首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Application of degradable plastics is the most critical solution to plastic pollution. As the precursor of biodegradable plastic PLA (polylactic acid), efficient production of l‐lactic acid is vital for the commercial replacement of traditional plastics. Bacillus coagulans H‐2, a robust strain, was investigated for effective production of l‐lactic acid using long‐term repeated fed‐batch (LtRFb) fermentation. Kinetic characteristics of l‐lactic acid fermentation were analyzed by two models, showing that cell‐growth coupled production gradually replaces cell‐maintenance coupled production during fermentation. With the LtRFb strategy, l‐lactic acid was produced at a high final concentration of 192.7 g/L, on average, and a yield of up to 93.0% during 20 batches of repeated fermentation within 487.5 h. Thus, strain H‐2 can be used in the industrial production of l‐lactic acid with optimization based on kinetic modeling.  相似文献   

2.

Background

The demand for lactic acid has been increasing considerably because of its use as a monomer for the synthesis of polylactic acid (PLA), which is a promising and environment-friendly alternative to plastics derived from petrochemicals. Optically pure l-lactic acid is essential for polymerization of PLA. The high fermentation cost of l-lactic acid is another limitation for PLA polymers to compete with conventional plastics.

Methodology/Principal Findings

A Bacillus sp. strain 2–6 for production of l-lactic acid was isolated at 55°C from soil samples. Its thermophilic characteristic made it a good lactic acid producer because optically pure l-lactic acid could be produced by this strain under open condition without sterilization. In 5-liter batch fermentation of Bacillus sp. 2–6, 118.0 g/liter of l-lactic acid with an optical purity of 99.4% was obtained from 121.3 g/liter of glucose. The yield was 97.3% and the average productivity was 4.37 g/liter/h. The maximum l-lactic acid concentration of 182.0 g/liter was obtained from 30-liter fed-batch fermentation with an average productivity of 3.03 g/liter/h and product optical purity of 99.4%.

Conclusions/Significance

With the newly isolated Bacillus sp. strain 2–6, high concentration of optically pure l-lactic acid could be produced efficiently in open fermentation without sterilization, which would lead to a new cost-effective method for polymer-grade l-lactic acid production from renewable resources.  相似文献   

3.
α-Keto-γ-methylthiobutyric acid (KMTB), a keto derivative of l-methionine, has great potential for use as an alternative to l-methionine in the poultry industry and as an anti-cancer drug. This study developed an environment friendly process for KMTB production from l-methionine by an Escherichia coli whole-cell biocatalyst expressing an engineered l-amino acid deaminase (l-AAD) from Proteus vulgaris. We first overexpressed the P. vulgaris l-AAD in E. coli BL21 (DE3) and further optimized the whole-cell transformation process. The maximal molar conversion ratio of l-methionine to KMTB was 71.2% (mol/mol) under the optimal conditions (70 g/L l-methionine, 20 g/L whole-cell biocatalyst, 5 mM CaCl2, 40°C, 50 mM Tris-HCl [pH 8.0]). Then, error-prone polymerase chain reaction was used to construct P. vulgaris l-AAD mutant libraries. Among approximately 104 mutants, two mutants bearing lysine 104 to arginine and alanine 337 to serine substitutions showed 82.2% and 80.8% molar conversion ratios, respectively. Furthermore, the combination of these mutations enhanced the catalytic activity and molar conversion ratio by 1.3-fold and up to 91.4% with a KMTB concentration of 63.6 g/L. Finally, the effect of immobilization on whole-cell transformation was examined, and the immobilized whole-cell biocatalyst with Ca2+ alginate increased reusability by 41.3% compared to that of free cell production. Compared with the traditional multi-step chemical synthesis, our one-step biocatalytic production of KMTB has an advantage in terms of environmental pollution and thus has great potential for industrial KMTB production.  相似文献   

4.
Limited uptake is one of the bottlenecks for l-arabinose fermentation from lignocellulosic hydrolysates in engineered Saccharomyces cerevisiae. This study characterized two novel l-arabinose transporters, LAT-1 from Neurospora crassa and MtLAT-1 from Myceliophthora thermophila. Although the two proteins share high identity (about 83%), they display different substrate specificities. Sugar transport assays using the S. cerevisiae strain EBY.VW4000 indicated that LAT-1 accepts a broad substrate spectrum. In contrast, MtLAT-1 appeared much more specific for l-arabinose. Determination of the kinetic properties of both transporters revealed that the Km values of LAT-1 and MtLAT-1 for l-arabinose were 58.12 ± 4.06 mM and 29.39 ± 3.60 mM, respectively, with corresponding Vmax values of 116.7 ± 3.0 mmol/h/g dry cell weight (DCW) and 10.29 ± 0.35 mmol/h/g DCW, respectively. In addition, both transporters were found to use a proton-coupled symport mechanism and showed only partial inhibition by d-glucose during l-arabinose uptake. Moreover, LAT-1 and MtLAT-1 were expressed in the S. cerevisiae strain BSW2AP containing an l-arabinose metabolic pathway. Both recombinant strains exhibited much faster l-arabinose utilization, greater biomass accumulation, and higher ethanol production than the control strain. In conclusion, because of higher maximum velocities and reduced inhibition by d-glucose, the genes for the two characterized transporters are promising targets for improved l-arabinose utilization and fermentation in S. cerevisiae.  相似文献   

