共查询到20条相似文献,搜索用时 339 毫秒
1.
Formalin‐fixed paraffin‐embedded (FFPE) tissue is a rich source of clinically relevant material that can yield important translational biomarker discovery using proteomic analysis. Protocols for analyzing FFPE tissue by LC‐MS/MS exist, but standardization of procedures and critical analysis of data quality is limited. This study compared and characterized data obtained from FFPE tissue using two methods: a urea in‐solution digestion method (UISD) versus a commercially available Qproteome FFPE Tissue Kit method (Qkit). Each method was performed independently three times on serial sections of homogenous FFPE tissue to minimize pre‐analytical variations and analyzed with three technical replicates by LC‐MS/MS. Data were evaluated for reproducibility and physiochemical distribution, which highlighted differences in the ability of each method to identify proteins of different molecular weights and isoelectric points. Each method replicate resulted in a significant number of new protein identifications, and both methods identified significantly more proteins using three technical replicates as compared to only two. UISD was cheaper, required less time, and introduced significant protein modifications as compared to the Qkit method, which provided more precise and higher protein yields. These data highlight significant variability among method replicates and type of method used, despite minimizing pre‐analytical variability. Utilization of only one method or too few replicates (both method and technical) may limit the subset of proteomic information obtained. 相似文献
2.
Tissue microarray (TMA) technology has provided a high throughput means of evaluating potential biomarkers and therapeutic
targets in archival pathological specimens. TMAs facilitate the rapid assessment of molecular alterations in hundreds of different
tumours on a single slide. Sections from TMAs can be used for any in situ tissue analysis, including fluorescent in situ hybridization
(FISH). FISH is a molecular technique that detects numerical and structural abnormalities in both metaphase chromosomes and
interphase nuclei. FISH is commonly used as a prognostic and diagnostic tool for the detection of translocations and for the
assessment of gene deletion and amplification in tumours. Performing FISH on TMAs enables researchers to determine the clinical
significance of specific genetic alterations in hundreds of highly characterized tumours. The use of FISH on archival paraffin
embedded tissues is technically demanding and becomes even more challenging when applied to paraffin embedded TMAs. The problems
encountered with FISH on TMAs, including probe preparation, hybridization, and potential applications of FISH, will be addressed
in this review. 相似文献
3.
Marie‐Claude Djidja Simona Francese Paul M. Loadman Chris W. Sutton Peter Scriven Emmanuelle Claude Marten F. Snel Julien Franck Michel Salzet Malcolm R. Clench 《Proteomics》2009,9(10):2750-2763
The identification of proteins involved in tumour progression or which permit enhanced or novel therapeutic targeting is essential for cancer research. Direct MALDI analysis of tissue sections is rapidly demonstrating its potential for protein imaging and profiling in the investigation of a range of disease states including cancer. MALDI‐mass spectrometry imaging (MALDI‐MSI) has been used here for direct visualisation and in situ characterisation of proteins in breast tumour tissue section samples. Frozen MCF7 breast tumour xenograft and human formalin‐fixed paraffin‐embedded breast cancer tissue sections were used. An improved protocol for on‐tissue trypsin digestion is described incorporating the use of a detergent, which increases the yield of tryptic peptides for both fresh frozen and formalin‐fixed paraffin‐embedded tumour tissue sections. A novel approach combining MALDI‐MSI and ion mobility separation MALDI‐tandem mass spectrometry imaging for improving the detection of low‐abundance proteins that are difficult to detect by direct MALDI‐MSI analysis is described. In situ protein identification was carried out directly from the tissue section by MALDI‐MSI. Numerous protein signals were detected and some proteins including histone H3, H4 and Grp75 that were abundant in the tumour region were identified. 相似文献
4.
Kai Stühler Dr. Christian Stephan Nadine Palacios Bustamante Burghardt Scheibe Helmut E. Meyer 《Proteomics》2007,7(11):1744-1745
The second international workshop on “2‐D DIGE Applications in Proteomics” took place at the Medizinisches Proteom‐Center, Ruhr‐Universität Bochum, from February 27th to March 2nd, 2007. The four day “hands‐on” course was addressed to all interested scientists from the field of Proteomics, inter alia to members of HUPO and DGPF, with a greater focus on image analysis and statistical analysis of 2‐D DIGE experiments. 相似文献
5.
