首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 167 毫秒
1.
CB1R play a role in alcohol withdrawal and in some effects of acupuncture. Interestingly, acupuncture has been used to alleviate alcohol withdrawal. Here, we investigated electroacupuncture (EA) effects during ethanol withdrawal on CB1R immunoreactivity. Male Swiss mice were daily injected with ethanol (2g/kg, i.p) (EtOH group), for 21 days. EA was performed daily during 4 days of ethanol withdrawal. The stimuli of 2 or 100 Hz were provided in two acupoints combination: Ea1 [(ST-36/Zusanli) and (PC-6/Neiguan)] or Ea2 [(DU-14/Dazhui) and (DU-20/Baihui)]. The specificity of the acupoints were assessed by the inclusion of three additional groups, Ea3 [(ST 25/Tianshu - acupoints used to other non-related disorders)], Sham1 and Sham2 (transdermic stimulation nearly to the respective acupoints). EtOH group were only handled during withdrawal and Saline group was chronically treated with Saline and handled similarly to EtOH group. One day after withdrawal the animals were perfused and their brains processed for immunohistochemistry. There was an increase of CB1R in the prefrontal cortex, striatum, hippocampus, amygdala and ventral tegmental area. The procedures used in the 2HzEa1 and 100HzEa2 groups were the most effective and specific to inhibit this CB1R upregulation. Therefore, EA inhibits CB1R upregulation seen in ethanol withdrawn mice. The specificity of acupoints stimulation depends of the encephalic nuclei, acupoints association and frequency of stimulation.  相似文献   

2.
3.
The present study characterized the effects of withdrawal from cocaine on the expression of NMDA receptor subunits (NR1, NR2B) and neuronal nitric oxide synthase. FosB induction was measured to confirm that repeated cocaine exposure influenced protein expression, as previously reported. Administration of cocaine followed by 24 h, 72 h, or 14 days of withdrawal resulted in alterations of NR1 and NR2B subunits and neuronal nitric oxide synthase expression as measured by immunohistochemical labeling of rat brain sections. Optical density analyses revealed significant up-regulation of NR1 in the ventral tegmental area at 72 h and 14 days of withdrawal. Structure-specific and withdrawal time-dependent alterations in NR2B expression were also found. After 24 h of withdrawal, cocaine-induced decreases in NR2B expression were observed in the nucleus accumbens shell, whereas increases in NR2B expression were found in medial cortical areas. Two weeks of withdrawal from cocaine caused an approximately 50% increase in NR2B subunit expression in regions of the cortex, neostriatum, and nucleus accumbens. In contrast, cocaine-induced up-regulation of neuronal nitric oxide synthase was transient and evident in cortical areas only at 24 h after the last drug injection. The results suggest that region-specific changes in interactions among proteins associated with the NMDA receptor complex may underlie neuronal adaptations following repeated cocaine administration.  相似文献   

4.
The current review evaluates the evidence that some of the pharmacological and behavioral effects of ethanol (EtOH), including EtOH-preferring behavior, may be mediated through the endocannabinoid signaling system. The recent advances in the understanding of the neurobiological basis of alcoholism suggest that the pharmacological and behavioral effects of EtOH are mediated through its action on neuronal signal transduction pathways and ligand-gated ion channels, receptor systems, and receptors that are coupled to G-proteins. The identification of a G-protein-coupled receptor, namely, the cannabinoid receptor (CB1 receptor) that was activated by Delta(9)-tetrahydrocannabinol (Delta(9)-THC), the major psychoactive component of marijuana, led to the discovery of endogenous cannabinoid agonists. To date, two fatty acid derivatives identified to be arachidonylethanolamide (AEA) and 2-arachidonylglycerol (2-AG) have been isolated from both nervous and peripheral tissues. Both these compounds have been shown to mimic the pharmacological and behavioral effects of Delta(9)-THC. The involvement of the endocannabinoid signaling system in the development of tolerance to the drugs of abuse including EtOH has not been known until recently. Recent studies from our laboratory have demonstrated for the first time the down-regulation of CB1 receptor function and its signal transduction by chronic EtOH. The observed down-regulation of CB1 receptor binding and its signal transduction results from the persistent stimulation of the receptors by the endogenous CB1 receptor agonists, AEA and 2-AG, the synthesis of which has been found to be increased by chronic EtOH treatment. This enhanced formation of endocannabinoids may subsequently influence the release of neurotransmitters. It was found that the DBA/2 mice, known to avoid EtOH intake, have significantly reduced brain-CB1-receptor function consistent with other studies, where the CB1 receptor antagonist SR141716A has been shown to block voluntary EtOH intake in rodents. Similarly, activation of the CB1 receptor system promoted alcohol craving, suggesting a role for the CB1 receptor gene in excessive EtOH drinking behavior and development of alcoholism. Ongoing investigations may lead to the development of potential therapeutic strategies for the treatment of alcoholism.  相似文献   

