共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Paul Kay Yit C. Yang Luminita Paraoan 《Journal of cellular and molecular medicine》2013,17(7):833-843
The structural and functional integrity of the retinal pigment epithelium (RPE) is fundamental for maintaining the function of the neuroretina. These specialized cells form a polarized monolayer that acts as the retinal–blood barrier, separating two distinct environments with highly specialized functions: photoreceptors of the neuroretina at the apical side and Bruch's membrane/highly vascularized choriocapillaris at the basal side. The polarized nature of the RPE is essential for the health of these two regions, not only in nutrient and waste transport but also in the synthesis and directional secretion of proteins required in maintaining retinal homoeostasis and function. Although multiple malfunctions within the RPE cells have been associated with development of age‐related macular degeneration (AMD), the leading cause of legal blindness, clear causative processes have not yet been conclusively characterized at the molecular and cellular level. This article focuses on the involvement of directionally secreted RPE proteins in normal functioning of the retina and on the potential association of incorrect RPE protein secretion with development of AMD. Understanding the importance of RPE polarity and the correct secretion of essential structural and regulatory components emerge as critical factors for the development of novel therapeutic strategies targeting AMD. 相似文献
3.
Nobiletin (3′,4′,5,6,7,8‐hexamethoxyflavone), a dietary polymethoxylated flavonoid found in Citrus fruits, has been reported to have antioxidant effect. However, the effect of nobiletin on human retinal pigment epithelium (RPE) cells induced by hydrogen peroxide (H2O2) is still unclear. Therefore, we investigated the protective effect of nobiletin against H2O2‐induced cell death in RPE cells. Our results demonstrated that nobiletin significantly increased cell viability from oxidative stress. Nobiletin inhibited H2O2‐induced ROS production and caspase‐3/7 activity in ARPE‐19 cells. Furthermore, nobiletin significantly increased Akt phosphorylation in ARPE‐19 cells exposed to H2O2. Meanwhile, LY294002, an inhibitor of PI3K/Akt, abolished the protective effect of nobiletin against H2O2‐induced decreased cell viability and increased caspase‐3/7 activity in ARPE‐19 cells. In summary, these data show that nobiletin protects RPE cells against oxidative stress through activation of the Akt‐signaling pathway. Thus, nobiletin should be an oxidant that attenuates the development of age‐related macular degeneration. 相似文献
4.
Nancy Gelvez Paula Hurtado-Villa Silvia Flrez Anne Charlotte Brieke Francisco Rodríguez Ana María Bertolotto Martha L. Tamayo 《Biomédica : revista del Instituto Nacional de Salud》2021,41(3):5604
The malattia leventinese is an autosomal dominant inherited disease whose symptoms appear between the second and fourth decades of life. It is characterized by the appearance of drusen located between the retinal pigment epithelium and the Bruch membrane. It is usually associated with low vision and may progress to blindness. The pathogenic variant p.Arg345Trp in the EFEMP1 gene has been associated with this disease. We characterized clinically and molecularly a family with malattia leventinese using a comprehensive approach that involved ophthalmologists, pediatricians, and geneticists. This approach is of great importance since the phenotype of this disease is often confused with macular degeneration. All family members underwent ophthalmological evaluation and DNA extraction from a peripheral blood sample. All exons of the EFEMP1 gene were amplified and sequenced. The pathogenic variant p.Arg345Trp was identified in affected individuals in this family.This is the first report of malattia leventinese in a family with the p.Arg345Trp pathogenic variant in Colombia. The molecular diagnosis of retinal dystrophies is essential to differentiate this type of pathology. 相似文献
5.
6.