5.
Previously, we successfully cloned a d-cycloserine (d-CS) biosynthetic gene cluster consisting of 10 open reading frames (designated dcsA to dcsJ) from d-CS-producing Streptomyces lavendulae ATCC 11924. In this study, we put four d-CS biosynthetic genes (dcsC, dcsD, dcsE, and dcsG) in tandem under the control of the T7 promoter in an Escherichia coli host. SDS-PAGE analysis demonstrated that the 4 gene products were simultaneously expressed in host cells. When l-serine and hydroxyurea (HU), the precursors of d-CS, were incubated together with the E. coli resting cell suspension, the cells produced significant amounts of d-CS (350 ± 20 μM). To increase the productivity of d-CS, the dcsJ gene, which might be responsible for the d-CS excretion, was connected downstream of the four genes. The E. coli resting cells harboring the five genes produced d-CS at 660 ± 31 μM. The dcsD gene product, DcsD, forms O-ureido-l-serine from O-acetyl-l-serine (OAS) and HU, which are intermediates in d-CS biosynthesis. DcsD also catalyzes the formation of l-cysteine from OAS and H2S. To repress the side catalytic activity of DcsD, the E. coli chromosomal cysJ and cysK genes, encoding the sulfite reductase α subunit and OAS sulfhydrylase, respectively, were disrupted. When resting cells of the double-knockout mutant harboring the four d-CS biosynthetic genes, together with dcsJ, were incubated with l-serine and HU, the d-CS production was 980 ± 57 μM, which is comparable to that of d-CS-producing S. lavendulae ATCC 11924 (930 ± 36 μM).  相似文献   

6.
The property of loose stereochemical control at aldol products from aldolases helped to synthesize multiple polyhydroxylated compounds with nonnatural stereoconfiguration. In this study, we discovered for the first time that some fructose 1,6-diphosphate aldolases (FruA) and tagatose 1,6-diphosphate (TagA) aldolases lost their strict stereoselectivity when using l-glyceraldehyde and synthesized not only l-sorbose but also a high proportion of l-psicose. Among the aldolases tested, TagA from Bacillus licheniformis (BGatY) showed the highest enzyme activity with l-glyceraldehyde. Subsequently, a “one-pot” reaction based on BGatY and fructose-1-phosphatase (YqaB) generated 378 mg/liter l-psicose and 199 mg/liter l-sorbose from dihydroxyacetone-phosphate (DHAP) and l-glyceraldehyde. Because of the high cost and instability of DHAP, a microbial fermentation strategy was used further to produce l-sorbose/l-psicose from glucose and l-glyceraldehyde, in which DHAP was obtained from glucose through the glycolytic pathway, and some recombination pathways based on FruA or TagA and YqaB were constructed in Escherichia coli and Corynebacterium glutamicum strains. After evaluation of different host cells and combinations of FruA or TagA with YqaB and optimization of gene expression, recombinant C. glutamicum strain WT(pXFTY) was selected and produced 2.53 g/liter total ketoses, with a yield of 0.50 g/g l-glyceraldehyde. Moreover, deletion of gene cgl0331, encoding the Zn-dependent alcohol dehydrogenase in C. glutamicum, was confirmed for the first time to significantly decrease conversion of l-glyceraldehyde to glycerol and to increase yield of target products. Finally, fed-batch culture of strain SY14(pXFTY) produced 3.5 g/liter l-sorbose and 2.3 g/liter l-psicose, with a yield of 0.61 g/g l-glyceraldehyde. This microbial fermentation strategy also could be applied to efficiently synthesize other l-sugars.  相似文献   

7.
The control of sulphate reduction in bacteria   总被引:2,自引:2,他引:0  
1. An enzyme from Escherichia coli 9723 that reduces adenosine 3′-phosphate 5′-sulphatophosphate to inorganic sulphite is described. Extracts of E. coli K12 and Bacillus subtilis 1379 contain a similar enzyme. 2. This reductase and sulphite reductase (EC 1.8.1.2) of E. coli 9723, E. coli K12 and of B. subtilis are repressed by growth in the presence of l-cystine. Cysteine synthase (EC 4.2.1.22) is unaffected. 3. Growth of E. coli 9723 on inorganic sulphite represses the sulphate-activating enzymes (EC 2.7.7.4 and 2.7.1.25) almost completely but has little effect on sulphite reductase. Growth on 0·042–0·056mm-l-cystine gives a similar result. 4. Such differential repression by cyst(e)ine prevents E. coli, when growing on sulphite, from synthesizing unnecessary enzymes.  相似文献   