5.
As the contribution of cannabinoid (CB1) receptors in the neuroadaptations following chronic alcohol exposure is unknown, we investigated the neuroadaptations induced by chronic alcohol exposure on both NMDA and GABA(A) receptors in CB1-/- mice. Our results show that basal levels of hippocampal [(3)H]MK-801 ((1)-5-methyl-10,11-dihydro-5Hdibenzo[a,d]cyclohepten-5,10-imine) binding sites were decreased in CB1-/- mice and that these mice were also less sensitive to the locomotor effects of MK-801. Basal level of both hippocampal and cerebellar [(3)H]muscimol binding was lower and sensitivity to the hypothermic effects of diazepam and pentobarbital was increased in CB1-/- mice. GABA(A)alpha1, beta2, and gamma2 and NMDA receptor (NR) 1 and 2B subunit mRNA levels were altered in striatum of CB1-/- mice. Our results also showed that [(3)H]MK-801 binding sites were increased in cerebral cortex and hippocampus after chronic ethanol ingestion only in wild-type mice. Chronic ethanol ingestion did not modify the sensitivity to the locomotor effects of MK-801 in both genotypes. Similarly, chronic ethanol ingestion reduced the number of [(3)H]muscimol binding sites in cerebral cortex, but not in cerebellum, only in CB1+/+ mice. We conclude that lifelong deletion of CB1 receptors impairs neuroadaptations of both NMDA and GABA(A) receptors after chronic ethanol exposure and that the endocannabinoid/CB1 receptor system is involved in alcohol dependence.  相似文献   

6.
Delta(9)-tetrahydrocannabinol (Delta(9)-THC), a primary psychoactive constituent of cannabis, has been reported to act as a neuroprotectant via the cannabinoid CB(1) receptor. In this study, Delta(9)-THC significantly decreased the infarct volume in a 4 h mouse middle cerebral artery occlusion mouse model. The neuroprotective effect of Delta(9)-THC was completely abolished by SR141716, cannabinoid CB(1) receptor antagonist, and by warming the animals to 31 degrees C. Delta(9)-THC significantly decreased the rectal temperature, and the hypothermic effect was also inhibited by SR141716 and by warming to 31 degrees C. At 24 h after cerebral ischemia, Delta(9)-THC significantly increased the expression level of CB(1) receptor in both the striatum and cortex, but not in the hypothalamus. Warming to 31 degrees C during 4 h cerebral ischemia did not increase the expression of CB(1) receptor at the striatum and cortex in MCA-occluded mice. These results show that the neuroprotective effect of Delta(9)-THC is mediated by a temperature-dependent mechanism via the CB(1) receptor. In addition, warming to 31 degrees C might attenuate both the neuroprotective and hypothermic effects of Delta(9)-THC through inhibiting the increase in CB(1) receptor in both the striatum and cortex but not in the hypothalamus, which may suggest a new thermoregulation mechanism of Delta(9)-THC.  相似文献   