Mallika Valapala Malia Edwards Stacey Hose Rhonda Grebe Imran A. Bhutto Marisol Cano Thorsten Berger Tak W. Mak Eric Wawrousek James T. Handa Gerard A. Lutty J. Samuel Zigler Jr Debasish Sinha 《Aging cell》2014,13(6):1091-1094
Although chronic inflammation is believed to contribute to the pathology of age‐related macular degeneration (AMD), knowledge regarding the events that elicit the change from para‐inflammation to chronic inflammation in the pathogenesis of AMD is lacking. We propose here that lipocalin‐2 (LCN2), a mammalian innate immunity protein that is trafficked to the lysosomes, may contribute to this process. It accumulates significantly with age in retinal pigment epithelial (RPE) cells of Cryba1 conditional knockout (cKO) mice, but not in control mice. We have recently shown that these mice, which lack βA3/A1‐crystallin specifically in RPE, have defective lysosomal clearance. The age‐related increase in LCN2 in the cKO mice is accompanied by increases in chemokine (C‐C motif) ligand 2 (CCL2), reactive gliosis, and immune cell infiltration. LCN2 may contribute to induction of a chronic inflammatory response in this mouse model with AMD‐like pathology. 相似文献
7.
Umar Sharif Nur Musfirah Mahmud Paul Kay Yit C. Yang Simon P. Harding Ian Grierson Tengku Ain Kamalden Malcolm J. Jackson Luminita Paraoan 《Journal of cellular and molecular medicine》2019,23(1):405-416
The retinal pigment epithelium (RPE) plays a central role in neuroretinal homoeostasis throughout life. Altered proteolysis and inflammatory processes involving RPE contribute to the pathophysiology of age‐related macular degeneration (AMD), but the link between these remains elusive. We report for the first time the effect of advanced glycation end products (AGE)—known to accumulate on the ageing RPE's underlying Bruch's membrane in situ—on both key lysosomal cathepsins and NF‐κB signalling in RPE. Cathepsin L activity and NF‐κB effector levels decreased significantly following 2‐week AGE exposure. Chemical cathepsin L inhibition also decreased total p65 protein levels, indicating that AGE‐related change of NF‐κB effectors in RPE cells may be modulated by cathepsin L. However, upon TNFα stimulation, AGE‐exposed cells had significantly higher ratio of phospho‐p65(Ser536)/total p65 compared to non‐AGEd controls, with an even higher fold increase than in the presence of cathepsin L inhibition alone. Increased proportion of active p65 indicates an AGE‐related activation of NF‐κB signalling in a higher proportion of cells and/or an enhanced response to TNFα. Thus, NF‐κB signalling modulation in the AGEd environment, partially regulated via cathepsin L, is employed by RPE cells as a protective (para‐inflammatory) mechanism but renders them more responsive to pro‐inflammatory stimuli. 相似文献
8.
Compared with neural crest‐derived melanocytes, retinal pigment epithelium (RPE) cells in the back of the eye are pigment cells of a different kind. They are a part of the brain, form an epithelial monolayer, respond to distinct extracellular signals, and provide functions that far exceed those of a light‐absorbing screen. For instance, they control nutrient and metabolite flow to and from the retina, replenish 11‐cis‐retinal by re‐isomerizing all‐trans‐retinal generated during photoconversion, phagocytose daily a portion of the photoreceptors’ outer segments, and secrete cytokines that locally control the innate and adaptive immune systems. Not surprisingly, RPE cell damage is a major cause of human blindness worldwide, with age‐related macular degeneration a prevalent example. RPE replacement therapies using RPE cells generated from embryonic or induced pluripotent stem cells provide a novel approach to a rational treatment of such forms of blindness. In fact, RPE‐like cells can be obtained relatively easily when stem cells are subjected to a two‐step induction protocol, a first step that leads to a neuroectodermal fate and a second to RPE differentiation. Here, we discuss the characteristics of such cells, propose criteria they should fulfill in order to be considered authentic RPE cells, and point out the challenges one faces when using such cells in attempts to restore vision. 相似文献
9.