8.
The uncharacterized gene previously proposed as a mannose-6-phosphate isomerase from Bacillus subtilis was cloned and expressed in Escherichia coli. The maximal activity of the recombinant enzyme was observed at pH 7.5 and 40°C in the presence of 0.5 mM Co2+. The isomerization activity was specific for aldose substrates possessing hydroxyl groups oriented in the same direction at the C-2 and C-3 positions, such as the d and l forms of ribose, lyxose, talose, mannose, and allose. The enzyme exhibited the highest activity for l-ribulose among all pentoses and hexoses. Thus, l-ribose, as a potential starting material for many l-nucleoside-based pharmaceutical compounds, was produced at 213 g/liter from 300-g/liter l-ribulose by mannose-6-phosphate isomerase at 40°C for 3 h, with a conversion yield of 71% and a volumetric productivity of 71 g liter−1 h−1.l-Ribose is a potential starting material for the synthesis of many l-nucleoside-based pharmaceutical compounds, and it is not abundant in nature (5, 19). l-Ribose has been produced mainly by chemical synthesis from l-arabinose, l-xylose, d-glucose, d-galactose, d-ribose, or d-mannono-1,4-lactone (2, 17, 23). Biological l-ribose manufacture has been investigated using ribitol or l-ribulose. Recently, l-ribose was produced from ribitol by a recombinant Escherichia coli containing an NAD-dependent mannitol-1-dehydrogenase (MDH) with a 55% conversion yield when 100 g/liter ribitol was used in a 72-h fermentation (18). However, the volumetric productivity of l-ribose in the fermentation is 28-fold lower than that of the chemical method synthesized from l-arabinose (8). l-Ribulose has been biochemically converted from l-ribose using an l-ribose isomerase from an Acinetobacter sp. (9), an l-arabinose isomerase mutant from Escherichia coli (4), a d-xylose isomerase mutant from Actinoplanes missouriensis (14), and a d-lyxose isomerase from Cohnella laeviribosi (3), indicating that l-ribose can be produced from l-ribulose by these enzymes. However, the enzymatic production of l-ribulose is slow, and the enzymatic production of l-ribose from l-ribulose has been not reported.Sugar phosphate isomerases, such as ribose-5-phosphate isomerase, glucose-6-phosphate isomerase, and galactose-6-phosphate isomerase, work as general aldose-ketose isomerases and are useful tools for producing rare sugars, because they convert the substrate sugar phosphates and the substrate sugars without phosphate to have a similar configuration (11, 12, 21, 22). l-Ribose isomerase from an Acinetobacter sp. (9) and d-lyxose isomerase from C. laeviribosi (3) had activity with l-ribose, d-lyxose, and d-mannose. Thus, we can apply mannose-6-phosphate (EC 5.3.1.8) isomerase to the production of l-ribose, because there are no sugar phosphate isomerases relating to l-ribose and d-lyxose. The production of the expensive sugar l-ribose (bulk price, $1,000/kg) from the rare sugar l-ribulose by mannose-6-phosphate isomerase may prove to be a valuable industrial process, because we have produced l-ribulose from the cheap sugar l-arabinose (bulk price, $50/kg) using the l-arabinose isomerase from Geobacillus thermodenitrificans (20) (Fig. (Fig.11).Open in a separate windowFIG. 1.Schematic representation for the production of l-ribulose from l-arabinose by G. thermodenitrificans l-arabinose isomerase and the production of l-ribose from l-ribulose by B. subtilis mannose-6-phosphate isomerase.In this study, the gene encoding mannose-6-phosphate isomerase from Bacillus subtilis was cloned and expressed in E. coli. The substrate specificity of the recombinant enzyme for various aldoses and ketoses was investigated, and l-ribulose exhibited the highest activity among all pentoses and hexoses. Therefore, mannose-6-phosphate isomerase was applied to the production of l-ribose from l-ribulose.  相似文献   

