首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Heterotrimeric G proteins have been implicated in a wide range of plant processes. These include responses to hormones, drought, and pathogens, and developmental events such as lateral root formation, hypocotyl elongation, hook opening, leaf expansion, and silique development. Results and concepts emerging from recent phenotypic analyses of G-protein component mutants in Arabidopsis and rice are adding to our understanding of G-protein mechanisms and functions in higher plants.  相似文献   

2.
The establishment and maintenance of cell polarity play pivotal roles during plant development. During the past five years, proteins that are required for different aspects of plant cell polarity have been identified. However, the functions of lipids and their interactions with proteins that mediate polarity remained largely unaddressed. Recent genetic studies have discovered cell and tissue polarity mutants that have defects in sterol composition, glycosylphosphatidylinositol-anchored proteins, glycosylphosphatidylinositol biosynthesis and phospholipid signalling. Analyses of the affected gene products have provided a first glance at the roles of lipids in cell polarity signalling, as well as in the trafficking and anchoring of polar proteins.  相似文献   

3.
Cell cycle, proteolysis and cancer   总被引:11,自引:0,他引:11  
  相似文献   

4.
Some intracellular organelles found in eukaryotes such as plants have arisen through the endocytotic engulfment of prokaryotic cells. This accounts for the presence of plant membrane intrinsic proteins that have homologs in prokaryotic cells. Other organelles, such as those of the endomembrane system, are thought to have evolved through infolding of the plasma membrane. Acquisition of intracellular components (organelles) in the cells supplied additional functions for survival in various natural environments. The organelles are surrounded by biological membranes, which contain membrane-embedded K+ transport systems allowing K+ to move across the membrane. K+ transport systems in plant organelles act coordinately with the plasma membrane intrinsic K+ transport systems to maintain cytosolic K+ concentrations. Since it is sometimes difficult to perform direct studies of organellar membrane proteins in plant cells, heterologous expression in yeast and Escherichia coli has been used to elucidate the function of plant vacuole K+ channels and other membrane transporters. The vacuole is the largest organelle in plant cells; it has an important task in the K+ homeostasis of the cytoplasm. The initial electrophysiological measurements of K+ transport have categorized three classes of plant vacuolar cation channels, and since then molecular cloning approaches have led to the isolation of genes for a number of K+ transport systems. Plants contain chloroplasts, derived from photoautotrophic cyanobacteria. A novel K+ transport system has been isolated from cyanobacteria, which may add to our understanding of K+ flux across the thylakoid membrane and the inner membrane of the chloroplast. This chapter will provide an overview of recent findings regarding plant organellar K+ transport proteins.  相似文献   

5.
Funneling auxin action: specificity in signal transduction   总被引:11,自引:0,他引:11  
  相似文献   

6.
Bacteria adhere to environmental surfaces in multicellular assemblies described as biofilms. Plant-associated bacteria interact with host tissue surfaces during pathogenesis and symbiosis, and in commensal relationships. Observations of bacteria associated with plants increasingly reveal biofilm-type structures that vary from small clusters of cells to extensive biofilms. The surface properties of the plant tissue, nutrient and water availability, and the proclivities of the colonizing bacteria strongly influence the resulting biofilm structure. Recent studies highlight the importance of these structures in initiating and maintaining contact with the host by examining the extent to which biofilm formation is an intrinsic component of plant-microbe interactions.  相似文献   

7.
Living cells rival computers in their ability to process external information and make complex behavioral decisions. Many of these decisions are made by networks of interacting signaling proteins. Ongoing structural, biochemical and cell-based studies have begun to reveal several common principles by which protein components are used to specifically transmit and process information. Recent engineering studies demonstrate that these relatively simple principles can be used to rewire signaling behavior in a process that mimics the evolution of new phenotypic responses.  相似文献   

8.
Small GTPases in vesicle trafficking   总被引:1,自引:0,他引:1  
Plant small GTPases belonging to the Rop, Arf, and Rab families are regulators of vesicle trafficking. Rop GTPases regulate actin dynamics and modulate H(2)O(2) production in polar cell growth and pathogen defence. A candidate Rop GDP to Rop GTP exchange factor (RopGEF) SPIKE1 is involved in the morphogenesis of leaf epidermal cells. The ArfGEF GNOM regulates the endosomal recycling of the PIN proteins, which are involved in polar auxin transport. Intracellular localisation of small GTPases and functional studies using dominant mutant versions of Arf and Rab GTPases are defining novel plant-specific membrane compartments, especially those that participate in endosomal vesicle trafficking.  相似文献   

9.
Live-cell imaging has yielded surprising pictures of subcellular structures and dynamics in living plant cells. Recent studies illustrate the power of live-cell observation for revealing new biological phenomena and for generating new questions about plant cell structure and function.  相似文献   