7.
We investigated the role of the Ras/extracellular-regulated kinase (ERK) pathway in the development of tolerance to Delta(9)-tetrahydrocannabinol (THC)-induced reduction in spontaneous locomotor activity by a genetic (Ras-specific guanine nucleotide exchange factor (Ras-GRF1) knock-out mice) and pharmacological approach. Pre-treatment of wild-type mice with SL327 (50 mg/kg i.p.), a specific inhibitor of mitogen-activated protein kinase kinase (MEK), the upstream kinase of ERK, fully prevented the development of tolerance to THC-induced hypolocomotion. We investigated the impact of the inhibition of ERK activation on the biological processes involved in cannabinoid tolerance (receptor down-regulation and desensitization), by autoradiographic cannabinoid CB1 receptor and cannabinoid-stimulated [(35)S]GTPgammaS binding studies in subchronically treated mice (THC, 10 mg/kg s.c., twice a day for 5 days). In the caudate putamen and cerebellum of Ras-GRF1 knock-out mice and SL327 pre-treated wild-type mice, CB1 receptor down-regulation and desensitization did not occur, suggesting that ERK activation might account for CB1 receptor plasticity involved in the development of tolerance to THC hypolocomotor effect. In contrast, the hippocampus and prefrontal cortex showed CB1 receptor adaptations regardless of the genetic or pharmacological inhibition of the ERK pathway, suggesting regional variability in the cellular events underlying the altered CB1 receptor function. These findings suggest that at least in the caudate putamen and cerebellum, the Ras/ERK pathway is essential for triggering the alteration in CB1 receptor function responsible for tolerance to THC-induced hypomotility.  相似文献   

8.
Abstract : In an earlier study, we demonstrated that chronic ethanol (EtOH) exposure down-regulated the cannabinoid receptors (CB1) in mouse brain synaptic plasma membrane. In the present study, we investigated the effect of chronic EtOH on the formation of anandamide (AnNH), an endogenous cannabimimetic compound, and its precursor N-arachidonoylphosphatidylethanolamine (N-ArPE) in SK-N-SH cells that were prelabeled with [3H]arachidonic acid. The results indicate that exposure of SK-N-SH cells to EtOH (100 mM) for 72 h significantly increased levels of [3H]AnNH and [3H]N-ArPE (p < 0.05) (1.43-fold for [3H]AnNH and 1.65-fold for [3H]N-ArPE). Exposure of SK-N-SH cells to EtOH (100 mM, 24h) inhibited initially the formation of [3H]AnNH at 24 h, followed by a progressive increase, reaching a statistical significance level at 72 h (p < 0.05). [3H]N-ArPE increased gradually to a statistically significant level after 48 and 72 h (p < 0.05). Incubation with exogenous ethanolamine (7 mM) and EtOH (100 mM, 72 h) did not result in an additive increase in the formation of [3H]AnNH. The formation of [3H]AnNH and [3H]N-ArPE by EtOH was enhanced by the Ca2+ ionophore A23187 or by the depolarizing agent veratridine and the K+ channel blocker 4-aminopyridine. Further, the EtOH-induced formation of [3H]AnNH and [3H]N-ArPE was inhibited by exogenous AnNH, whereas only [3H]AnNH formation was inhibited by the CB1 receptor antagonist SR141716A and pertussis toxin, suggesting that the CB1 receptor and Gi/o protein mediated the regulation of AnNH levels. The observed increase in the levels of these lipids in SK-N-SH cells may be a mechanism for neuronal adaptation and may serve as a compensatory mechanism to counteract the continuous presence of EtOH. The present observation taken together with our previous results indicate the involvement of the endocannabinoid system in mediating some of the pharmacological actions of EtOH and may constitute part of a common brain pathway mediating reinforcement of drugs of abuse including EtOH.  相似文献   

