首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Insulin and leptin act in the hypothalamus, providing robust anorexigenic signals. The exposure of homeothermic animals to a cold environment leads to increased feeding, accompanied by sustained low levels of insulin and leptin. In the present study, the initial and intermediate steps of the insulin-signaling cascade were evaluated in the hypothalamus of cold-exposed Wistar rats. By immunohistochemistry, most insulin receptor (IR) and insulin receptor substrate-2 (IRS-2) immunoreactivity localized to the arcuate nucleus. Basal levels of tyrosine phosphorylation of IR and IRS-2 were increased in cold-exposed rats compared with rats maintained at room temperature. However, after an acute, peripheral infusion of exogenous insulin, significantly lower increases of IR and IRS-2 tyrosine phosphorylation were detected in the hypothalamus of cold-exposed rats. Insulin-induced association of p85/phosphatidylinositol 3-kinase with IRS-2, Ser473 phosphorylation of Akt, and tyrosine phosphorylation of ERK was significantly reduced in the hypothalamus of cold-exposed rats. To test the hypothesis of functional impairment of insulin signaling in the hypothalamus, intracerebroventricularly cannulated rats were acutely treated with insulin, and food ingestion was measured over a period of 12 h. Cold-exposed animals presented a significantly lower insulin-induced reduction in food consumption compared with animals maintained at room temperature. Hence, the present studies reveal that animals exposed to cold are resistant, both at the molecular and the functional level, to the actions of insulin in the hypothalamus.  相似文献   

2.
Taurine is known to modulate a number of metabolic parameters such as insulin secretion and action and blood cholesterol levels. Recent data have suggested that taurine can also reduce body adiposity in C. elegans and in rodents. Since body adiposity is mostly regulated by insulin-responsive hypothalamic neurons involved in the control of feeding and thermogenesis, we hypothesized that some of the activity of taurine in the control of body fat would be exerted through a direct action in the hypothalamus. Here, we show that the intracerebroventricular injection of an acute dose of taurine reduces food intake and locomotor activity, and activates signal transduction through the Akt/FOXO1, JAK2/STAT3 and mTOR/AMPK/ACC signaling pathways. These effects are accompanied by the modulation of expression of NPY. In addition, taurine can enhance the anorexigenic action of insulin. Thus, the aminoacid, taurine, exerts a potent anorexigenic action in the hypothalamus and enhances the effect of insulin on the control of food intake.  相似文献   

3.
Cross-talk between hormone signaling pathways provides mechanisms to facilitate flexibility in the cellular response to extracellular conditions. One function of insulin is to signal high extracellular glucose, while leptin may signal the abundance of extracellular lipid, both energy sources being readily utilized by muscle. The present study reports early signaling events in the insulin and leptin cascades in primary bovine myogenic cells (BMC). BMC were treated with insulin, or leptin for 1, 10, 30 and 120 min, or pretreated with leptin for 10 min followed by insulin for 1, 10, 30 and 120 min. BMC were insulin resistant, showing a significant inhibition of IRS-1 association with the insulin receptor (IR) following insulin stimulation, a corresponding increase in PI 3-kinase association with the IR, and a slow and modest increase in GLUT4 recruitment to the plasma membrane. Pretreatment of BMC for 10 min leptin, followed by insulin time-course, caused IRS-1 recruitment to be unresponsive, but evoked a rapid, phasic response of PI 3-kinase recruitment to the IR and abrogated the response of GLUT4 translocation to the plasma membrane evoked by insulin alone. The lack of insulin response was independent of IR abundance or affinity. JAK-2 association with the ObR and JAK-2 tyrosine phosphorylation were responsive to all three treatments. Insulin alone down-regulated the leptin signaling pathway, JAK-2 association with ObR decreased at all time-points, and JAK-2 phosphorylation decreased similarly. Leptin alone also appeared to down-regulate JAK-2 association with the ObR, but stimulated the down-regulated pathway to signal, JAK-2 tyrosine phosphorylation being increased at later time-points. Pretreatment with leptin followed by insulin time-course showed marked up-regulation of the early leptin signaling pathway, JAK-2 association with the ObR being increased by insulin while JAK-2 tyrosine phosphorylation was also increased. The contrasting responses of BMC to insulin alone, leptin alone and the sequential leptin-insulin treatment may point to the ability of these cells to respond to energy substrate availability, as bovine muscle has evolved to utilize lipids and fatty acids in response to a metabolism which provides only limited glucose. This cross-talk between insulin and leptin signaling pathways points to a better understanding of the mechanisms driving energy substrate utilization in ruminant muscle and may provide a useful model for greater understanding of the molecular mechanisms underlying the development of insulin resistance and Type 2 diabetes in man.  相似文献   

