首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distal metastasis is the main cause of death in patients with colon cancer. Tyrosine receptor kinase B (TrkB) and ERK signals may be the potential targets for the treatment of colon cancer metastasis. This study aims to investigate whether erlotinib inhibits distant metastasis of colon cancer by regulating TrkB and ERK signaling pathway. Human colon adenocarcinoma cell lines (SW480 and Caco-2) pretreated with exogenous C-X-C motif chemokine ligand 8 (CXCL8) were used to assess the suppressive effect of erlotinib on tumor metastasis, including anoikis, epithelial-mesenchymal transformation (EMT), migration, and invasion. Through TrkB overexpression, Akt suppression, and ERK suppression, the roles of TrkB, Akt, and ERK in erlotinib-induced metastasis inhibition of colon cancer cells were explored. The results showed that erlotinib alleviated CXCL8-induced metastasis of the colon cancer cells. Overexpression of TrkB in colon cancer cells eliminated the effect of erlotinib on anoikis, inhibition of EMT, migration, and invasion, and downregulation of p-ERK and p-Akt. Furthermore, the inhibition of ERK activation instead of Akt activation was found to participate in erlotinib-mediated metastasis resistance, including anoikis, inhibition of EMT, migration, and invasion. In conclusion, erlotinib inhibits colon cancer cell anoikis resistance, EMT, migration, and invasion by inactivating TrkB-dependent ERK signaling pathway.  相似文献   

2.
Although functional roles have been assigned to many genes, e.g. those involved in cell-cycle regulation, growth signaling, or cancer, considerably less is known about the quantitative relationship between gene expression levels and outcome. We devised an intra-population competition to study oncogene dosage. Cell populations were engineered to express a range of H-Ras oncogene levels. Cells with different levels of H-Ras then “competed” for an increased share of the total cell population. Using flow cytometry to track the population composition over time, we determined the relationship between the different H-Ras oncogene expression levels and the net proliferation rate. Under culture conditions in which wild-type Ras activation was suppressed, we found that increased and maximal net proliferation occurred when the H-Ras G12V oncogene was expressed at a level 1.2-fold that of wild-type Ras. As the H-Ras G12V expression levels increased above this optimal level, proliferation rates decreased. Our findings suggest that the tumor evolution process may optimize gene expression levels for maximal cell proliferation. In principle, engineered intra-population competitions can be used to determine proliferation rates associated with the level of any ectopically expressed gene. The approach also may be used to determine proliferation rates associated with different cell species in a heterogeneous population or to improve the proliferation rate of a cell line. We also envision that the tracking of intra-population competitions could be utilized to investigate the evolution of tumors in the body.  相似文献   

3.
Inactivation of the tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is heavily implicated in the tumorigenesis of prostate cancer. Conversely, the upregulation of the chemokine (CXC) receptor 4 (CXCR4) is associated with prostate cancer progression and metastasis. Studies have shown that loss of PTEN permits CXCR4-mediated functions in prostate cancer cells. Loss of PTEN function is typically due to genetic and epigenetic modulations, as well as active site oxidation by reactive oxygen species (ROS); likewise ROS upregulates CXCR4 expression. Herein, we show that ROS accumulation permitted CXCR4-mediated functions through PTEN catalytic inactivation. ROS increased p-AKT and CXCR4 expression, which were abrogated by a ROS scavenger in prostate cancer cells. ROS mediated PTEN inactivation but did not affect expression, yet enhanced cell migration and invasion in a CXCR4-dependent manner. Collectively, our studies add to the body of knowledge on the regulatory role of PTEN in CXCR4-mediated cancer progression, and hopefully, will contribute to the development of therapies that target the tumor microenvironment, which have great potential for the better management of a metastatic disease.  相似文献   