Because fresh‐frozen tissue samples associated with long‐term clinical data and of rare diseases are often unobtainable at the present time, formalin‐fixed paraffin‐embedded (FFPE) tissue samples are considered a highly valuable resource for researchers. However, protein extraction from FFPE tissues faces challenges of deparaffinization and cross‐link reversion. Current procedures for protein extraction from FFPE tissue require separate steps and toxic solvents, resulting in inconvenience in protein extraction. To overcome these limitations, an integrated method was developed using nontoxic solvents in four types of FFPE tissues. The average amount of proteins from three replicates of bladder, kidney, liver, and lung FFPE tissues were 442.6, 728.9, 736.4, and 694.7 μg with CVs of 7.5, 5.8, 2.4, and 4.5%, respectively. Proteomic analysis showed that 348, 417, 607, and 304 unique proteins were identified and quantified without specification of isoform by a least two peptides from bladder, kidney, liver, and lung FFPE tissue samples, respectively. The analysis of individual protein CV demonstrated that 97–99% of the proteins were quantified with a CV ≤ 30%, verifying the reproducibility of the integrated protein extraction method. In summary, the developed method is high‐yield, reproducible, convenient, simple, low cost, nonvolatile, nonflammable, and nontoxic. 相似文献
6.
Manuel Bernal Jacob Zhurinsky Ana B. Iglesias‐Romero Maria A. Sanchez‐Romero Ignacio Flor‐Parra Laura Tomas‐Gallardo Antonio J. Perez‐Pulido Juan Jimenez Rafael R. Daga 《Proteomics》2014,14(11):1367-1380
PP2A (protein phosphatase 2A) is a major phosphatase in eukaryotic cells that plays an essential role in many processes. PP2A mutations in Schizosaccharomyces pombe result in defects of cell cycle control, cytokinesis and morphogenesis. Which PP2A substrates are responsible for these changes is not known. In this work, we searched for PP2A substrates in S. pombe using two approaches, 2D‐DIGE analysis of PP2A complex mutants and identification of PP2A interacting proteins. In both cases, we used MS to identify proteins of interest. In the DIGE experiment, we compared proteomes of wild‐type S. pombe, deletion of pta2, the phosphoactivator of the PP2A catalytic subunit, and pab1–4, a mutant of B‐type PP2A regulatory subunit. A total of 1742 protein spots were reproducibly resolved by 2D‐DIGE and 51 spots demonstrated significant changes between PP2A mutants and the wild‐type control. MS analysis of these spots identified 27 proteins that include key regulators of glycerol synthesis, carbon metabolism, amino acid biosyntesis, vitamin production, and protein folding. Importantly, we independently identified a subset of these proteins as PP2A binding partners by affinity precipitation, suggesting they may be direct targets of PP2A. We have validated our approach by demonstrating that phosphorylation of Gpd1, a key enzyme in glycerol biogenesis, is regulated by PP2A and that ability of cells to respond to osmotic stress by synthesizing glycerol is compromised in the PP2A mutants. Our work contributes to a better understanding of PP2A function and identifies potential PP2A substrates. 相似文献
7.
Database of two-dimensional polyacrylamide gel electrophoresis of proteins labeled with CyDye DIGE Fluor saturation dye 总被引:2,自引:0,他引:2
Fujii K Kondo T Yokoo H Okano T Yamada M Yamada T Iwatsuki K Hirohashi S 《Proteomics》2006,6(5):1640-1653
CyDye DIGE Fluor saturation dye (saturation dye, GE Healthcare Amersham Biosciences) enables highly sensitive 2-D PAGE. As the dye reacts with all reduced cysteine thiols, 2-D PAGE can be performed with a lower amount of protein, compared with CyDye DIGE Fluor minimal dye (GE Healthcare Amersham Biosciences), the sensitivity of which is equivalent to that of silver staining. We constructed a 2-D map of the saturation dye-labeled proteins of a liver cancer cell line (HepG2) and identified by MS 92 proteins corresponding to 123 protein spots. Functional classification revealed that the identified proteins had chaperone, protein binding, nucleotide binding, metal ion binding, isomerase activity, and motor activity. The functional distribution and the cysteine contents of the proteins were similar to those in the most comprehensive 2-D database of hepatoma cells (Seow et al.., Electrophoresis 2000, 21, 1787-1813), where silver staining was used for protein visualization. Hierarchical clustering on the basis of the quantitative expression profiles of the 123 characterized spots labeled with two charge- and mass-matched saturation dyes (Cy3 and Cy5) discriminated between nine hepatocellular carcinoma cell lines and primary cultured hepatocytes from five individuals, suggesting the utility of saturation dye and our database for proteomic studies of liver cancer. 相似文献
8.
