key tool to establish and improve the resolution of hierarchical biogeographic systems. We describe patterns of species richness of the marine macroalgal flora across Lusitanian Macaronesia (Azores, Madeira, the Salvage Islands and the Canary Islands), and test (i) whether such differences are related to differences in proximity to the nearest continental shore and size among islands. We also explore biogeographic affinities in the composition of macroalgal assemblages (= presence/absence of each taxon in multivariate datasets) to determine (ii) whether each archipelago is a biogeographic unit within this ecoregion and (iii) whether patterns in assemblage composition are related to proximity (i.e. distances) among islands. Presence/absence matrices were created to test and visualize multivariate affinities among archipelagos. A total of 872 taxa were compiled. Species richness peaked at the Canary Islands and decreased towards the Azores; the pattern matched a progressive increase in distance from the nearest continental shores, matching the classical island biogeography theory. Intra-archipelago differences in species richness were largely related to variations in island size. Biogeographic similarities among archipelagos were hierarchically structured. Madeira and the Salvage Islands constituted one biogeographic unit. Floras from the Azores, Madeira and the Salvage Islands were barely separable from each other, but were different from those at the Canary Islands. Such biogeographic similarities among islands were negatively correlated with the geographical separation (i.e. distances) among them. Proximity to nearby continental shores, in conjunction with large- and meso-scale oceanographic patterns, seems to interact to create patterns in richness and composition of algal assemblages across Lusitanian Macaronesia.  相似文献   

15.
Oceanic islands emerge lifeless from the seafloor and are separated from continents by long stretches of sea. Consequently, all their species had to overcome this stringent dispersal filter, making these islands ideal systems to study the biogeographic implications of long‐distance dispersal (LDD). It has long been established that the capacity of plants to reach new islands is determined by specific traits of their diaspores, historically called dispersal syndromes. However, recent work has questioned to what extent such dispersal‐related traits effectively influence plant distribution between islands. Here we evaluated whether plants bearing dispersal syndromes related to LDD – i.e. anemochorous (structures that favour wind dispersal), thalassochorous (sea dispersal), endozoochorous (internal animal dispersal) and epizoochorous (external animal dispersal) syndromes – occupy a greater number of islands than those with unspecialized diaspores by virtue of their increased dispersal ability. We focused on the native flora of the lowland xeric communities of the Canary Islands (531 species) and on the archipelago distribution of the species. We controlled for several key factors likely to affect the role of LDD syndromes in inter‐island colonization, namely: island geodynamic history, colonization time and phylogenetic relationships among species. Our results clearly show that species bearing LDD syndromes have a wider distribution than species with unspecialized diaspores. In particular, species with endozoochorous, epizoochorous and thalassochorous diaspore traits have significantly wider distributions across the Canary archipelago than species with unspecialized and anemochorous diaspores. All these findings offer strong support for a greater importance of LDD syndromes on shaping inter‐island plant distribution in the Canary Islands than in some other archipelagos, such as Galápagos and Azores.  相似文献   

16.
One island group suggested to be an exception to the species–area Relationship is the Vanuatu Archipelago, a group of 13 large and 80 small islands in the southwest Pacific Ocean. To test the hypothesis that the lizard fauna of the Vanuatu Archipelago does not meet the predictions of the species-area relationship, and thus is depauperate, we compare diversity among several island groups in the southwest Pacific: Fiji, the Loyalty Islands, New Caledonia, Samoa, the Solomon Islands, Tonga, and Vanuatu. We found that the lizard diversity of Vanuatu meets the pattern of diversity predicted by the species-area relationship. The Solomon Islands, the largest and least isolated oceanic archipelago considered, has the greatest species diversity and endemism of the oceanic islands. Inclusion or exclusion of island groups based on factors such as geologic history or faunal source affects the strength of the relationship between diversity, area, and history of emergence, and influences perceptions of diversity within individual archipelagos. In addition to island size, factors such evolutionary time scale, speciation, and archipelago complexity influence species richness on islands.  相似文献   

17.
The darkling beetle Pimelia rugulosa rugulosa Germar, 1824 was selected to investigate the process of colonization in a volcanic archipelago and the role of volcanism in determining spatial patterns of genetic variability. Analyses were conducted in the Aeolian Islands, located in the central Mediterranean directly off the Sicilian coast. Genetic variability and geographic structure were studied in individuals from each island of the archipelago based on sequences of the cytochrome c oxidase subunit 2 mitochondrial gene; a network approach was employed to identify haplotype lineages. A strong genetic structure, with no haplotype sharing among islands, was observed. Six separate lineages were identified that independently colonized different islands of the archipelago from the mainland and differentiated locally to form small haplogroups. Variability of observed haplogroups is correlated with island age and a positive correlation between tenebrionid diversity and mitotype diversity is reported. Some, yet undescribed, catastrophic event is hypothesized to explain the depletion of a substantial part of the genetic, as well as biological diversity in the island of Filicudi. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 29–37.  相似文献   