9.
In this study, we analysed the ethanol-induced long term cell injury on a general cell model (Sp2/0-Ag14 cell line). Cells were incubated in 1, 5, 10, 15 and 20% of ethanol (EtOH) for 5 min. After washing cell viability was tested by the Trypan Blue exclusion test in 5, 60 min, 4 and 24 h after EtOH exposure. Free radicals were monitored every 30 min by electron spin resonance (ESR) with alpha-phenyl-N-tert-butylnitrone (PBN) spin trapping technique. Scavenger compounds such as glutathione (GSH), dimethyl sulfoxide (DMSO) and 5,5-dimethyl-1-pyrroline N-oxide (DMPO) were applied for 24 h incubation after EtOH exposure. EtOH concentration dependently decreased the cell viability immediately after 5 min exposure, but with 4 and 24 h, a secondary cell destruction was found. Using ESR-spin trapping technique, an increased free radical activity could be detected. DMPO, DMSO and GSH significantly, but in different period protected the cells against free-radical induced cellular damage. EtOH produces an early (immediately after EtOH exposure) and a late (in about 4 h) cellular damage on Sp2/0-Ag14 cells. The oxygen free radicals can be detected in a short time after EtOH exposure, its biological effect manifested as a secondary cell destruction at 4 and 24 h. This phenomenon can be prevented by scavenger compounds.  相似文献   

10.
Role of endothelin (ETA) receptors in neonatal morphine withdrawal   总被引:1,自引:0,他引:1  
Puppala BL  Bhalla S  Matwyshyn G  Gulati A 《Peptides》2006,27(6):1514-1519
We have previously demonstrated role of central endothelin (ET) receptors in neonatal morphine tolerance. The present study was conducted to investigate involvement of central ET receptors in neonatal rat morphine withdrawal. The aim was to determine activation of G-proteins coupled to opioid and ET receptors by morphine and ET ligands in neonatal rat brains during morphine withdrawal. Pregnant female rats were rendered tolerant to morphine by chronic exposure to morphine pellets over 7 days. Withdrawal was induced on day 8 by removal of pellets. Rat pups were delivered by cesarean section 24 h after pellet removal. G-protein stimulation induced by morphine; ET-1; ETA receptor antagonist, BMS182874; and ETB receptor agonist, IRL1620, was determined in the brain of neonatal rats undergoing morphine withdrawal by [35S]GTPgammaS binding assay. Morphine-induced maximal stimulation of G-protein in morphine withdrawal group (83.60%) was significantly higher compared to placebo control group (66.81%). EC50 value for ET-1-induced G-protein stimulation during morphine withdrawal (170.60 nM) was higher than control (62.5 nM). BMS182874, did not stimulate GTP binding in control but significantly increased maximal stimulation of G-proteins in morphine withdrawal (86.07%, EC50 = 31.25 nM). IRL1620-induced stimulation of G-proteins was similar in control and morphine withdrawal. The present findings indicate involvement of central ETA receptors in neonatal morphine withdrawal.  相似文献   

11.
Heterozygous CB1 receptor knockout mice were used to examine the effect of reduced CB1 receptor density on G-protein activation in membranes prepared from four brain regions: cerebellum, hippocampus, striatum/globus pallidus (striatum/GP) and cingulate cortex. Results showed that CB1 receptor levels were approximately 50% lower in heterozygous mice in all regions examined. However, maximal stimulation of [(35)S]guanosine-5'-(gamma-O-thio) triphosphate ([(35)S]GTPgammaS) binding by the high efficacy agonist WIN 55,212-2 was reduced by only 20-25% in most brain regions, with the exception of striatum/GP where the decrease in stimulation was as predicted (approximately 50%). Furthermore, although the efficacies of the cannabinoid partial agonists, methanandamide and (9)-tetrahydrocannabinol, were similarly lower in heterozygous mice, their relative efficacies compared with WIN 55,212-2 were generally unchanged. Saturation analysis of net WIN 55,212-2-stimulated [(35)S]GTPgammaS binding showed that decreased stimulation by WIN 55,212-2 in striatum/GP of heterozygous mice was caused by a decrease in the apparent affinity of net-stimulated [(35)S]GTPgammaS binding. The apparent maximal number of binding sites (B(max)) values of net WIN 55,212-2-stimulated [(35)S]GTPgammaS binding were unchanged in cerebellum and striatum/GP of heterozygous mice, but decreased in cingulate cortex, with a similar trend in hippocampus. Moreover, in every region except cingulate cortex, the maximal number of net-stimulated [(35)S]GTPgammaS binding sites per receptor was significantly increased in heterozygous mice. These results indicate region-dependent increases in the apparent efficiency of CB1 receptor-mediated G-protein activation in heterozygous CB1 knockout mice.  相似文献   