9.
Two enzymes, l-arabinose isomerase and mannose-6-phosphate isomerase, from Geobacillus thermodenitrificans produced 118 g/liter l-ribose from 500 g/liter l-arabinose at pH 7.0, 70°C, and 1 mM Co2+ for 3 h, with a conversion yield of 23.6% and a volumetric productivity of 39.3 g liter−1 h−1.l-Ribose, a potential starting material for the synthesis of many l-nucleoside-based pharmaceutical compounds, is not abundant in nature (4, 15, 20). l-Ribose has been synthesized primarily from l-arabinose, l-xylose, d-glucose, d-galactose, d-ribose, and d-mannono-1,4-lactone (1, 13, 20). Recombinant cells containing a NAD-dependent mannitol-1-dehydrogenase produced 52 g/liter l-ribose from 100 g/liter ribitol after fermentation for 72 h (14). However, the volumetric productivity of l-ribose was 26-fold lower than that of the chemical synthetic method starting from l-arabinose (6). l-Ribose isomerase from an Acinetobacter sp., which is most active with l-ribose, showed poor efficiency in the conversion of l-ribulose to l-ribose (9). Recently, l-ribulose was produced with a conversion yield of 19% from the inexpensive sugar l-arabinose using l-arabinose isomerase (AI) from Geobacillus thermodenitrificans (18). l-Ribose has been produced from l-ribulose using mannose-6-phosphate isomerase (MPI) from Bacillus subtilis with a conversion yield of 70% (17). In this study, the production of l-ribose from l-arabinose was demonstrated via a two-enzyme system from G. thermodenitrificans, in which l-ribulose was first produced from l-arabinose by AI and subsequently converted to l-ribose by MPI.The analysis of monosaccharides and the purification and thermostability of AI and MPI from G. thermodenitrificans (2) isolated from compost were performed as described previously (7, 18, 19). The cross-linked enzymes were obtained from the treatment of 0.5% glutaraldehyde (10, 16). The reaction was performed by replacing the reaction solution with 100 g/liter l-arabinose and 1 mM Co2+ every 6 h at 70°C and pH 7.0. The reaction volume of 10 ml contained 5 g of the cross-linked enzymes with 8 U/ml AI and 20 U/ml MPI. One unit of AI or MPI activity, which corresponded to 0.0625 or 2.5 mg protein, respectively, was defined as the amount of enzyme required to produce 1 μmol of l-ribulose or l-ribose, respectively, per min at 70°C, pH 7.0, and 1 mM Co2+. Unless otherwise stated, the reaction was carried out in 50 mM piperazine-N,N′-bis(2-ethanesulfonic acid) (PIPES) buffer (pH 7.0) in the presence of 1 mM Co2+ at 70°C for 4 h. All experiments were performed in triplicate.The recombinant Escherichia coli ER2566 (New England Biolabs, Ipswich, MA) containing pTrc99A plasmid (Pharmacia Biotech, Piscataway, NJ) and the AI or MPI gene was cultivated in a 7-liter fermentor containing 3 liters of chemically defined medium (11). When the cell mass reached 2 g/liter, 10 g/liter lactose was added for enzyme induction. After 14 h, 40 g/liter cells with 13,400 U/liter of AI or 34 g/liter cells with 630 U/liter of MPI was obtained. The enzyme was purified by heat treatment and Hi-Trap anion-exchange chromatography. The purification yields of AI and MPI were 21 and 78%, respectively, and the levels of purity for the concentrated AI and MPI by gene scanning were 48 and 92%, respectively. Maximum l-ribose production from l-arabinose by AI and by MPI in 10 ml of total volume was observed at pH 7.0, 70°C, and 1 mM Co2+ (data not shown). Half-lives for the two-enzyme system containing 10 mM l-arabinose, 0.2 U/ml AI, and 0.5 U/ml MPI at 60, 65, 70, 75, and 80°C were 1,216, 235, 48, 26, and 12 h, respectively. The use of Co2+ may be disadvantageous, as it is fairly toxic. This problem can be solved by using Mn2+ instead of Co2+. When Mn2+ was used in the reaction with the same amounts of enzymes, the conversion yield was the same as that obtained with Co2+, even though the volumetric productivity was lower than that with Co2+ (data not shown).The effect of the ratio of AI to MPI in the two-step enzymatic production of l-ribose from l-arabinose was investigated by mixing the enzyme solutions (8 U/ml AI and 20 U/ml MPI) to obtain AI/MPI ratios ranging from 10:90 to 90:10 (vol/vol) (Fig. (Fig.1).1). The reactions were run with 300 g/liter l-arabinose. Maximum l-ribose production was observed at a volume ratio of 50:50 of the enzyme solutions. The effects of enzyme concentration on l-ribose production were investigated at the optimal unit ratio (AI/MPI ratio, 1:2.5) with 500 g/liter l-arabinose and AI and MPI concentrations from 0.4 and 1.0 U/ml, respectively, to 9.2 and 23.0 U/ml, respectively (Fig. (Fig.2A).2A). l-Ribose production increased with increasing amounts of enzymes until reaching a plateau at 8 U/ml AI and 20 U/ml MPI. The effect of substrate concentration on l-ribose production was evaluated at l-arabinose concentrations ranging from 15 to 500 g/liter with 8 U/ml AI and 20 U/ml MPI (Fig. (Fig.2B).2B). The production of both l-ribose and l-ribulose, an intermediate, increased with increasing substrate level. The results suggest that concentrations of substrate above 500 g/liter l-arabinose might cause the increased production. The conversion yields of l-ribose and l-ribulose from l-arabinose were constant at 32% and 14%, respectively, within an initial concentration of 100 g/liter l-arabinose, indicating that the reactions reached equilibrium at an l-arabinose/l-ribulose/l-ribose ratio of 54:14:32, which was in agreement with the calculated equilibrium (17). However, at l-arabinose concentrations above 100 g/liter, the conversion yields of l-ribose and l-ribulose from l-arabinose decreased with increasing l-arabinose concentration. The l-arabinose/l-ribulose/l-ribose ratio, with an initial l-arabinose concentration of 300 g/liter, was 71:6:23 after 4 h of reaction. To obtain near-equilibrium (54:14:32) at this high concentration of l-arabinose, more effective enzymes are required.Open in a separate windowFIG. 1.Effect of the ratio of AI to MPI on l-ribose production from l-arabinose by the purified AI and MPI from G. thermodenitrificans. Data are the means for three separate experiments, and error bars represent standard deviations. Symbols: •, l-ribose; ▪, l-ribulose.Open in a separate windowFIG. 2.(A) Effect of enzyme concentration on l-ribose production from l-arabinose at the optimal unit ratio (AI/MPI ratio, 1:2.5). Symbols: •, l-ribose; ▪, l-ribulose; ○, l-arabinose. (B) Effect of l-arabinose concentration on l-ribose production. Symbols: •, l-ribose; ▪, l-ribulose. Data are the means for three separate experiments, and error bars represent standard deviations.A time course reaction of l-ribose production from l-arabinose was monitored for 3 h with 8 U/ml AI and 20 U/ml MPI (Fig. (Fig.3).3). As a result, 118 g/liter l-ribose was obtained from an initial l-arabinose concentration of 500 g/liter after 3 h, with a conversion yield of 23.6% and a productivity of 39.3 g liter−1 h−1. Recombinant E. coli containing MDH yielded 52 g/liter l-ribose from an initial ribitol concentration of 100 g/liter after 72 h, with a productivity of 0.72 g liter−1 h−1 (14). The production and productivity obtained in the current study using AI and MPI from G. thermodenitrificans were 2.3- and 55-fold higher, respectively, than those obtained from ribitol and 17- and 21-fold higher than those obtained with the production of l-ribose from l-arabinose using resting cells of recombinant Lactobacillus plantarum (5). The chemical synthetic method is capable of producing 56.5 g/liter l-ribose from 250 g/liter l-arabinose after 3 h, corresponding to a productivity of 18.8 g liter−1 h−1 (6). Still, both the production and productivity of l-ribose using the method described herein were 2.1-fold higher. Thus, the method of production of l-ribose in the present study exhibited the highest productivity and production, compared to other fermentation methods and chemical syntheses.Open in a separate windowFIG. 3.Time course of l-ribose production from l-arabinose by purified AI and MPI from G. thermodenitrificans. Data are the means for three separate experiments, and error bars represent standard deviations. Symbols: •, l-ribose; ▪, l-ribulose; ○, l-arabinose.Several rounds of conversion reusing the cross-linked enzymes were performed (Fig. (Fig.4).4). The immobilized enzymes showed more than 20% conversion of l-ribose from l-arabinose for the 9th batch, and the concentration of l-ribose was reduced to 43% after the 20th batch. These results suggest that the immobilization of enzyme facilitates separation of product and enzyme, and it enables the enzyme to function continuously, as reported previously (3, 8, 12). Thus, the reuse of enzyme by immobilization improves the economic viability of this enzymatic process.Open in a separate windowFIG. 4.Reuse of immobilized AI and MPI from G. thermodenitrificans for l-ribose production from 100 g/liter l-arabinose. Data are the means for three separate experiments, and error bars represent standard deviations.  相似文献   