Jingyu Yao Lin Jia Naheed Khan Chengmao Lin Sayak K Mitter Michael E Boulton Joshua L Dunaief Daniel J Klionsky Jun-Lin Guan Debra A Thompson David N Zacks 《Autophagy》2015,11(6):939-953
Autophagy regulates cellular homeostasis and response to environmental stress. Within the retinal pigment epithelium (RPE) of the eye, the level of autophagy can change with both age and disease. The purpose of this study is to determine the relationship between reduced autophagy and age-related degeneration of the RPE. The gene encoding RB1CC1/FIP200 (RB1-inducible coiled-coil 1), a protein essential for induction of autophagy, was selectively knocked out in the RPE by crossing Best1-Cre mice with mice in which the Rb1cc1 gene was flanked with Lox-P sites (Rb1cc1flox/flox). Ex vivo and in vivo analyses, including western blot, immunohistochemistry, transmission electron microscopy, fundus photography, optical coherence tomography, fluorescein angiography, and electroretinography were performed to assess the structure and function of the retina as a function of age. Deletion of Rb1cc1 resulted in multiple autophagy defects within the RPE including decreased conversion of LC3-I to LC3-II, accumulation of autophagy-targeted precursors, and increased numbers of mitochondria. Age-dependent degeneration of the RPE occurred, with formation of atrophic patches, subretinal migration of activated microglial cells, subRPE deposition of inflammatory and oxidatively damaged proteins, subretinal drusenoid deposits, and occasional foci of choroidal neovascularization. There was secondary loss of photoreceptors overlying the degenerated RPE and reduction in the electroretinogram. These observations are consistent with a critical role of autophagy in the maintenance of normal homeostasis in the aging RPE, and indicate that disruption of autophagy leads to retinal phenotypes associated with age-related degeneration. 相似文献
10.
Thibaud Mathis Michael Housset Chiara Eandi Fanny Beguier Sara Touhami Sacha Reichman Sebastien Augustin Pauline Gondouin José‐Alain Sahel Laurent Kodjikian Olivier Goureau Xavier Guillonneau Florian Sennlaub 《Aging cell》2017,16(1):173-182
Orthodenticle homeobox 2 (OTX2) controls essential, homeostatic retinal pigment epithelial (RPE) genes in the adult. Using cocultures of human CD14+ blood monocytes (Mos) and primary porcine RPE cells and a fully humanized system using human‐induced pluripotent stem cell‐derived RPE cells, we show that activated Mos markedly inhibit RPEOTX2 expression and resist elimination in contact with the immunosuppressive RPE. Mechanistically, we demonstrate that TNF‐α, secreted from activated Mos, mediates the downregulation of OTX2 and essential RPE genes of the visual cycle among others. Our data show how subretinal, chronic inflammation and in particular TNF‐α can affect RPE function, which might contribute to the visual dysfunctions in diseases such as age‐related macular degeneration (AMD) where subretinal macrophages are observed. Our findings provide important mechanistic insights into the regulation of OTX2 under inflammatory conditions. Therapeutic restoration of OTX2 expression might help revive RPE and visual function in retinal diseases such as AMD. 相似文献
11.
Haoli Yu Junyan Li Xiaolong Hu Jiahao Feng Hao Wang Fei Xiong 《Journal of biochemical and molecular toxicology》2019,33(8)
Cynaroside is a flavonoid compound proved to possess antioxidant activity, but its protective effect on age‐related macular degeneration still remains unclear. In this study, the protective effects of cynaroside on oxidative stress and apoptosis in retinal pigment epithelial (RPE) cells induced by hydrogen peroxide (H2O2) were investigated. Results showed that cynaroside effectively attenuated the decrease of cell activity induced by H2O2. The total reactive oxygen species can be remitted by decreasing malondialdehyde level, as well as increasing glutathione level, and superoxide dismutase and catalase activities. In addition, Western blot analysis indicated that cynaroside protected ARPE‐19 cells from apoptosis through downregulation of caspase‐3 protein activation which was controlled by the upstream proteins Bcl‐2 and Bax. It was finally proved that cynaroside could enhance the antioxidant and antiapoptotic ability in ARPE‐19 cells by promoting the expression of p‐Akt. 相似文献
12.