4.
Lung cancer is globally widespread and associated with high morbidity and mortality. DDA1 (DET1 and DDB1 associated 1) was first discovered and registered in the GenBank database by our colleagues. DDA1, an evolutionarily conserved gene, might have significant functions. Recent reports have demonstrated that DDA1 is linked to the ubiquitin–proteasome pathway and facilitates the degradation of target proteins. However, the function of DDA1 in lung cancer was previously unknown. This study aimed to investigate whether DDA1 contributes to tumorigenesis and progression of lung cancer. We found that the expression of DDA1 in normal lung cells and tissue was significantly lower than that in lung cancer and was associated with poor prognosis. DDA1 overexpression promoted proliferation of lung tumour cells and facilitated cell cycle progression in vitro and subcutaneous xenograft tumour progression in vivo. Mechanistically, this was associated with the regulation of S phase and cyclins including cyclin D1/D3/E1. These results indicate that DDA1 promotes lung cancer progression, potentially through promoting cyclins and cell cycle progression. Therefore, DDA1 may be a potential novel target for lung cancer treatment, and a biomarker for tumour prognosis.  相似文献   

5.
6.
Helicobacter pylori is a gastric pathogen that infects half the human population and causes gastritis, ulcers, and cancer. The cagA gene product is a major virulence factor associated with gastric cancer. It is injected into epithelial cells, undergoes phosphorylation by host cell kinases, and perturbs host signaling pathways. CagA is known for its geographical, structural, and functional diversity in the C-terminal half, where an EPIYA host-interacting motif is repeated. The Western version of CagA carries the EPIYA segment types A, B, and C, while the East Asian CagA carries types A, B, and D and shows higher virulence. Many structural variants such as duplications and deletions are reported. In this study, we gained insight into the relationships of CagA variants through various modes of recombination, by analyzing all known cagA variants at the DNA sequence level with the single nucleotide resolution. Processes that occurred were: (i) homologous recombination between DNA sequences for CagA multimerization (CM) sequence; (ii) recombination between DNA sequences for the EPIYA motif; and (iii) recombination between short similar DNA sequences. The left half of the EPIYA-D segment characteristic of East Asian CagA was derived from Western type EPIYA, with Amerind type EPIYA as the intermediate, through rearrangements of specific sequences within the gene. Adaptive amino acid changes were detected in the variable region as well as in the conserved region at sites to which no specific function has yet been assigned. Each showed a unique evolutionary distribution. These results clarify recombination-mediated routes of cagA evolution and provide a solid basis for a deeper understanding of its function in pathogenesis.  相似文献   

7.
8.
9.
10.
Ye Y  Hou R  Chen J  Mo L  Zhang J  Huang Y  Mo Z 《Hormones et métabolisme》2012,44(4):263-267
Formononetin is a main active component of red clover plants (Trifolium pratense L.), and is considered as a phytoestrogen. Our previous studies demonstrated that formononetin caused cell cycle arrest at the G0/G1 phase by inactivating insulin-like growth factor 1(IGF1)/IGF1R-phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway in MCF-7 cells. In the present study, we investigated the molecular mechanisms involved in the effect of formononetin on prostate cancer cells. Our results suggested that higher concentrations of formononetin inhibited the proliferation of prostate cancer cells (LNCaP and PC-3), while the most striking effect was observed in LNCaP cells. We further found that formononetin inactivated extracellular signal-regulated kinase1/2 (ERK1/2) mitogen-activated protein kinase (MAPK) signaling pathway in a dose-dependent manner, which resulted in increased the expression levels of BCL2-associated X (Bax) mRNA and protein, and induced apoptosis in LNCaP cells. Thus, we concluded that the induced apoptosis effect of formononetin on human prostate cancer cells was related to ERK1/2 MAPK-Bax pathway. Considering that red clover plants were widely used clinically, our results provided the foundation for future development of different concentrations formononetin for treatment of prostate cancer.  相似文献   

11.
Regulating mammalian checkpoints through Cdc25 inactivation   总被引:11,自引:0,他引:11       下载免费PDF全文
Precise monitoring of DNA replication and chromosome segregation ensures that there is accurate transmission of genetic information from a cell to its daughters. Eukaryotic cells have developed a complex network of checkpoint pathways that sense DNA lesions and defects in chromosome segregation, spindle assembly and the centrosome cycle, leading to an inhibition of cell-cycle progression for the time required to remove the defect and thus preventing genomic instability. The activation of checkpoints that are responsive to DNA damage or incomplete DNA replication ultimately results in the inhibition of cyclin-dependent kinases. This review focuses on our understanding of the biochemical mechanisms that specifically inactivate Cdc25 (cell division cycle 25) phosphatases to achieve this. The evidence for links between checkpoint deregulation and oncogenesis is discussed.  相似文献   