10.
In comparison to other pseudomonads, Pseudomonas aeruginosa grows poorly in l-lysine as a sole source of nutrient. In this study, the ldcA gene (lysine decarboxylase A; PA1818), previously identified as a member of the ArgR regulon of l-arginine metabolism, was found essential for l-lysine catabolism in this organism. LdcA was purified to homogeneity from a recombinant strain of Escherichia coli, and the results of enzyme characterization revealed that this pyridoxal-5-phosphate-dependent decarboxylase takes l-lysine, but not l-arginine, as a substrate. At an optimal pH of 8.5, cooperative substrate activation by l-lysine was depicted from kinetics studies, with calculated Km and Vmax values of 0.73 mM and 2.2 μmole/mg/min, respectively. Contrarily, the ldcA promoter was induced by exogenous l-arginine but not by l-lysine in the wild-type strain PAO1, and the binding of ArgR to this promoter region was demonstrated by electromobility shift assays. This peculiar arginine control on lysine utilization was also noted from uptake experiments in which incorporation of radioactively labeled l-lysine was enhanced in cells grown in the presence of l-arginine but not l-lysine. Rapid growth on l-lysine was detected in a mutant devoid of the main arginine catabolic pathway and with a higher basal level of the intracellular l-arginine pool and hence elevated ArgR-responsive regulons, including ldcA. Growth on l-lysine as a nitrogen source can also be enhanced when the aruH gene encoding an arginine/lysine:pyruvate transaminase was expressed constitutively from plasmids; however, no growth of the ldcA mutant on l-lysine suggests a minor role of this transaminase in l-lysine catabolism. In summary, this study reveals a tight connection of lysine catabolism to the arginine regulatory network, and the lack of lysine-responsive control on lysine uptake and decarboxylation provides an explanation of l-lysine as a poor nutrient for P. aeruginosa.Decarboxylation of amino acids, including lysine, arginine, and glutamate, is important for bacterial survival under low pH (2, 7, 19). Lysine is abundant in the rhizosphere where fluorescent Pseudomonas preferentially resides, and serves as a nitrogen and carbon source to these organisms (28). In microbes, lysine catabolism can be initiated either through monooxygenase, decarboxylase, or transaminase activities. The monooxygenase pathway has been considered the major route for l-lysine utilization in Pseudomonas putida, and davBATD encoding enzymes for the first four steps of the pathway have been characterized (25, 26). In contrast, Pseudomonas aeruginosa cannot use exogenous l-lysine efficiently for growth (5, 24). It has been reported that enzymatic activities for the first two steps of the monooxygenase pathway are not detectable in P. aeruginosa, and no davBA orthologs can be identified from this organism (24, 25).Mutants of P. aeruginosa with improved growth on l-lysine and a high level of lysine decarboxylase activity can be isolated by repeated subcultures in l-lysine (5). This suggests that in P. aeruginosa, l-lysine utilization might be mediated by the lysine decarboxylase pathway with cadaverine and 5-aminovalerate as intermediates (Fig. (Fig.1).1). Alternatively, conversion of l-lysine into 5-aminovalerate may also be accomplished by a coupled reaction catalyzed by AruH and AruI. The AruH and AruI enzymes were reported as arginine:pyruvate transaminase and 2-ketoarginine decarboxylase, respectively (36). Interestingly, transamination by AruH using l-lysine as an amino group donor can also be detected in vitro (35). The reaction product α-keto-ɛ-aminohexanonate can potentially be decarboxylated into 5-aminovalerate by AruI, providing an alternative route for lysine degradation.Open in a separate windowFIG. 1.Lysine catabolic pathways. l-lysine decarboxylase pathway is shown at center. Broken arrows represent lysine monooxygenase pathway from P. putida which is not present in P. aeruginosa.In this study, we showed that the lysine decarboxylase pathway is the main route for lysine utilization under arginine control. Expression of the ldcAB operon encoding l-lysine decarboxylase and a putative lysine/cadaverine antiporter was analyzed regarding its response to l-lysine, l-arginine, and the arginine-responsive regulator ArgR. Enzyme characterization was performed to verify the function of LdcA as l-lysine decarboxylase. Arginine control on lysine incorporation was also investigated by genetic studies and uptake experiments. The peculiar role of ArgR controlling arginine and lysine uptake and catabolism provides the explanation for poor growth in lysine, and it implies a higher level of complexity in metabolic networks of pseudomonads.  相似文献   