4.
Adiponectin exerts an insulin-sensitizing effect, improving insulin action in peripheral tissues and restraining insulin resistance. Here, we explore the hypothesis that adiponectin can reproduce some of the actions of insulin/leptin in the hypothalamus. The presence of AdipoR1 and AdipoR2 was mapped to the arcuate and lateral hypothalamic nuclei. Icv adiponectin reduced food intake, which was accompanied by activation/engagement of IRS1/2, ERK, Akt, FOXO1, JAK2 and STAT3. All these actions were dependent on AdipoR1, since inhibition of this receptor, and not of AdipoR2, completely reversed the effects described above. Thus, adiponectin acts in the hypothalamus, activating elements of the canonical insulin and leptin signaling pathways and promoting reduction of food intake.  相似文献   

5.
TNF-alpha acts on the hypothalamus modulating food intake and energy expenditure through mechanisms incompletely elucidated. Here, we explore the hypothesis that, to modulate insulin-induced anorexigenic signaling in hypothalamus, TNF-alpha requires the synthesis of NO. TNF-alpha activates signal transduction through JNK and p38 in hypothalamus, peaking at 10(-8) M. This is accompanied by the induction of expression of the inducible and neuronal forms of NOS, in both cases peaking at 10(-12) M. In addition, TNF-alpha stimulates NOS catalytic activity. Pre-treatment with TNF-alpha at a low dose (10(-12) M) inhibits insulin-dependent anorexigenic signaling, and this effect is abolished in iNOS but not in nNOS knockout mice.  相似文献   

6.
7.
8.
Leptin is an adipocyte-secreted hormone that centrally regulates weight control. However, the leptin receptor is expressed not only in the central nervous system, but also in other systems, such as reproductive, hematopoietic, and immune tissues, suggesting various roles in addition to the regulation of food intake and energy expenditure. The leptin receptor bears homology to members of the class I cytokine receptor family. Leptin has previously been shown to enhance cytokine production by murine peritoneal macrophages and human circulating monocytes, where human leptin promotes activation and proliferation. We have recently found that the leptin receptor is expressed not only in monocytes but also in both CD4(+) and CD8(+) T lymphocytes. Besides, leptin enhances proliferation and activation of T lymphocytes when they are costimulated by PHA or Con A. In this paper, we have studied the signal transduction of the leptin receptor in peripheral blood mononuclear cells. We found that leptin stimulation activates the JAK-STAT signaling pathway. More specifically, we found that JAK-2/3 and STAT-3 are activated by tyrosine phosphorylation upon leptin stimulation. Moreover, leptin stimulated tyrosine phosphorylation of the RNA binding protein Sam68 and its association with STAT-3. These effects were dose-dependent (0.1-10 nM) and transient (5-30 min). We also observed the leptin stimulated translocation of activated STAT-3 from the cytoplasm to the nucleus. These results indicate that human leptin receptor in circulating mononuclear cells has the signaling capacity to activate JAK-STAT cascade. This pathway may mediate, at least in part, the action of human leptin in human peripheral blood mononuclear cells.  相似文献   

