首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 891 毫秒
1.
2.
In vivo and in vitro gene transfer experiments have suggested that the elements mediating intron recognition differ in mammalian, yeast and plant nuclei. Differences in the sequence dependencies, which also exist between dicotyledonous and monocotyledonous nuclei, have prevented some monocot introns from being spliced in dicot nuclei. To locate elements which modulate efficient recognition of introns in dicot nuclei, the maize Adh1 gene has been expressed in full-length and single intron constructs in Nicotiana benthamiana nuclei using an autonomously replicating plant expression vector. Quantitative PCR-Southern analyses indicate that the inefficient splicing of the maize Adh1 intron 1 (57% AU) in these dicot nuclei can be dramatically enhanced by increasing the degree of U1 snRNA complementarity at the 5′ splice site. This indicates that the 5′ splice site plays a significant role in defining the splicing efficiency of an intron in dicot nuclei and that, most importantly, the remainder of this monocot intron contains no elements which inhibit its accurate recognition in dicot nuclei. Deletions in intron 3 (66% AU) which effectively move the 3′ boundary between AU-rich intron and GC-rich exon sequences strongly activate a cryptic upstream splice site; those which do not reposition this boundary activate a downstream cryptic splice site. This suggests that 3′ splice site selection in dicot nuclei is extremely flexible and not dependent on strict sequence requirements but rather on the transition points between introns and exons. Our results are consistent with a model in which potential splice sites are selected if they are located upstream (5′ splice site) or downstream (3′ splice site) of AU transition points and not if they are embedded within AU-rich sequences.  相似文献   

3.
4.
5.
Introns are flanked by a partially conserved coding sequence that forms the immediate exon junction sequence following intron removal from pre-mRNA. Phylogenetic evidence indicates that these sequences have been targeted by numerous intron insertions during evolution, but little is known about this process. Here, we test the prediction that exon junction sequences were functional splice sites that existed in the coding sequence of genes prior to the insertion of introns. To do this, we experimentally identified nine cryptic splice sites within the coding sequence of actin genes from humans, Arabidopsis, and Physarum by inactivating their normal intron splice sites. We found that seven of these cryptic splice sites correspond exactly to the positions of exon junctions in actin genes from other species. Because actin genes are highly conserved, we could conclude that at least seven actin introns are flanked by cryptic splice sites, and from the phylogenetic evidence, we could also conclude that actin introns were inserted into these cryptic splice sites during evolution. Furthermore, our results indicate that these insertion events were dependent upon the splicing machinery. Because most introns are flanked by similar sequences, our results are likely to be of general relevance.  相似文献   

6.
Splicing of mammalian introns requires that the intron possess at least 80 nucleotides. This length requirement presumably reflects the constraints of accommodating multiple snRNPs simultaneously in the same intron. In the free-living nematode, C. elegans, introns typically are 45 to 55 nucleotides in length. In this report, we determine whether C. elegans introns can obviate the mammalian length requirement by virtue of their structure or sequence. We demonstrate that a 53 nucleotide intron from the unc-54 gene of C. elegans does not undergo splicing in a mammalian (HeLa) nuclear extract. However, insertion of 31 nucleotides of foreign, prokaryotic sequence into the same intron results in efficient splicing. The observed splicing proceeds by the same two-step mechanism observed with mammalian introns, and exploits the same 3' and 5' splice sites as are used in C. elegans. The branch point used lies in the inserted sequence. We conclude that C. elegans splicing components are either fewer in number or smaller than their mammalian counterparts.  相似文献   

7.
8.
We describe a new program called cryptic splice finder (CSF) that can reliably identify cryptic splice sites (css), so providing a useful tool to help investigate splicing mutations in genetic disease. We report that many css are not entirely dormant and are often already active at low levels in normal genes prior to their enhancement in genetic disease. We also report a fascinating correlation between the positions of css and introns, whereby css within the exons of one species frequently match the exact position of introns in equivalent genes from another species. These results strongly indicate that many introns were inserted into css during evolution and they also imply that the splicing information that lies outside some introns can be independently recognized by the splicing machinery and was in place prior to intron insertion. This indicates that non-intronic splicing information had a key role in shaping the split structure of eukaryote genes.  相似文献   