11.
1. The `30s' and `50s' ribosomes from ribonuclease-active (Escherichia coli B) and -inactive (Pseudomonas fluorescens and Escherichia coli MRE600) bacteria have been studied in the ultracentrifuge. Charge anomalies were largely overcome by using sodium chloride–magnesium chloride solution, I 0·16, made 0–50mm with respect to Mg2+. 2. Differentiation of enzymic and physical breakdown at Mg2+ concentrations less than 5mm was made by comparing the properties of E. coli B and P. fluorescens ribosomes. 3. Ribonuclease-active ribosomes alone showed a transformation of `50s' into 40–43s components. This was combined with the release of a small amount of `5s' material which may be covalently bound soluble RNA. Other transformations of the `50s' into 34–37s components were observed in both ribonuclease-active and -inactive ribosomes at 1·0–2·5mm-Mg2+, and also with E. coli MRE600 when EDTA (0·2mm) was added to a solution in 0·16m-sodium chloride. 4. Degradation of ribonuclease-active E. coli B ribosomes at Mg2+ concentration 0·25mm or less was coincident with the formation of 16s and 21s ribonucleoprotein in P. fluorescens, and this suggested that complete dissociation of RNA from protein was not an essential prelude to breakdown of the RNA by the enzyme. 5. As high Cs+/Mg2+ ratios cause ribosomal degradation great care is necessary in the interpretation of equilibrium-density-gradient experiments in which high concentrations of caesium chloride or similar salts are used. 6. The importance of the RNA moiety in understanding the response of ribosomes to their ionic environment is discussed.  相似文献   