12.
Estrogens such as 17-beta estradiol (E(2)) play a critical role in sporadic breast cancer progression and decrease apoptosis in breast cancer cells. Our studies using estrogen receptor-positive MCF7 cells show that E(2) abrogates apoptosis possibly through phosphorylation/inactivation of the proapoptotic protein BAD, which was rapidly phosphorylated at S112 and S136. Inhibition of BAD protein expression with specific antisense oligonucleotides reduced the effectiveness of tumor necrosis factor-alpha, H(2)O(2), and serum starvation in causing apoptosis. Furthermore, the ability of E(2) to prevent tumor necrosis factor-alpha-induced apoptosis was blocked by overexpression of the BAD S112A/S136A mutant but not the wild-type BAD. BAD S112A/S136A, which lacks phosphorylation sites for p90(RSK1) and Akt, was not phosphorylated in response to E(2) in vitro(.) E(2) treatment rapidly activated phosphatidylinositol 3-kinase (PI-3K)/Akt and p90(RSK1) to an extent similar to insulin-like growth factor-1 treatment. In agreement with p90(RSK1) activation, E(2) also rapidly activated extracellular signal-regulated kinase, and this activity was down-regulated by chemical and biological inhibition of PI-3K suggestive of cross talk between signaling pathways responding to E(2). Dominant negative Ras blocked E(2)-induced BAD phosphorylation and the Raf-activator RasV12T35S induced BAD phosphorylation as well as enhanced E(2)-induced phosphorylation at S112. Chemical inhibition of PI-3K and mitogen-activated protein kinase kinase 1 inhibited E(2)-induced BAD phosphorylation at S112 and S136 and expression of dominant negative Ras-induced apoptosis in proliferating cells. Together, these data demonstrate a new nongenomic mechanism by which E(2) prevents apoptosis.  相似文献   

13.
14.
Recent development in microbiology and genetic engineering has provided the identification and characterization of so-called 'oncogenes'. The concept of oncogenes has much stimulated intense interest in searching the cause of uncontrolled cell growth and factors responsible for formation of tumors. Because of the fact that oncogenes were first discovered in an established cell line derived from patient with bladder tumor, the association between oncogenes and genitourinary cancer has much attention. Variety of pathways of tumor development in bladder cancer can be divided in two major forms, low grade papillary tumor and high grade infiltrating tumor. Activation and a sequence of oncogenes may be relevant to the ultimate expression of these separate pathways. Concept of initiation and promotion may also be factored into these consideration. The application of these principles to the different pathways of tumor development such as in bladder, kidney and prostate cancers, supports the concept that oncogenes may be required to production of malignant tumors. The purpose of this paper is to review recent evidence that has enhanced our understanding of the genetic basis of cancer development in the genitourinary tract cancer.  相似文献   

15.
X-chromosome inactivation represents an epigenetics paradigm and a powerful model system of facultative heterochromatin formation triggered by a non-coding RNA, Xist, during development. Once established, the inactive state of the Xi is highly stable in somatic cells, thanks to a combination of chromatin associated proteins, DNA methylation and nuclear organization. However, sporadic reactivation of X-linked genes has been reported during ageing and in transformed cells and disappearance of the Barr body is frequently observed in cancer cells. In this review we summarise current knowledge on the epigenetic changes that accompany X inactivation and discuss the extent to which the inactive X chromosome may be epigenetically or genetically perturbed in breast cancer.  相似文献   