9.
10.
11.
The adipocyte-derived hormone leptin plays a critical role in a variety of physiological and pathological actions. As such the determination of leptin signal transduction pathways are important both for understanding the molecular mechanisms of leptin action and for identifying sites for possible therapeutic intervention. Since the hypothalamus is the primary site of leptin action, we sought to identify a neuronal-derived human cell line containing the long form of the leptin receptor (OBRb). To this end, we screened several neuroblastoma cell lines and isolated a sub-line of SH-SY5Y cells, which we designated as SH-OBRb, for further studies. We characterized the transduction pathways induced by leptin in SH-OBRb cells and demonstrated that OBRb mediates tyrosine phosphorylation of STAT3, phosphorylation of ERK1/2, but not SAPK/JNK and p38 MAPK, in a dose and time dependent fashion. In addition, Akt appears to be phosphorylated in the basal state and to be insensitive to further activation by leptin. In summary, we have isolated a unique cell line that can be utilized as a model for use in the study of leptin action and molecular mechanisms.  相似文献   

12.
Morphine induces desensitization of insulin receptor signaling   总被引:4,自引:0,他引:4       下载免费PDF全文
Morphine analgesia is mediated principally by the micro -opioid receptor (MOR). Since morphine and other opiates have been shown to influence glucose homeostasis, we investigated the hypothesis of direct cross talk between the MOR and the insulin receptor (IR) signaling cascades. We show that prolonged morphine exposure of cell lines expressing endogenous or transfected MOR, IR, and the insulin substrate 1 (IRS-1) protein specifically desensitizes IR signaling to Akt and ERK cascades. Morphine caused serine phosphorylation of the IR and impaired the formation of the signaling complex among the IR, Shc, and Grb2. Morphine also resulted in IRS-1 phosphorylation at serine 612 and reduced tyrosine phosphorylation at the YMXM p85-binding motifs, weakening the association of the IRS-1/p85 phosphatidylinositol 3-kinase complex. However, the IRS-1/Grb2 complex was unaffected by chronic morphine treatment. These results suggest that morphine attenuates IR signaling to Akt by disrupting the IRS-1-p85 interaction but inhibits signaling to ERK by disruption of the complex among the IR, Shc, and Grb2. Finally, we show that systemic morphine induced IRS-1 phosphorylation at Ser612 in the hypothalamus and hippocampus of wild type, but not MOR knockout, mice. Our results demonstrate that opiates can inhibit insulin signaling through direct cross talk between the downstream signaling pathways of the MOR and the IR.  相似文献   

13.
We have previously demonstrated that the insulin resistance associated with inducible nitric oxide synthase (iNOS) induction in two different models of obesity, diet-induced obesity and the ob/ob mice, is mediated by S-nitrosation of proteins involved in insulin signal transduction: insulin receptor beta-subunit (IRbeta), insulin receptor substrate 1(IRS-1), and Akt. S-nitrosation of IRbeta and Akt impairs their kinase activities, and S-nitrosation of IRS-1 reduces its tissue expression. In this study, we observed that LPS-induced insulin resistance in the muscle of wild-type mice, as demonstrated by reduced insulin-induced tyrosine phosphorylation of IRbeta and IRS-1, reduced IRS-1 expression and reduced insulin-induced serine phosphorylation of Akt. This resistance occurred in parallel with enhanced iNOS expression, which was accompanied by S-nitrosation of IRbeta/IRS-1 and Akt. In the muscle of iNOS(-/-) mice, we did not observe enhanced iNOS expression or any S-nitrosation of IRbeta/IRS-1 and Akt after LPS treatment. Moreover, insulin resistance was not present. The preservation of insulin-induced tyrosine phosphorylation of IRbeta and IRS-1, of IRS-1 protein expression, and of insulin-induced serine phosphorylation of Akt observed in LPS-treated iNOS(-/-) mice strongly suggests that the insulin resistance induced by LPS is iNOS mediated, probably through S-nitrosation of proteins of early steps of insulin signaling.  相似文献   