12.
Benzodiazepine discontinuation can lead to a behavioral syndrome in animals and humans. In a mouse model, this syndrome is associated with benzodiazepine receptor up-regulation. The protein-modifying reagent, N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ), has been used to irreversibly inactivate a number of neurotransmitter receptors including benzodiazepine receptors, and thus allows estimation of receptor recovery in vivo. To assess benzodiazepine receptor recovery after benzodiazepine discontinuation, we treated mice with lorazepam (LRZ), 2 mg.kg-1.day-1 for 1 wk. After 24 h, EEDQ (12.5 mg/kg) was administered, and benzodiazepine binding in the cortex and cerebellum was determined after 4-144 h. EEDQ treatment decreased receptor density in the cortex in both LRZ- and vehicle-treated groups by approximately 50%, with no change in apparent affinity as previously reported. Binding in both groups returned to control values after 96 h. Kinetic analysis indicated a more rapid increase in binding in LRZ-compared with vehicle-treated animals, with t1/2 for LRZ 19.1 h, and for vehicle, 30.8 h (P less than 0.05). Receptor density was decreased in the cerebellum after EEDQ by approximately 40% in both treatment groups, with no change in apparent affinity. Receptor density returned to control values at 96 h, with no difference in kinetics in LRZ- compared with vehicle-treated mice. The decrease in receptor t1/2 associated with lorazepam discontinuation is consistent with the observed increase in benzodiazepine receptors in this setting.  相似文献   

13.
The neurosteroid allopregnanolone (ALLO) is a potent positive modulator of gamma-aminobutyric acid(A) (GABA(A)) receptors. Earlier work indicates that sensitivity to the anticonvulsant effect of ALLO was enhanced during ethanol (EtOH) withdrawal in rats and in C57BL/6 mice, an inbred strain with mild EtOH withdrawal. In contrast, ALLO sensitivity was reduced during EtOH withdrawal in DBA/2 mice, an inbred strain with severe EtOH withdrawal. Thus, the present studies examined ALLO sensitivity during EtOH withdrawal in another animal model of EtOH withdrawal severity, the Withdrawal Seizure-Prone (WSP) and Withdrawal Seizure-Resistant (WSR) selected lines. Male mice were exposed to EtOH vapor or air for 72 h. During peak withdrawal, animals were injected with ALLO [0, 3.2, 5, 10 or 17 mg/kg, intraperitoneally (i.p.)] and tested for their sensitivity to the anticonvulsant effect. In separate studies, potentiation of GABA-stimulated chloride uptake by ALLO (10 nm to 10 microm) was assessed in microsacs prepared from mouse brain mice during peak withdrawal. Notably, WSP mice were cross-tolerant to the anticonvulsant effect of ALLO during EtOH withdrawal (i.e. significant decrease in the efficacy of ALLO) when compared with values in air-exposed mice. In contrast, sensitivity to the anticonvulsant effect of ALLO was unchanged during EtOH withdrawal in the WSR line. Functional sensitivity of GABA(A) receptors to ALLO was significantly decreased during EtOH withdrawal in WSP mice in a manner consistent with the change in behavioral sensitivity to ALLO. These findings suggest that mice selectively bred for differences in EtOH withdrawal severity are differentially sensitive to ALLO during EtOH withdrawal.  相似文献   

14.