Ten‐Yang Yen Richard Wong Donald Pizzo Moe Thein Bruce A. Macher Leslie C. Timpe 《Proteomics》2020,20(15-16)
This study identifies the main changes in protein expression in human breast tumors compared to normal breast tissue. Malignant tumors (32) and normal breast tissue samples (23), from formaldehyde‐fixed, paraffin‐embedded specimens are subjected to discovery proteomics using liquid chromatography/tandem mass spectrometry, with spectral counts for quantitation. The dataset contains 1406 proteins. Differential expression is measured using a method that takes advantage of estimates of the percentage of tumor on a slide. This analysis shows that the major classes of proteins over‐expressed by tumors are RNA‐binding, heat shock and DNA repair proteins. RNA‐binding proteins, including heterogeneous nuclear ribonucleoproteins (HNRNPs), SR splice factors (SRSF) and elongation factors form the largest group. Comparison with results from another study demonstrates that the RNA‐binding proteins are associated specifically with malignant transformation, rather than with cell proliferation. HNRNP and SRSF proteins help define splice sites in normal cells. Their over‐expression may dysregulate splicing, which in turn has the potential to promote malignant transformation. 相似文献
9.
Jane A. English Patrick Dicker Melanie Föcking Michael J. Dunn David R. Cotter 《Proteomics》2009,9(12):3368-3382
The mechanisms underlying white matter changes in psychiatric disease are not known. We aimed to characterise the differential protein expression in deep white matter from the dorsolateral prefrontal cortex from 35 schizophrenia, 35 bipolar disorder, and 35 control subjects, from the Stanley Array Collection. We used 2‐D DIGE to profile for protein expression changes in the brain. We found 70 protein spots to be significantly differentially expressed between disease and control subjects (ANCOVA, p<0.05), 46 of which were subsequently identified by LC‐MS/MS. The proteins identified included novel disease candidates as well as proteins that have previously been reported as abnormal in schizophrenia, thus reinforcing their association with the disease. Furthermore, we confirmed the direction of change for three proteins using ELISA, namely neurofilament‐light, amphiphysin II, and Rab‐GDP‐α, in a subset of the Stanley Array Collection. In addition, altered expression of neurofilament‐light, amphiphysin II, and Rab‐GDP‐α was not observed in the cortex of mice chronically treated with haloperidol, making it less likely that these alterations are a consequence of neuroleptic medication. The data presented here strongly suggest disruption of the cytoskeleton and its associated signal transduction proteins in schizophrenia, and to a lesser extent in bipolar disorder. 相似文献
10.
2-D DIGE was used to investigate 'fingerprint proteins' in biological medicines. A presumably non-originator human albumin was analysed, and the 2-D DIGE patterns of the non-genuine and the authentic product were compared. The products could be clearly distinguished based on the pattern of minor components, which represent plasma proteins and degradation products remaining in the final products after fractionation and purification. The approach demonstrated that 2-D DIGE is an excellent tool for the analysis of biologicals of different sources and for ensuring the identity and quality of blood products. 相似文献
11.
Transmissible spongiform encephalopathies (TSEs) are neurodegenerative disorders caused by the presence of an infectious prion protein. The primary site of pathology is the brain characterized by neuroinflammation, astrogliosis, prion fibrils, and vacuolation. The events preceding the observed pathology remain in question. We sought to identify biomarkers in the brain of TSE‐infected and aged‐matched control mice using two‐dimensional fluorescence difference gel electrophoresis (2D‐DIGE). Since the brain proteome is too complex to resolve all proteins using 2D‐DIGE, protein samples are initially filtered through either concanavalin A (ConA) or wheat‐germ agglutinin (WGA) columns. Four differentially abundant proteins are identified through screening of the two different glycoproteomes: Neuronal growth regulator 1 (NEGR1), calponin‐3 (CNN3), peroxiredoxin‐6 (Prdx6), and glial fibrillary acidic protein (GFAP). Confirmatory Western blots are performed with samples from TSE‐infected and comparative Alzheimer's disease (AD) affected brains and their respective controls from time points throughout the disease courses. The abundance of three of the four proteins increases significantly during later stages of prion disease whereas NEGR1 decreases in abundance. Comparatively, no significant changes are observed in later stages of AD. Our lab is the first to associate the glycosylated NEGR1 protein with prion disease pathology. 相似文献
12.