10.
Recently, studies on specification of axes in the developing embryo have focused on the heart, which is the first functional organ to form and probably responds to common cues controlling positional information in surrounding tissues. The early differentiation of heart cells affords an opportunity to link the acquisition of regional identity with the signals underlying terminal differentiation. In the past year, a wealth of information on these signals has emerged, elucidating the general pathways controlling body axes in the context of the developing heart.  相似文献   

11.
To what extent are the pathways that regulate self-renewal conserved between stem cells at different stages of development and in different tissues? Some pathways play a strikingly conserved role in regulating the self-renewal of diverse stem cells, whereas other pathways are specific to stem cells in certain tissues or at certain stages of development. Recent studies have highlighted differences between the self-renewal of embryonic, fetal and adult stem cells. By understanding these similarities and differences we may come to a molecular understanding of how stem cells replicate themselves and why aspects of this process differ between stem cells.  相似文献   

12.
The discovery of new allosteric sites generates opportunities for the identification of novel pharmaceuticals and increases our understanding of basic biological processes. Increasingly, allosteric sites are being discovered in various families of proteins by several methods, paving the way for the development of entirely new classes of drugs with a wide range of chemotypes. New allosteric sites in enzymes have been discovered both incidentally and by directed means, and the mechanisms by which allosteric activation and inhibition occur at these sites have been investigated. By exploring recent structurally well-characterized examples, trends begin to emerge for both the modes of binding and mechanisms of inhibition.  相似文献   

13.
Despite the exponential rate of discovery of new antigens and DNA vaccines resulting from modern molecular biology and proteomics, the lack of effective delivery technology is a major limiting factor in their application. The bacterial ghost system represents a platform technology for antigen, nucleic acid and drug delivery. Bacterial ghosts have significant advantages over other engineered biological delivery particles, owing to their intrinsic cellular and tissue tropic abilities, ease of production and the fact that they can be stored and processed without the need for refrigeration. These particles have found both veterinary and medical applications for the vaccination and treatment of tumors and various infectious diseases.  相似文献   

14.
15.
The genome of monotremes, like the animals themselves, is unique and strange. The importance of monotremes to genomics depends on their position as the earliest offshoot of the mammalian lineage. Although there has been controversy in the literature over the phylogenetic position of monotremes, this traditional interpretation is now confirmed by recent sequence comparisons. Characterizing the monotreme genome will therefore be important for studying the evolution and organization of the mammalian genome, and the proposal to sequence the platypus genome has been received enthusiastically by the genomics community. Recent investigations of X-chromosome inactivation, genomic imprinting and sex chromosome evolution provide good examples of the power of the monotreme genome to inform us about mammalian genome organization and evolution.  相似文献   

16.
Understanding the complex array of genes, proteins and cells involved in learning and memory is a major challenge for neuroscientists. Using the genetically powerful model system, Drosophila melanogaster, and its well-studied courtship behavior, investigators have begun to delineate essential elements of associative and nonassociative behavioral plasticity. Advances in transgenic tools and developments in behavioral assays have increased the power of studying courtship learning in the fruit fly.  相似文献   

17.
Understanding the neurobiology of social behaviour in mammals has been considerably advanced by the findings from two species of vole, one of which is monogamous and pair bonds whereas the other species is promiscuous and fails to form any long-lasting social relationships. The combination of neurobehavioural studies and molecular genetics has determined behavioural differences between the two species linked to the neural distribution of vasopressin 1A receptor in the male brain. More importantly, vasopressin 1A receptor gene transfer including the upstream regulatory sequence has enhanced male social affiliation in a non-monogamous species. Male affiliative bonding depends upon release of both vasopressin and dopamine in the ventral striatum enhancing the reward value of odour cues that signal identity.  相似文献   

18.
The sema domain   总被引:2,自引:0,他引:2  
The sema domain was first defined from sequence by Kolodkin and colleagues in the early 1990s, and constitutes the distinctive structural and functional element of semaphorins, their plexin receptors and the receptor tyrosine kinases MET and RON, three protein families with major roles in development, tissue regeneration and cancer. Recently determined crystal structures of two semaphorins (SEMA3A and SEMA4D) and the MET receptor have shown that the sema domain consists of a highly conserved variant form of the seven-blade beta-propeller fold. The structures, however, also suggest differences between these families with respect to the mode of dimerisation and the regions of the domain involved in ligand-receptor interactions. This reflects the considerable plasticity and adaptation of the sema domain in order to meet different binding requirements, properties that may underlie the vast array of ligand-receptor specificities and functions of the semaphorin superfamily.  相似文献   

19.
20.
Plant cells have a variety of shapes crucial for their functions, yet the mechanisms that generate these shapes are poorly understood. Genetic dissection of the trichome (plant hair) branching pathway in Arabidopsis, has uncovered mechanisms and identified genes that control plant cell morphogenesis. The recent identification of one of these genes, ZWICHEL (ZWI), as a novel member of the kinesin superfamily of microtubule motors provides a starting point for the analysis of the plant cytoskeleton's role in a specific morphogenetic event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号