Aims

Alcohol withdrawal syndrome (AWS) is characterized by a set of physiological modifications triggered by abrupt withdrawal and/or decreasing consumption of ethanol (EtOH), which may manifest 16–48 h after ceasing consumption. The relationship between the effects of AWS and central and peripheral sympathetic neurotransmission is unknown. This study investigates the possible mechanisms on the sympathetic system during periods of AWS.

Main methods

Male Wistar rats were treated with EtOH (6–10 g/kg/day/v.o. 5 days). Subsequently, 1 h, 24 h, 48 h and 120 h after administration of the last dose of EtOH, the animals were sacrificed, and their vas deferens (VD) were removed to perform the following evaluations: (a) concentration–effect curves of sympathetic agonist; (b) activity of α2-adrenoreceptor; (c) function of voltage-dependent calcium channels (Cav); and (d) release of endogenous catecholamines measured in real time coupled to HPLC.

Key findings

The results showed that the maximum effects of contraction were increased by agonists tested in at 24 h and 48 h EtOH withdrawal. The inhibitory affinity (pIC50) of guanfacine was decreased 24 h EtOH withdrawal. The function of Cav was also decreased as pIC50 values dropped 24 h and 48 h EtOH withdrawal. The release of catecholamines increased 48 h after EtOH withdrawal. It is suggested that AWS triggers hyperactivity in peripheral sympathetic neurotransmission.

Significance

The mechanisms underlying hyperactivity are possibly explained by a failure of autoregulation from catecholamines released by α2-adrenoreceptors and/or an increase of Cav function, which may be potential targets to attenuate the symptoms of AWS at the peripheral level.  相似文献   

15.
Oh S  Kim JI  Chung MW  Ho IK 《Neurochemical research》2000,25(12):1603-1611
The NMDA receptor has been implicated in opioid tolerance and withdrawal. The effects of continuous infusion of butorphanol on the modulation of NMDA receptor subunit NR1, NR2A, NR2B, and NR2C gene expression were investigated by using in situ hybridization technique. Continuous intracerebroventricular (i.c.v.) infusion with butorphanol (26 nmol/l/h) resulted in significant modulations in the NR1, NR2A, and NR2B mRNA levels. The level of NR1 mRNA was significantly decreased in the cerebral cortex, thalamus, and CA1 area of hippocampus in butorphanol tolerant and withdrawal (7 h after stopping the infusion) rats. The NR2A mRNA was significantly decreased in the CA1 and CA3 of hippocampus in tolerant rats and increased in the cerebral cortex and dentate gyrus in butorphanol withdrawal rats. NR2B subunit mRNA was decreased in the cerebral cortex, caudate putamen, thalamus, CA3 of hippocampus in butorphanol withdrawal rats. No changes of NR1, NR2A, NR2C subunit mRNA in the cerebellar granule cell layer were observed in either butorphanol tolerant or withdrawal rats. Using quantitative ligand autoradiography, the binding of NMDA receptor ligand [3H]MK-801 was increased significantly in all brain regions except in the thalamus and hippocampus, at the 7 hr after stopping the butorphanol infusion. These results suggest that region-specific changes of NMDA receptor subunit mRNA (NR 1 and NR2) as well as NMDA receptor binding ([3H]MK-801) are involved in the development of tolerance to and withdrawal from butorphanol.  相似文献   