Chung JY Braunschweig T Baibakov G Galperin M Ramesh A Skacel M Gannot G Knezevic V Hewitt SM 《Proteomics》2006,6(3):767-774
As we transition from genomics to the challenges of the functional proteome, new tools to explore the expression of proteins within tissue are essential. We have developed a method of transferring proteins from a formalin fixed, paraffin embedded tissues section to a stack of membranes which is then probed with antibodies for detection of individual epitopes. This method converts a traditional tissue section into a multiplex platform for expression profiling. A single tissue section can be transferred to up to ten membranes, each of which is probed with different antibodies, and detected with fluorescent secondary antibodies, and quantified by a microarray scanner. Total protein can be determined on each membrane, hence each antibody has its own normalization. This method works with phospho-specific antibodies as well as antibodies that do not readily work well with paraffin embedded tissue. This novel technique enables archival paraffin embedded tissue to be molecularly profiled in a rapid and quantifiable manner, and reduces the tissue microarray to a form of protein array. This method is a new tool for exploration of the vast archive of formalin fixed, paraffin embedded tissue, as well as a tool for translational medicine. 相似文献
13.
Amyloidosis is a group of diseases caused by extracellular accumulation of fibrillar polypeptide aggregates. So far, diagnosis is performed by Congo red staining of tissue sections in combination with polarization microscopy. Subsequent identification of the causative protein by immunohistochemistry harbors some difficulties regarding sensitivity and specificity. Mass spectrometry based approaches have been demonstrated to constitute a reliable method to supplement typing of amyloidosis, but still depend on Congo red staining. In the present study, we used matrix‐assisted laser desorption/ionization mass spectrometry imaging coupled with ion mobility separation (MALDI‐IMS MSI) to investigate amyloid deposits in formalin‐fixed and paraffin‐embedded tissue samples. Utilizing a novel peptide filter method, we found a universal peptide signature for amyloidoses. Furthermore, differences in the peptide composition of ALλ and ATTR amyloid were revealed and used to build a reliable classification model. Integrating the peptide filter in MALDI‐IMS MSI analysis, we developed a bioinformatics workflow facilitating the identification and classification of amyloidosis in a less time and sample‐consuming experimental setup. Our findings demonstrate also the feasibility to investigate the amyloid's protein composition, thus paving the way to establish classification models for the diverse types of amyloidoses and to shed further light on the complex process of amyloidogenesis. 相似文献
14.
Michael Grzendowski Markus J. Riemenschneider Eva Hawranke Anja Stefanski Helmut E. Meyer Guido Reifenberger Kai Stühler 《Proteomics》2009,9(21):4985-4990
Comprehensive molecular profiling of human tumor tissue specimens at the DNA, mRNA and protein level is often obstructed by a limited amount of available material. Homogenization of frozen tissue samples in guanidine isothiocyanate followed by ultracentrifugation over cesium chloride allows the simultaneous extraction of high‐molecular weight DNA and RNA. Here, we present a protocol for quantitative proteome analysis using the high‐salt protein fraction obtained as supernatant after ultracentrifugation for nucleic acid extraction. We applied this method to extracts from primary human brain tumors and demonstrate its successful application for protein expression profiling in these tumors using 2‐D DIGE, MS and Western blotting. 相似文献
15.
Stefan Roesler Christoph Feenders Daniel Danzer Udo Riemenschneider Bernd Blasius Ralf Rabus 《Proteomics》2016,16(14):1975-1979
An essential step in 2D DIGE‐based analysis of differential proteome profiles is the accurate and sensitive digitalisation of 2D DIGE gels. The performance progress of commercially available charge‐coupled device (CCD) camera‐based systems combined with light emitting diodes (LED) opens up a new possibility for this type of digitalisation. Here, we assessed the performance of a CCD camera system (Intas Advanced 2D Imager) as alternative to a traditionally employed, high‐end laser scanner system (Typhoon 9400) for digitalisation of differential protein profiles from three different environmental bacteria. Overall, the performance of the CCD camera system was comparable to the laser scanner, as evident from very similar protein abundance changes (irrespective of spot position and volume), as well as from linear range and limit of detection. 相似文献
16.