12.
In the prokaryote Synechococcus RF-1, circadian changes in the uptake of l-leucine and 2-amino isobutyric acid were observed. Uptake rates in the light period were higher than in the dark period for cultures entrained by 12/12 hour light/dark cycles. The periodic changes in l-leucine uptake persisted for at least 72 hours into continuous light (L/L). The rhythm had a free-running period of about 24 hours in L/L at 29°C. A single dark treatment of 12 hours could initiate rhythmic leucine uptake in an L/L culture. The phase of rhythm could be shifted by a pulse of low temperature (0°C). The free-running periodicity was “temperature-compensated” from 21 to 37°C. A 24 hour depletion of extracellular Ca2+ before the free-running L/L condition reduced the variation in uptake rate but had little effect on the periodicity of the rhythm. The periodicity was also not affected by the introduction of 25 mm NaNO3. The uptake rates for 20 natural amino acids were studied at 12 hour intervals in cultures exposed to 12/12 hour light/dark cycles. For eight of these amino acids (l-Val, l-Leu, l-Ile, l-Pro, l-Phe, l-Trp, l-Met, and l-Tyr), the light/dark uptake rate ratios had values greater than 3 and the rhythm persisted in L/L.  相似文献   

13.
Methionine γ-lyase (MGL) catalyzes the γ-elimination of l-methionine and its derivatives as well as the β-elimination of l-cysteine and its analogs. These reactions yield α-keto acids and thiols. The mechanism of chemical conversion of amino acids includes numerous reaction intermediates. The detailed analysis of MGL interaction with glycine, l-alanine, l-norvaline, and l-cycloserine was performed by pre-steady-state stopped-flow kinetics. The structure of side chains of the amino acids is important both for their binding with enzyme and for the stability of the external aldimine and ketimine intermediates. X-ray structure of the MGL·l-cycloserine complex has been solved at 1.6 Å resolution. The structure models the ketimine intermediate of physiological reaction. The results elucidate the mechanisms of the intermediate interconversion at the stages of external aldimine and ketimine formation.  相似文献   

14.
The biological sulphation of l-tyrosyl peptides   总被引:3,自引:3,他引:0       下载免费PDF全文
1. A rat-liver supernatant preparation can achieve the biological O-sulphation of l-tyrosylglycine and l-tyrosyl-l-alanine at pH7·0. 2. The optimum concentrations of l-tyrosylglycine and l-tyrosyl-l-alanine in this system are 50mm and 60mm respectively. 3. l-Tyrosylglycine yields two sulphated products, whereas l-tyrosyl-l-alanine yields three sulphated products, when used as acceptor for sulphate in the rat-liver system. 4. With both substrates, one of the sulphated products has been identified as the O-sulphate ester of the corresponding parent peptide.  相似文献   

15.
The effect of fusing the PelB signal sequence to lysine/cadaverine antiporter (CadB) on the bioconversion of l-lysine to cadaverine was investigated. To construct a whole-cell biocatalyst for cadaverine production, four expression plasmids were constructed for the co-expression of lysine decarboxylase (CadA) and lysine/cadaverine antiporter (CadB) in Escherichia coli. Expressing CadB with the PelB signal sequence increased cadaverine production by 12 %, and the optimal expression plasmid, pETDuet-pelB-CadB-CadA, contained two T7 promoter-controlled genes, CadA and the PelB-CadB fusion protein. Based on pETDuet-pelB-CadB-CadA, a whole-cell system for the bioconversion of l-lysine to cadaverine was constructed, and three strategies for l-lysine feeding were evaluated to eliminate the substrate inhibition problem. A cadaverine titer of 221 g l?1 with a molar yield of 92 % from lysine was obtained.  相似文献   

16.
d-Galacturonic acid, the main monomer of pectin, is an attractive substrate for bioconversions, since pectin-rich biomass is abundantly available and pectin is easily hydrolyzed. l-Galactonic acid is an intermediate in the eukaryotic pathway for d-galacturonic acid catabolism, but extracellular accumulation of l-galactonic acid has not been reported. By deleting the gene encoding l-galactonic acid dehydratase (lgd1 or gaaB) in two filamentous fungi, strains were obtained that converted d-galacturonic acid to l-galactonic acid. Both Trichoderma reesei Δlgd1 and Aspergillus niger ΔgaaB strains produced l-galactonate at yields of 0.6 to 0.9 g per g of substrate consumed. Although T. reesei Δlgd1 could produce l-galactonate at pH 5.5, a lower pH was necessary for A. niger ΔgaaB. Provision of a cosubstrate improved the production rate and titer in both strains. Intracellular accumulation of l-galactonate (40 to 70 mg g biomass−1) suggested that export may be limiting. Deletion of the l-galactonate dehydratase from A. niger was found to delay induction of d-galacturonate reductase and overexpression of the reductase improved initial production rates. Deletion of the l-galactonate dehydratase from A. niger also delayed or prevented induction of the putative d-galacturonate transporter An14g04280. In addition, A. niger ΔgaaB produced l-galactonate from polygalacturonate as efficiently as from the monomer.  相似文献   