14.
15.
Insulin stimulates phosphatidylinositol-3-kinase (PI3K) and extracellular signal-regulated kinases (ERK) in various mammalian cells. To study the role of PI3K in insulin stimulation of ERK, we employed PI3K inhibitor LY294002 and mouse embryonic R- fibroblasts lacking IGF-1 receptors. In these R- cells, PI3K inhibition by LY294002 enhanced insulin stimulation of ERK phosphorylation whereas LY294002 inhibited insulin stimulation of Akt phosphorylation. The enhanced insulin stimulation of ERK phosphorylation was accompanied by increased IRS-1 tyrosine phosphorylation. Insulin stimulation of insulin receptor tyrosine phosphorylation was not altered. PI3K inhibition increased IRS-1-Grb2 complex formation and ras activity following insulin treatment of cells. Increased insulin stimulation of ERK by PI3K inhibition was mediated by the MEK/ERK pathway, but did not involve inhibitory Ser259 phosphorylation of raf that was reported to be mediated by Akt. In summary, PI3K inhibition in R- cells enhanced insulin stimulation of ERK phosphorylation by mechanisms involving enhancement of IRS-1 tyrosine phosphorylation, IRS-1-Grb2 complex formation and the ras/MEK/ERK pathway.  相似文献   

16.
Platelet-activating factor (PAF) is a potent proinflammatory phospholipid with multiple pathological and physiological effects. We have shown that basic fibroblast growth factor (bFGF) supplementation induces rapid proliferation of human umbilical vein endothelial cells (HUVEC), which is reduced upon removal of bFGF or by bFGF immunoneutralization. The PAF receptor antagonist LAU-8080 inhibited bFGF-stimulated HUVEC proliferation, indicating the involvement of PAF in the bFGF-mediated signaling of HUVEC. Although FGF receptor phosphorylation was not affected by LAU-8080, the bFGF-mediated prolonged phosphorylation, and activation of Erk-1 and -2 were attenuated. Phosphorylation of STAT-3 was observed in the presence of PAF or bFGF, which was attenuated by PAFR antagonists. PAF-induced STAT-3 phosphorylation observed in HUVEC pretreated with either Src inhibitor PP1 or JAK-2 inhibitor AG-490 indicated (i) immediate (1 min) phosphorylation of STAT-3 is dependent on Src, (ii) JAK-2-dependent STAT-3 phosphorylation occurs after the delayed (30 min) PAF exposure, and (iii) prolonged (60 min) STAT-3 phosphorylation may be either through Src and/or JAK-2. Attenuation of the STAT-3 phosphorylation by the PAFR antagonists indicated signaling through the PAF receptor. Taken together, these findings suggest the production of PAF is important for bFGF-mediated signaling and that a dual kinase mechanism is involved in the PAF-mediated signal transduction cascade.  相似文献   

17.
18.
Tumor necrosis factor-alpha (TNF-alpha) mediated attenuation of insulin signaling pathway is an important cause in several disorders like obesity, obesity linked diabetes mellitus. TNF-alpha actions vary depending upon concentration and time of exposure in various cells. In the present study, the effects of long-term TNF-alpha (1 ng/ml) exposure on the components of insulin signaling pathway in HepG2 and HepG2 cells overexpressing constitutively active Akt1/PKB-alpha (HepG2-CA-Akt/PKB) have been investigated. In parental HepG2 cells, TNF-alpha treatment for 24 h reduced the phosphorylation of Akt1/PKB-alpha and GSK-3beta and under these conditions cells also showed reduced insulin responsiveness in terms of Akt1/PKB-alpha and GSK-3beta phosphorylation. TNF-alpha pre-incubated HepG2-CA-Akt/PKB cells showed lower reduction in Akt1/PKB-alpha and GSK-3beta phosphorylation and insulin responsiveness after 24 h as compared to parental HepG2 cells. We report that the long-term TNF-alpha pre-incubation in both parental HepG2 and HepG2-CA-Akt/PKB-alpha cells leads to the reduction in the levels of IRS-1 without altering the levels of IRS-2. In order to understand the reason for the differential insulin resistance in both the cell types, the effect of long-term TNF-alpha treatment on the proteins upstream to Akt/PKB was investigated. TNF-alpha pre-incubation also showed reduced insulin-stimulated Tyr phosphorylation of insulin receptor (IR-beta) in both the cell types, moreover hyperphosphorylation of IRS-1 at Ser 312 residue was observed in TNF-alpha pre-incubated cells. As hyperphosphorylation of IRS-1 at Ser 312 can induce its degradation, it is possible that reduced insulin responsiveness after long-term TNF-alpha pre-incubation observed in this study is due to the decrease in IRS-1 levels.  相似文献   