16.
17.
Cofilin regulates reorganization of actin filaments (F-actin) in eukaryotes. A recent finding has demonstrated that oxidation of cofilin by taurine chloramine (TnCl), a physiological oxidant derived from neutrophils, causes cofilin to translocate to the mitochondria inducing apoptosis (F. Klamt et al. Nat. Cell Biol. 11:1241–1246; 2009). Here we investigated the effect of TnCl on biological activities of cofilin in vitro. Our data show that TnCl-induced oxidation of recombinant human cofilin-1 inhibits its F-actin-binding and depolymerization activities. Native cofilin contains four free Cys and three Met residues. Incubation of oxidized cofilin with DTT does not lead to its reactivation. A double Cys to Ala mutation on the two C-terminal Cys shows similar biological activities as the wild type, but does not prevent the TnCl-induced inactivation. In contrast, incubation of oxidized cofilin with methionine sulfoxide reductases results in its reactivation. Phosphorylation is known to inhibit cofilin activities. We found that Met oxidation also prevents phosphorylation of cofilin, which is reversed by incubating oxidized cofilin with methionine sulfoxide reductases. Interestingly, intact protein mass spectrometry of the oxidized mutant indicated one major oxidation product with an additional mass of 16 Da, consistent with oxidation of one specific Met residue. This residue was identified as Met-115 by peptide mapping and tandem mass spectrometry. It is adjacent to Lys-114, a known residue on globular-actin-binding site, implying that oxidation of Met-115 disrupts the globular-actin-binding site of cofilin, which causes TnCl-induced inactivation. The findings identify Met-115 as a redox switch on cofilin that regulates its biological activity.  相似文献   

18.
19.
Bladder cancer is a highly heterogeneous and aggressive malignancy with a poor prognosis. EGF/EGFR activation causes the detachment of SHC-binding protein 1 (SHCBP1) from SHC adapter protein 1 (SHC1), which subsequently translocates into the nucleus and promotes cancer development via multiple signaling pathways. However, the role of the EGF-SHCBP1 axis in bladder cancer progression remains unexplored. Herein, we report that SHCBP1 is upregulated in bladder cancer tissues and cells, with cytoplasmic or nuclear localization. Released SHCBP1 responds to EGF stimulation by translocating into the nucleus following Ser273 phosphorylation. Depletion of SHCBP1 reduces EGF-induced cell migration and invasiveness of bladder cancer cells. Mechanistically, SHCBP1 binds to RACGAP1 via its N-terminal domain of amino acids 1 ~ 428, and this interaction is enhanced following EGF treatment. Furthermore, SHCBP1 facilitates cell migration by inhibiting RACGAP-mediated GTP-RAC1 inactivation, whose activity is indispensable for cell movement. Collectively, we demonstrate that the EGF-SHCBP1-RACGAP1-RAC1 axis acts as a novel regulatory mechanism of bladder cancer progression, which offers a new clinical therapeutic strategy to combat bladder cancer.Subject terms: Bladder cancer, RHO signalling  相似文献   

20.
Nicotine-induced cell survival is associated with chemoresistance of human lung cancer cells, but our understanding of the intracellular mechanism(s) is fragmentary. Bax is a major proapoptotic member of the Bcl2 family and a molecule required for apoptotic cell death. Growth factor (i.e. granulocyte-macrophage colony-stimulating factor)-induced phosphorylation of Bax has been reported to negatively regulate its proapoptotic function. Because Bax is ubiquitously expressed in both small cell lung cancer and non-small cell lung cancer cells, nicotine may mimic growth factor(s) to regulate the activity of Bax. We found that nicotine potently induces Bax phosphorylation at Ser-184, which results in abrogation of the proapoptotic activity of Bax and increased cell survival. AKT, a known physiological Bax kinase, is activated by nicotine, co-localizes with Bax in the cytoplasm, and can directly phosphorylate Bax in vitro. Treatment of cells with the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 or specific depletion of AKT expression by RNA interference can block both nicotine-induced Bax phosphorylation and cell survival. Importantly, nicotine-induced Bax phosphorylation potently blocks stress-induced translocation of Bax from cytosol to mitochondria, impairs Bax insertion into mitochondrial membranes, and reduces the half-life of Bax protein (i.e. from 9-12 h to <6 h). Because knockdown of Bax expression by gene silencing results in prolonged cell survival following treatment with cisplatin in the absence or presence of nicotine, Bax may be an essential component in the nicotine survival signaling pathway. Thus, nicotine-induced survival and chemoresistance of human lung cancer cells may occur in a novel mechanism involving activation of PI3K/AKT that directly phosphorylates and inactivates the proapoptotic function of Bax.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号