16.
Involvement of cannabinoid CB2 receptors in the IgE-mediated cutaneous reaction was investigated. Epicutaneous challenge with 2,4-dinitrofluorobenzene caused a triphasic swelling in the ear of BALB/c and C57BL/6 mice passively sensitized with anti-dinitrophenol IgE. Peak responses of the ear swelling appeared at 1 h, 24 h, and 8 days after the challenge in both strains of mice. In contrast, cannabinoid CB2 receptor-deficient mice failed to exhibit the obvious triphasic ear swelling observed in wild-type mice. Oral administration of cannabinoid CB2 receptor antagonist/inverse agonists [N-(benzo[1,3]dioxol-5-ylmethyl)-7-methoxy-2-oxo-8-pentyloxy-1,2-dihydroquinoline-3-carboxamide] (JTE-907) and {N-[(1S)-endo-1,3,3-trimethylbicyclo[2,2,1]heptan-2yl]5-(4-chloro-3-methyl-phenyl)-1-(4-methylbenzyl)pyrazole-3-carboxamide} (SR144528) at doses of 0.1-10 mg/kg significantly and dose-dependently suppressed all three phases of ear swelling in BALB/c mice. Interestingly, epicutaneous treatment with an ether-linked analogue of endogenous cannabinoids, 2-arachidonoylglycerol, caused an ear swelling that could be detected at 1 h, 24 h, and 8 days after treatment of both BALB/c and C57BL/6 mice. These results suggest that cannabinoid CB2 receptors are involved in induction of the triphasic cutaneous reaction mediated by IgE, and that cannabinoid CB2 receptor antagonist/inverse agonists may serve as anti-allergic agents in the treatment of allergic dermatitis.  相似文献   

17.
The study was carried out on perfused livers isolated from rats receiving ethanol (EtOH) as their only drinking fluid for the period of 4 weeks. Twelve, 24, 72 and 120 hours after EtOH withdrawal the livers were isolated and perfused with 100 ml of perfusion mixture with addition of EtOH (0.2% final concentration). After 12 hours of EtOH withdrawal acceleration of the EtOH elimination from perfusate was observed. It returned to the control level after 24 hours, but after 72 and 120 hours of abstinence the rate of EtOH elimination from perfusate was found to diminish. CCl4 injected to the rats in doses of 2 and 5 mmoles/kg once a week for the period of 4 or 8 weeks, resulted in decreased EtOH elimination from the perfusate. In the EtOH-drinking group previously treated with CCl4 we found that irrespective of the time of EtOH withdrawal, EtOH elimination did not differ from that in the respective CCl4 treated group, only 12 hours after its withdrawal EtOH elimination was decreased in livers injured with CCl4 in dose of 5 mmoles/kg.  相似文献   

18.
A novel gastric pentadecapeptide BPC 157 with different beneficial activities and anticonvulsant effect interacting with GABAergic system could improve diazepam efficacy coadministered (10 microg/kg, 10 ng/kg i.p.) with diazepam (5.0 mg/kg i.p.) twice daily for 10 days, since diazepam chronic medication would otherwise predispose for diazepam- tolerance/withdrawal development (shorter latency to convulsion after convulsant). In diazepam chronically treated mice, it attenuated diazepam tolerance (provoked by later acute administration of diazepam together with convulsant) and postponed physical dependence/withdrawal effects (provoked by later administration of isoniazid). In tolerance assay, at 42 h after the end of conditioning regimen, shorter preconvulsive latencies than in healthy (non-diazepam conditioned) mice following isoniazid (800 mg/kg i.p.) (as hallmark of tolerance) were observed if diazepam (5.0 mg/kg i.p.) was again given acutely to mice previously conditioned with diazepam alone (use of picrotoxin 3.0 mg/kg i.p., as convulsant, with acute application of diazepam in previously diazepam conditioned mice did not lead to tolerance hallmark). This was completely avoided in diazepam+BPC 157 10 microg or diazepam+BPC 157 10 ng chronically treated animals. In physical dependence assay (isoniazid challenge assessed at 6, 14, 42 and 72 h after conditioning medication), when compared to diazepam non-conditioned healthy mice, in diazepam conditioned mice residual anticonvulsive activity was not present already at the earliest post-conditioning interval (i.e., not different latency to isoniazid-convulsions), whereas shorter preconvulsive latencies (as physical dependence/withdrawal hallmark) were noted in diazepam conditioned mice following isoniazid challenge at 42 h and at 72 h after end of conditioning treatment. In diazepam+BPC 157 10 microg- conditioned mice, a residual anticonvulsive activity (i.e., longer latency to isoniazid convulsion) was noted at 6 h post-conditioning, whereas shorter preconvulsive latencies appeared only at 72 h-post-conditioning period. In conclusion, taken together these data (lack of tolerance development (tolerance studies), prolonged residual anticonvulsive activity, and postponed physical dependence/withdrawal hallmark in diazepam+BPC 157 chronically treated mice) with common benzodiazepines tolerance/withdrawal knowledge, it could be speculated that BPC 157 acts favoring the natural homeostasis of the GABA receptor complex as well as enhancing the GABAergic transmission, and having a mechanism at least partly different from those involved in diazepam tolerance/withdrawal, it may be likely used in further therapy of diazepam tolerance and withdrawal.  相似文献   