19.
Leptin and insulin have overlapping intracellular signaling mechanisms and exert anorexigenic actions in the hypothalamus. We aimed to determine how chronic exposure to increased leptin affects the hypothalamic response to a rise in insulin. We analyzed the activation and interactions of components of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway in the hypothalamus of rats treated icv for 14 days with leptin followed by a central injection of insulin and killed 15 min later. Insulin increased glycemia and chronic leptin reduced this insulin induced rise in glucose. Leptin decreased the association between the insulin receptor beta chain (IRβ) and insulin receptor substrate 2 (IRS2), augmented the association between Janus kinase 2 and IRS2, increased levels of the catalytic subunit of PI3K and pAkt-Ser473 and decreased forkhead box O number 1 levels. Insulin reduced the association between suppressor of the cytokine signaling 3 and IRβ, increased IRβ-IRS2 association and pAkt-Thr308 levels, with chronic leptin exposure blunting these effects. In conclusion, chronic exposure to leptin decreases the central response to insulin by increasing suppressor of the cytokine signaling 3 association to IR, which inhibits insulin signaling at the level of interaction of its receptor with IRS2 and activates PI3K by promoting Janus kinase 2-IRS2 association. Thus, these results suggest that this mechanism could be a target for the treatment of insulin resistance.  相似文献   

20.
The hypoglycemic effects of high dose salicylates in the treatment of diabetes were documented before the advent of insulin. However, the molecular mechanisms by which salicylates exert these anti-diabetic effects are not well understood. In this study, we analyzed the effects of aspirin (acetylsalicylic acid) on serine phosphorylation of insulin receptor substrate 1 (IRS-1) in cells treated with tumor necrosis factor (TNF)-alpha. Phosphorylation of IRS-1 at Ser307, Ser267, and Ser612 was monitored by immunoblotting with phospho-specific IRS-1 antibodies. In 3T3-L1 and Hep G2 cells, phosphorylation of IRS-1 at Ser307 in response to TNF-alpha treatment correlated with phosphorylation of JNK, c-Jun, and degradation of IkappaBalpha. Moreover, phosphorylation of IRS-1 at Ser307 in embryo fibroblasts derived from either JNK or IKK knockout mice was reduced when compared with that in the wild-type controls. Taken together, these data suggest that serine phosphorylation of IRS-1 in response to TNF-alpha is mediated, in part, by JNK and IKK. Interestingly, aspirin treatment inhibited the phosphorylation of IRS-1 at Ser307 as well as the phosphorylation of JNK, c-Jun, and degradation of IkappaBalpha. Furthermore, other serine kinases including Akt, extracellular regulated kinase, mammalian target of rapamycin, and PKCzeta were also activated by TNF-alpha (as assessed by phospho-specific antibodies). Phosphorylation of IRS-1 at Ser267 and Ser612 correlated with the activation of these kinases. Phosphorylation of Akt and the mammalian target of rapamycin (but not extracellular regulated kinase or PKCzeta) in response to TNF-alpha was inhibited by aspirin treatment. Finally, aspirin rescued insulin-induced glucose uptake in 3T3-L1 adipocytes pretreated with TNF-alpha. We conclude that aspirin may enhance insulin sensitivity by protecting IRS proteins from serine phosphorylation catalyzed by multiple kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号