首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
3.
Gravenor MB  Saunders NJ 《Biometrics》2004,60(4):1053-4; reply 1054-5
  相似文献   

4.
5.
6.
7.
The mutability of bacteriophages offers a particular advantage in the treatment of bacterial infections not afforded by other antimicrobial therapies. When phage-resistant bacteria emerge, mutation may generate phage capable of exploiting and thus limiting population expansion among these emergent types. However, while mutation potentially generates beneficial variants, it also contributes to a genetic load of deleterious mutations. Here, we model the influence of varying phage mutation rate on the efficacy of phage therapy. All else being equal, phage types with historical mutation rates of approximately 0.1 deleterious mutations per genome per generation offer a reasonable balance between beneficial mutational diversity and deleterious mutational load. We determine that increasing phage inoculum density can undesirably increase the peak density of a mutant bacterial class by limiting the in situ production of mutant phage variants. For phage populations with minimal genetic load, engineering mutation rate increases beyond the mutation-selection balance optimum may provide even greater protection against emergent bacterial types, but only with very weak selective coefficients for de novo deleterious mutations (below approximately 0.01). Increases to the mutation rate beyond the optimal value at mutation-selection balance may therefore prove generally undesirable.  相似文献   

8.
9.
10.
Natarajan L  Berry CC  Gasche C 《Biometrics》2003,59(3):555-561
Spontaneous or randomly occurring mutations play a key role in cancer progression. Estimation of the mutation rate of cancer cells can provide useful information about the disease. To ascertain these mutation rates, we need mathematical models that describe the distribution of mutant cells. In this investigation, we develop a discrete time stochastic model for a mutational birth process. We assume that mutations occur concurrently with mitosis so that when a nonmutant parent cell splits into two progeny, one of these daughter cells could carry a mutation. We propose an estimator for the mutation rate and investigate its statistical properties via theory and simulations. A salient feature of this estimator is the ease with which it can be computed. The methods developed herein are applied to a human colorectal cancer cell line and compared to existing continuous time models.  相似文献   

11.
Through their life cycles, bacteria experience many different environments in which the relationship between available energy resources and the frequency and the nature of various stresses is highly variable. In order to survive in such changeable environments, bacteria must balance the need for nutritional competence with stress resistance. In Escherichia coli natural populations, this is most frequently achieved by changing the regulation of the RpoS sigma factor-dependent general stress response. One important secondary consequence of altered regulation of the RpoS regulon is the modification of mutation rates. For example, under nutrient limitation during stationary phase, the high intracellular concentration of RpoS diminishes nutritional competence, increases stress resistance, and, by downregulating the mismatch repair system and upregulating [corrected] the expression of the dinB gene (coding for PolIV translesion synthesis polymerase) increases mutation rates. The reduction of the intracellular concentration of RpoS has exactly opposite effects on nutritional competence, stress resistance and mutation rates. Therefore, the natural selection that favours variants having the highest fitness under different environmental conditions results in high variability of stress-associated mutation rates in those variants.  相似文献   

12.
13.
Developments in monitoring human populations for mutation rates   总被引:1,自引:0,他引:1  
J V Neel 《Mutation research》1974,26(4):319-328
  相似文献   

14.
Palmer ME  Lipsitch M 《Genetics》2006,173(1):461-472
The question of how natural selection affects asexual mutation rates has been considered since the 1930s, yet our understanding continues to deepen. The distribution of mutation rates observed in natural bacteria remains unexplained. It is well known that environmental constancy can favor minimal mutation rates. In contrast, environmental fluctuation (e.g., at period T) can create indirect selective pressure for stronger mutators: genes modifying mutation rate may "hitchhike" to greater frequency along with environmentally favored mutations they produce. This article extends a well-known model of Leigh to consider fitness genes with multiple mutable sites (call the number of such sites alpha). The phenotypic effect of such a gene is enabled if all sites are in a certain state and disabled otherwise. The effects of multiple deleterious loci are also included (call the number of such loci gamma). The analysis calculates the indirect selective effects experienced by a gene inducing various mutation rates for given values of alpha, gamma, and T. Finite-population simulations validate these results and let us examine the interaction of drift with hitchhiking selection. We close by commenting on the importance of other factors, such as spatiotemporal variation, and on the origin of variation in mutation rates.  相似文献   

15.
Emerging human molecular data are adding to our knowledge about the frequency and pattern of genetic mutations. This not only gives important insight into the biological processes underlying mutation, but also provides data which must be incorporated in the clinical setting. An example is the assumption of equal mutation probability in the male and female germ lines. This is a key assumption in Bayesian risk calculation for families segregating an X-linked recessive disorder. For some disorders, data are now available that demonstrate that the mutation probability in males differs from that in females. In this paper, we review the estimation of the male-female mutation rate ratio, including the construction of confidence intervals, and apply sex-specific mutation rates to carrier risk calculation in a variety of pedigree structures. In several instances, the difference in risk is substantial.  相似文献   

16.
Evolutionary success of bacteria relies on the constant fine-tuning of their mutation rates, which optimizes their adaptability to constantly changing environmental conditions. When adaptation is limited by the mutation supply rate, under some conditions, natural selection favours increased mutation rates by acting on allelic variation of the genetic systems that control fidelity of DNA replication and repair. Mutator alleles are carried to high frequency through hitchhiking with the adaptive mutations they generate. However, when fitness gain no longer counterbalances the fitness loss due to continuous generation of deleterious mutations, natural selection favours reduction of mutation rates. Selection and counter-selection of high mutation rates depends on many factors: the number of mutations required for adaptation, the strength of mutator alleles, bacterial population size, competition with other strains, migration, and spatial and temporal environmental heterogeneity. Such modulations of mutation rates may also play a role in the evolution of antibiotic resistance.  相似文献   

17.
Several lines of research are now converging towards an integrated understanding of mutational mechanisms and their evolutionary implications. Experimentally, crystal structures reveal the effect of sequence context on polymerase fidelity; large-scale sequencing projects generate vast amounts of sequence polymorphism data; and locus-specific databases are being constructed. Computationally, software and analytical tools have been developed to analyze mutational data, to identify mutational hot spots, and to compare the signatures of mutagenic agents.  相似文献   

18.
19.
Likelihood-based estimation of microsatellite mutation rates   总被引:6,自引:0,他引:6  
Microsatellites are widely used in genetic analyses, many of which require reliable estimates of microsatellite mutation rates, yet the factors determining mutation rates are uncertain. The most straightforward and conclusive method by which to study mutation is direct observation of allele transmissions in parent-child pairs, and studies of this type suggest a positive, possibly exponential, relationship between mutation rate and allele size, together with a bias toward length increase. Except for microsatellites on the Y chromosome, however, previous analyses have not made full use of available data and may have introduced bias: mutations have been identified only where child genotypes could not be generated by transmission from parents' genotypes, so that the probability that a mutation is detected depends on the distribution of allele lengths and varies with allele length. We introduce a likelihood-based approach that has two key advantages over existing methods. First, we can make formal comparisons between competing models of microsatellite evolution; second, we obtain asymptotically unbiased and efficient parameter estimates. Application to data composed of 118,866 parent-offspring transmissions of AC microsatellites supports the hypothesis that mutation rate increases exponentially with microsatellite length, with a suggestion that contractions become more likely than expansions as length increases. This would lead to a stationary distribution for allele length maintained by mutational balance. There is no evidence that contractions and expansions differ in their step size distributions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号