18.
Aim The aim of this paper is to identify the patterns in the morphological differentiation in Canary Island mice, based on fossil and modern samples. In order to achieve this, the mouse species present on the archipelago were first compared with a set of continental mice. The differences between the continental and Canary Island samples, and among the Canary Island samples, provide insights into the processes of colonization and the subsequent insular evolution. Location Canary archipelago. Methods An outline analysis based on Fourier transformation was used to quantify shape differences between lower molars. Together with the fossil and modern Canary Island samples, a reference set of genotyped continental populations of the commensal Mus musculus and the wild Mus spretus was used for comparison. Results The morphometric analysis showed that all the mouse specimens from the Canary Islands and Cape Verde belonged to Mus musculus domesticus. Lower molars of extant mice from La Gomera, El Hierro, Gran Canaria, Tenerife, and to a lesser degree from Lanzarote, were similar to those of genotyped M. m. domesticus from the continent, while teeth of extant mice from Fuerteventura were more divergent. Fossil mice from Fuerteventura were very similar to the extant representatives on this island, and similar to the fossil mice on the nearby islands of Lobos and La Graciosa. Main conclusions The mouse present on the Canary archipelago has been identified as the house mouse M. m. domesticus. Based on the shape of the lower molar, the Canary Island mice are divergent from the continental ones, but the degree of divergence varies with the geography of the archipelago. Overall, populations from eastern islands are more divergent from the continental mice than populations from western ones. Fossil populations indicate that this situation was established several centuries ago. Two main factors may have contributed to this pattern: the appearance of different types of environment on the islands since the successful settlement of the mouse, and/or the number of subsequent introductions of continental individuals via shipping.  相似文献   

19.

Aim

Oceanic islands possess unique floras with high proportions of endemic species. Island floras are expected to be severely affected by changing climatic conditions as species on islands have limited distribution ranges and small population sizes and face the constraints of insularity to track their climatic niches. We aimed to assess how ongoing climate change affects the range sizes of oceanic island plants, identifying species of particular conservation concern.

Location

Canary Islands, Spain.

Methods

We combined species occurrence data from single-island endemic, archipelago endemic and nonendemic native plant species of the Canary Islands with data on current and future climatic conditions. Bayesian Additive Regression Trees were used to assess the effect of climate change on species distributions; 71% (n = 502 species) of the native Canary Island species had models deemed good enough. To further assess how climate change affects plant functional strategies, we collected data on woodiness and succulence.

Results

Single-island endemic species were projected to lose a greater proportion of their climatically suitable area (x ̃ = −0.36) than archipelago endemics (x ̃ = −0.28) or nonendemic native species (x ̃ = −0.26), especially on Lanzarote and Fuerteventura, which are expected to experience less annual precipitation in the future. Moreover, herbaceous single-island endemics were projected to gain less and lose more climatically suitable area than insular woody single-island endemics. By contrast, we found that succulent single-island endemics and nonendemic natives gain more and lose less climatically suitable area.

Main Conclusions

While all native species are of conservation importance, we emphasise single-island endemic species not characterised by functional strategies associated with water use efficiency. Our results are particularly critical for other oceanic island floras that are not constituted by such a vast diversity of insular woody species as the Canary Islands.  相似文献   

20.
Plant colonization of the North Atlantic raises the intriguing question of the relationships between extant island species with their continental counterparts (European, African, and American), which may provide clues to past geographic distribution and colonization history. It has been suggested that during past glaciations, many plant species with typical Mediterranean distributions survived in the Atlantic islands that belong to what is today known as Macronesia. We used random amplified polymorphic DNA (RAPD) markers to study 12 populations of the liverwort Porella canariensis partly covering its present-day distribution (Azores, Madeira, Canary and Cape Verde Islands, and Iberian Peninsula). Unweighted pair-group (UPGMA) and principal component (PCO) analyses showed a similar geographical pattern that suggested a close relationship between Iberian populations and those from the Canaries and Cape Verde Islands. Populations from Madeira had more genetic variation than those from the Azores, a result from either a richer diversity of habitats in Madeira, which prompted more population diversification, successive colonization waves from different origins, or an older colonization of Madeira. The data show that continuous patches of liverworts are often comprised of more than one individual. Finally, RAPDs can be used to investigate intraspecific diversity within a comparatively large geographic area and, with utmost care, can be used to infer a historic context to explain the patterns observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号