17.
Acanthamoeba polyphaga Mimivirus, a complex virus that infects amoeba, was first reported in 2003. It is now known that its DNA genome encodes for nearly 1,000 proteins including enzymes that are required for the biosynthesis of the unusual sugar 4‐amino‐4,6‐dideoxy‐d‐glucose, also known as d‐viosamine. As observed in some bacteria, the pathway for the production of this sugar initiates with a nucleotide‐linked sugar, which in the Mimivirus is thought to be UDP‐d‐glucose. The enzyme required for the installment of the amino group at the C‐4′ position of the pyranosyl moiety is encoded in the Mimivirus by the L136 gene. Here, we describe a structural and functional analysis of this pyridoxal 5′‐phosphate‐dependent enzyme, referred to as L136. For this analysis, three high‐resolution X‐ray structures were determined: the wildtype enzyme/pyridoxamine 5′‐phosphate/dTDP complex and the site‐directed mutant variant K185A in the presence of either UDP‐4‐amino‐4,6‐dideoxy‐d‐glucose or dTDP‐4‐amino‐4,6‐dideoxy‐d‐glucose. Additionally, the kinetic parameters of the enzyme utilizing either UDP‐d‐glucose or dTDP‐d‐glucose were measured and demonstrated that L136 is efficient with both substrates. This is in sharp contrast to the structurally related DesI from Streptomyces venezuelae, whose three‐dimensional architecture was previously reported by this laboratory. As determined in this investigation,DesI shows a profound preference in its catalytic efficiency for the dTDP‐linked sugar substrate. This difference can be explained in part by a hydrophobic patch in DesI that is missing in L136. Notably, the structure of L136 reported here represents the first three‐dimensional model for a virally encoded PLP‐dependent enzyme and thus provides new information on sugar aminotransferases in general.  相似文献   

18.
Escherichia coli that is unable to metabolize d-glucose (with knockouts in ptsG, manZ, and glk) accumulates a small amount of d-glucose (yield of about 0.01 g/g) during growth on the pentoses d-xylose or l-arabinose as a sole carbon source. Additional knockouts in the zwf and pfkA genes, encoding, respectively, d-glucose-6-phosphate 1-dehydrogenase and 6-phosphofructokinase I (E. coli MEC143), increased accumulation to greater than 1 g/liter d-glucose and 100 mg/liter d-mannose from 5 g/liter d-xylose or l-arabinose. Knockouts of other genes associated with interconversions of d-glucose-phosphates demonstrate that d-glucose is formed primarily by the dephosphorylation of d-glucose-6-phosphate. Under controlled batch conditions with 20 g/liter d-xylose, MEC143 generated 4.4 g/liter d-glucose and 0.6 g/liter d-mannose. The results establish a direct link between pentoses and hexoses and provide a novel strategy to increase carbon backbone length from five to six carbons by directing flux through the pentose phosphate pathway.  相似文献   

19.
Accumulation of d-leucine, d-allo-isoleucine, and d-valine was observed in the growth medium of a lactic acid bacterium, Lactobacillus otakiensis JCM 15040, and the racemase responsible was purified from the cells and identified. The N-terminal amino acid sequence of the purified enzyme was GKLDKASKLI, which is consistent with that of a putative γ-aminobutyrate aminotransferase from Lactobacillus buchneri. The putative γ-aminobutyrate aminotransferase gene from L. buchneri JCM 1115 was expressed in recombinant Escherichia coli and then purified to homogeneity. The enzyme catalyzed the racemization of a broad spectrum of nonpolar amino acids. In particular, it catalyzed at high rates the epimerization of l-isoleucine to d-allo-isoleucine and d-allo-isoleucine to l-isoleucine. In contrast, the enzyme showed no γ-aminobutyrate aminotransferase activity. The relative molecular masses of the subunit and native enzyme were estimated to be about 49 kDa and 200 kDa, respectively, indicating that the enzyme was composed of four subunits of equal molecular masses. The Km and Vmax values of the enzyme for l-isoleucine were 5.00 mM and 153 μmol·min−1·mg−1, respectively, and those for d-allo-isoleucine were 13.2 mM and 286 μmol·min−1·mg−1, respectively. Hydroxylamine and other inhibitors of pyridoxal 5′-phosphate-dependent enzymes completely blocked the enzyme activity, indicating the enzyme requires pyridoxal 5′-phosphate as a coenzyme. This is the first evidence of an amino acid racemase that specifically catalyzes racemization of nonpolar amino acids at the C-2 position.  相似文献   

20.
An NADP-dependent dehydrogenase catalyzing the conversion of l-sorbosone to l-ascorbic acid has been isolated from Phaseolus vulgaris L. and Spinacia oleracea L. and partially purified. It is stable at −20°C for up to 8 months. Molecular masses, as determined by gel filtration, were 21 and 29 kilodaltons for bean and spinach enzymes, respectively. Km for sorbosone were 12 ± 2 and 18 ± 2 millimolar and for NADP+, 0.14 ± 0.05 and 1.2 ± 0.5 millimolar, for bean and spinach, respectively. Lycorine, a purported inhibitor of l-ascorbic acid biosynthesis, had no effect on the reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号