13.
Alison J. Clare David A. Copland Lindsay B. Nicholson Jian Liu Chris R. Neal Stephen Moss Andrew D. Dick Sofia Theodoropoulou 《Journal of cellular and molecular medicine》2020,24(22):13546
The leading cause of central vision loss, age‐related macular degeneration (AMD), is a degenerative disorder characterized by atrophy of retinal pigment epithelium (RPE) and photoreceptors. For 15% of cases, neovascularization occurs, leading to acute vision loss if left untreated. For the remaining patients, there are currently no treatment options and preventing progressive RPE atrophy remains the main therapeutic goal. Previously, we have shown treatment with interleukin‐33 can reduce choroidal neovascularization and attenuate tissue remodelling. Here, we investigate IL‐33 delivery in aged, high‐fat diet (HFD) fed mice on a wildtype and complement factor H heterozygous knockout background. We characterize the non‐toxic effect following intravitreal injection of IL‐33 and further demonstrate protective effects against RPE cell death with evidence of maintaining metabolic retinal homeostasis of Cfh+/−~HFD mice. Our results further support the potential utility of IL‐33 to prevent AMD progression. 相似文献
14.
《Cytokine》2015,75(2):335-338
Dysfunction of the retinal pigment epithelium (RPE) resulting from chronic inflammation is implicated in the pathogenesis of age-related macular degeneration (AMD). RPE cells adjacent to drusen deposits in the AMD eye are known to contain CXCL11, a chemokine involved in inflammatory cell recruitment. We investigated the CXCL11 production by the human RPE (ARPE-19) cells under inflammatory conditions and tested its response to resveratrol, a naturally occurring anti-inflammatory antioxidant. A proinflammatory cytokine mixture consisting of IFN-γ, IL-1β and TNF-α highly increased CXCL11 mRNA expression and CXCL11 protein secretion by ARPE-19 cells. Resveratrol substantially inhibited the proinflammatory cytokines-induced CXCL11 production while partially blocking nuclear factor-κB activation. This inhibitory action of resveratrol was also observed for the cytokines-induced expression of chemokines CXCL9, CCL2 and CCL5. Our results indicate that resveratrol could potentially attenuate RPE inflammatory response implicated in the pathogenesis of AMD. 相似文献
15.
16.
17.
18.
The human retinal pigment epithelium forms early in development and subsequently remains dormant, undergoing minimal proliferation throughout normal life. Retinal pigment epithelium proliferation, however, can be activated in disease states or by removing retinal pigment epithelial cells into culture. We review the conditions that control retinal pigment epithelial proliferation in culture, in animal models and in human disease and interpret retinal pigment epithelium proliferation in context of the recently discovered retinal pigment epithelium stem cell that is responsible for most in vitro retinal pigment epithelial proliferation. Retinal pigment epithelial proliferation-mediated wound repair that occurs in selected macular diseases is contrasted with retinal pigment epithelial proliferation-mediated fibroblastic scar formation that underlies proliferative vitreoretinopathy. We discuss the role of retinal pigment epithelial proliferation in age-related macular degeneration which is reparative in some cases and destructive in others. Macular retinal pigment epithelium wound repair and regression of choroidal neovascularization are more pronounced in younger than older patients. We discuss the possibility that the limited retinal pigment epithelial proliferation and latent wound repair in older age-related macular degeneration patients can be stimulated to promote disease regression in age-related macular degeneration. 相似文献
19.
《Cell reports》2023,42(7):112779
- Download : Download high-res image (280KB)
- Download : Download full-size image
20.
《Cell reports》2020,30(4):1246-1259.e6
- Download : Download high-res image (209KB)
- Download : Download full-size image