9.
In an attempt to further increase transgene expression levels in plants over and above the enhancement obtained with a 5′ untranslated leader intron, three different maize introns were inserted at three different positions within the coding sequence of the luciferase reporter gene. Constructs were transformed into maize (Black Mexican Sweet) cells and protoplasts, and their activity determined. Although all introns tested were correctly spliced, only one of them in a particular position was able to enhance gene expression. Correct splicing sites were used for intron removal and the quantity of luciferase mRNA produced did not differ significantly. These data indicate that both the position and the sequence of an intron have marked effects on expression levels, suggesting that nuclear processing of the pre-mRNA determines final expression levels through the structure of the mRNP.  相似文献   

10.
Most of the eukaryotic protein-coding genes are interrupted by multiple introns. A substantial fraction of introns occupy the same position in orthologous genes from distant eukaryotes, such as plants and animals, and consequently are inferred to have been inherited from the common ancestor of these organisms. In contrast to these conserved introns, many other introns appear to have been gained during evolution of each major eukaryotic lineage. The mechanism(s) of insertion of new introns into genes remains unknown. Because the nucleotides that flank splice junctions are nonrandom, it has been proposed that introns are preferentially inserted into specific target sequences termed protosplice sites. However, it remains unclear whether the consensus nucleotides flanking the splice junctions are remnants of the original protosplice sites or if they evolved convergently after intron insertion. Here, we directly address the existence of protosplice sites by examining the context of introns inserted within codons that encode amino acids conserved in all eukaryotes and accordingly are not subject to selection for splicing efficiency. We show that introns are either predominantly inserted into specific protosplice sites, which have the consensus sequence (A/C)AG/Gt, or that they are inserted randomly but are preferentially fixed at such sites.  相似文献   

11.
12.
13.
Insertion of the maize transposable element Mu-1 into the first intron of the alcohol dehydrogenase locus (Adh1) of maize produced mutant Adh1-S3034 with 40% of the wild-type level of protein and mRNA. Continued instability at this locus resulted in secondary mutations with lower levels of protein expression. One of these, Adh1-S3034a, has no detectable ADH1 expression. This paper describes the precise nature of the changes in the Adh1 gene that gave rise to the S3034a allele. The Mu-1 element is still present in the mutant, but Adh1 sequences immediately adjacent to the element are deleted. The deletion starts precisely at the Mu-1 insertion site and extends 74 bp leftward removing part of the first intron, the intron:exon junction and 2 bp of the eleventh amino acid codon in the first exon of the gene. Tests for reversion within the somatic tissue of plants show that mutant S3034a, unlike its progenitor, is stably null for ADH1 activity.  相似文献   

14.
A yeast ACT1 intron in which both the first and last intron nucleotides are mutated, the /a-c/ intron, splices 10% as well as wild type. We selected for additional cis-acting mutations that improve the splicing of /a-c/ introns and recovered small deletions upstream of the 3' splice site. For example, deletion of nucleotides -9 and -10 upstream of the 3' splice site increased the splicing activity of the /a-c/ intron to 30% that of the wild-type ACT1 intron. To determine if the increased /a-c/ splicing was due to changes in intron spacing or sequence, we made mutations that mimicked the local sequence of the delta-9, -10 deletion without deleting any nucleotides. These mutants also increased /a-c/ splicing, indicating that the increased splicing activity was due to changes in intron sequence. The delta-9, -10 deletion was not allele specific to the /a-c/ intron, and improved the splicing efficiency of many mutant introns with step II splicing defects. To further define the sequences required for improved splicing of mutant introns, we randomized the region upstream of the ACT1 3' splice site. We found that almost all sequence alterations improved the splicing of the /a-c/ intron. We postulate that this sequence near the 3' end of the intron represses the splicing of mutant introns, perhaps by serving as the binding site for a negative splicing factor.  相似文献   