Ilya A. Osterman Alexey V. Ustinov Denis V. Evdokimov Vladimir A. Korshun Petr V. Sergiev Marina V. Serebryakova Irina A. Demina Maria A. Galyamina Vadim M. Govorun Olga A. Dontsova 《Proteomics》2013,13(1):17-21
To investigate the dynamic cellular response to a condition change, selective labeling of the nascent proteome is necessary. Here, we report a method combining click chemistry protein labeling with 2D DIGE. To test the relevance of the method, we compared nascent proteomes of actively growing bacterial cells with that of cells exposed to protein synthesis inhibitor, erythromycin. Cells were incubated with methionine analog, homopropargyl glycin, and their nascent proteome was selectively labeled with monosulfonated neutral Cy3 and Cy5 azides specially synthesized for this purpose. Following fluorescent labeling, the protein samples were mixed and subjected to standard 2D DIGE separation. The method allowed us to reveal a dramatic reduction of newly synthesized proteins upon erythromycin treatment, while the total proteome was not significantly affected. Additionally, several proteins, whose synthesis was resistant to erythromycin, were identified. 相似文献
17.
Giovanni Valbusa Martina Capozza Chiara Brioschi Francesco Blasi Simona Ghiani Alessandro Maiocchi 《Journal of biophotonics》2019,12(3)
The recent discovery of fluorescent dyes for improving pathologic tissues identification has highlighted the need of robust methods for performance validation especially in the field of fluorescence‐guided surgery. Optical imaging of excised tissue samples is the reference tool to validate the association between dyes localization and the underlying histology in a controlled environment. Spectral unmixing may improve the validation process discriminating dye from endogenous signal. Here, an innovative spectral modeling approach that weights the spectral shifts associated with changes in chemical environment is described. The method is robust against spectral shift variations and its application leads to unbiased spectral weights estimates as demonstrated by numerical simulations. Finally, spectral shifts values computed pixel‐wise from spectral images are used to display additional information with potential diagnostic value. 相似文献
18.
19.
Viganò A Ripamonti M De Palma S Capitanio D Vasso M Wait R Lundby C Cerretelli P Gelfi C 《Proteomics》2008,8(22):4668-4679
High altitude hypoxia is a paraphysiological condition triggering redox status disturbances of cell organization leading, via oxidative stress, to proteins, lipids, and DNA damage. In man, skeletal muscle, after prolonged exposure to hypoxia, undergoes mass reduction and alterations at the cellular level featuring a reduction of mitochondrial volume density, accumulation of lipofuscin, a product of lipid peroxidation, and dysregulation of enzymes whose time course is unknown. The effects of 7-9 days exposure to 4559 m (Margherita Hut, Monte Rosa, Italy) on the muscle proteins pattern were investigated, pre- and post-exposure, in ten young subjects, by 2-D DIGE and MS. Ten milligram biopsies were obtained from the mid part of the vastus lateralis muscle at sea level (control) and at altitude, after 7-9 days hypoxia. Differential analysis indicates that proteins involved in iron transport, tricarboxylic acid (TCA) cycle, oxidative phosphorylation, and oxidative stress responses were significantly (p<0.05) decreased in hypoxia. Parenthetically, hypoxia markers such as hypoxia inducible factor 1 alpha (HIF-1alpha) and pyruvate dehydrogenase kinase 1 (PDK1) were still at the pre-hypoxia levels, whereas the mammalian target of rapamycin (mTOR), a marker of protein synthesis, was reduced. 相似文献
20.
Oligogalacturonides (OGs) are elicitors of plant defence responses released from the homogalacturonan of the plant cell wall during the attack by pathogenic micro-organisms. The signalling pathway mediated by OGs remains poorly understood, and no proteins involved in their signal perception and transduction have yet been identified. In order to shed light into the molecular pathways regulated by OGs, a differential proteomic analysis has been carried out in Arabidopsis. Proteins from the apoplastic compartment were isolated and their expression compared between control and OG-treated seedlings. 2-D gels and difference in gel electrophoresis (DIGE) techniques were used to compare control and treated proteomes in the same gel. The analysis of subcellular proteomes from seedlings allowed the identification of novel and low abundance proteins that otherwise remain masked when total cellular extracts are investigated. The DIGE technique showed to be a powerful tool to overcome the high interexperiment variation of 2-D gels. Differentially expressed apoplastic proteins were identified by MS and included proteins putatively involved in recognition as well as proteins whose PTMs are regulated by OGs. Our findings underscore the importance of cell wall as a source of molecules playing a role in the perception of pathogens and provide candidate proteins involved in the response to OGs. 相似文献