19.
The endogenous cannabinoid anandamide has been reported to produce well-defined behavioral tolerance, but studies on the possible mechanisms underlying this process are few and often contradictory. The present study was designed to survey the cellular events involved in anandamide tolerance, in terms of the effects on receptor number, coupling with G proteins, and activation of the cyclic AMP (cAMP) cascade. Chronic treatment of rats with anandamide (20 mg/kg i.p. for 15 days) resulted in behavioral tolerance without any change in cannabinoid receptor binding in the brain regions studied (striatum, cortex, hippocampus, and cerebellum), suggesting that receptor down-regulation was not involved in the development of anandamide behavioral tolerance. In contrast, prolonged exposure to anandamide significantly reduced agonist-stimulated guanosine 5'-O:-(3-[(35)S]thiotriphosphate) binding in the same areas, with losses of >50%, suggesting that receptor desensitization may be part of the molecular mechanism underlying this tolerance. Finally, concerning the cAMP cascade-the most well-known intracellular signaling pathways activated by CB(1) receptors-in the brain regions from rats tolerant to anandamide, we found no alteration in cAMP levels or in protein kinase A activity. We propose that anandamide, unlike Delta(9)-tetrahydrocannabinol and other cannabinoids, does not alter the receptor system at multiple levels but that desensitization of the CB(1) receptor might account for behavioral tolerance to the drug.  相似文献   

20.
The effect of the so-called Short-Term Protocol (5-day progesterone treatment+PGF(2)alpha) on ovarian activity and LH surge was studied in goats. The goats received 250IU eCG at the time of device withdrawal (eCG group; n=7), or 200microg of EB (estradiol benzoate) 24h after device withdrawal (EB group; n=8), or received neither eCG nor EB (control group; n=8). The Short-Term Protocol induced greater (4.1+/-1.1ng/ml) progesterone serum concentrations at 24h after start of the treatment, that declined to 0.2+/-0.1ng/ml at 12h after device withdrawal. In all of the groups, the maximum concentration of estradiol-17beta was reached at about 36h after device withdrawal. Maximum concentration was greater in the EB group (76.9+/-24.6pmol/l) than in the control group (41.8+/-9.0pmol/l; P<0.01), with the eCG group showing intermediate concentration (70.3+/-32.5pmol/l; P=NS). The LH peak occurred earlier in the eCG group (38.4+/-2.0h after device withdrawal) and in the EB group (41.0+/-4.1h), than in the control group (46.3+/-5.1h; P<0.05). Ovulation occurred earlier in the eCG group (5/7) and in the EB group (8/8) (58.8+/-2.7h and 63.0+/-5.6h, respectively), than in the control group (7/8) (70.2+/-8.3h; P<0.05). In summary, the Short-Term Protocol induced similar concentrations of progesterone among treated goats. In addition, eCG or EB resulted in a similar increase in estradiol-17beta and a similar LH surge, which induced ovulation in most females (86.7%) in a consistent interval (about 60h) after the end of progesterone exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号