15.
Plant introns are typically AU-rich or U-rich, and this feature has been shown to be important for splicing. In maize, however, about 20% of the introns exceed 50% GC, and most of them are efficiently spliced. A series of constructs has been designed to analyze the cis requirements for splicing of the GC-rich Bz2 maize intron and two other GC-rich intron derivatives. By manipulating exon, intron and splice site sequences it is shown that exons can play an important role in intron definition: changes in exon sequences can increase splicing efficiency of a GC-rich intron from 17% to 86%. The relative difference, or base compositional contrast, in GC and U content between exon and intron sequences in the vicinity of splice sites, rather than the absolute base-content of the intron or exons, correlates with splicing efficiency. It is also shown that GC-rich intron constructs that are poorly spliced can be partially rescued by an improved 3' splice site.  相似文献   

16.
17.
The effects of branchpoint sequence, the pyrimidine stretch, and intron size on the splicing efficiency of the Drosophila white gene second intron were examined in nuclear extracts from Drosophila and human cells. This 74-nucleotide intron is typical of many Drosophila introns in that it lacks a significant pyrimidine stretch and is below the minimum size required for splicing in human nuclear extracts. Alteration of sequences of adjacent to the 3' splice site to create a pyrimidine stretch was necessary for splicing in human, but not Drosophila, extracts. Increasing the size of this intron with insertions between the 5' splice site and the branchpoint greatly reduced the efficiency of splicing of introns longer than 79 nucleotides in Drosophila extracts but had an opposite effect in human extracts, in which introns longer than 78 nucleotides were spliced with much greater efficiency. The white-apricot copia insertion is immediately adjacent to the branchpoint normally used in the splicing of this intron, and a copia long terminal repeat insertion prevents splicing in Drosophila, but not human, extracts. However, a consensus branchpoint does not restore the splicing of introns containing the copia long terminal repeat, and alteration of the wild-type branchpoint sequence alone does not eliminate splicing. These results demonstrate species specificity of splicing signals, particularly pyrimidine stretch and size requirements, and raise the possibility that variant mechanisms not found in mammals may operate in the splicing of small introns in Drosophila and possibly other species.  相似文献   

18.
19.
20.
We have cloned and determined the nucleotide sequence of a gene encoding alcohol dehydrogenase (Adh) from Triticum aestivum cv. Millewa. Southern analysis using cv. Chinese Spring nullisomic-tetrasomic and ditelosomic lines established that the cloned gene mapped to the long arm of chromosome 1A and does not correspond to any previously identified wheat Adh locus. Southern analysis also provided evidence for triplicate copies of this Adh gene on the homoeologous group 1 chromosomes, while Northern blots indicated that the homoeologous group 1 Adh genes, like several other plant Adh genes, are transcribed under anaerobic conditions. Sequence analysis indicates that the cloned gene has a structure similar to both monocot and dicot Adh genes with an open reading frame encoding a polypeptide of 379 amino acids. Sequences important for eucaryotic gene expression such as the TATA box, polyadenylation signal, and intron splice sites were found in the expected positions. The open reading frame is interrupted by 8 introns which are in identical positions with 8 of the 9 introns in maize and pea Adh genes, suggesting that during evolution there are processes occurring that result in the loss of introns. Sequence analysis also revealed that the cloned wheat Adh gene shared extensive homology with the barley Adh3 gene not only in the coding region but also in the noncoding regions. However, this homology is discontinuous as a result of a 1.8-kbp insertion (TLM), which is present in the cloned wheat Adh gene and absent in the barley Adh3 gene. Sequence analysis of this insertion reveals features characteristic of the short terminal inverted repeat class of eucaryotic transposable elements. We have no evidence for the transposition of the TLM element. However, Southern blots reveal multiple copies of sequences related to TLM in the wheat genome and in other closely related species, suggesting that transposition may once have played an important role in the evolution of the Gramineae family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号