首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 153 毫秒
1.
Staphylococcus epidermidis, a commensal of humans, secretes Esp protease to prevent Staphylococcus aureus biofilm formation and colonization. Blocking S. aureus colonization may reduce the incidence of invasive infectious diseases; however, the mechanism whereby Esp disrupts biofilms is unknown. We show here that Esp cleaves autolysin (Atl)-derived murein hydrolases and prevents staphylococcal release of DNA, which serves as extracellular matrix in biofilms. The three-dimensional structure of Esp was revealed by x-ray crystallography and shown to be highly similar to that of S. aureus V8 (SspA). Both atl and sspA are necessary for biofilm formation, and purified SspA cleaves Atl-derived murein hydrolases. Thus, S. aureus biofilms are formed via the controlled secretion and proteolysis of autolysin, and this developmental program appears to be perturbed by the Esp protease of S. epidermidis.  相似文献   

2.
The viscoelastic properties of mono‐microbial biofilms produced by ocular and reference staphylococcal strains were investigated. The microorganisms were characterized for their haemolytic activity and agr typing and the biofilms, grown on stainless steel surface under static conditions, were analysed by Confocal Laser Scanning Microscopy. Static and dynamic rheometric tests were carried out to determine the steady‐flow viscosity and the elastic and viscous moduli. The analysed biofilms showed the typical time‐dependent behaviour of viscoelastic materials with considerable elasticity and mechanical stability except for Staphylococcus aureus ATCC 29213 biofilm which showed a very fragile structure. In particular, S. aureus 6ME biofilm was more compact than other staphylococcal biofilms studied with a yield stress ranging between 2 and 3 Pa. The data obtained in this work could represent a starting point for developing new therapeutic strategies against biofilm‐associated infections, such as improving the drug effect by associating an antimicrobial agent with a biofilm viscoelasticity modifier.  相似文献   

3.
Staphylococcus aureus and Staphylococcus epidermidis are major human pathogens of increasing importance due to the dissemination of antibiotic-resistant strains. Evidence suggests that the ability to form matrix-encased biofilms contributes to the pathogenesis of S. aureus and S. epidermidis. In this study, we investigated the functions of two staphylococcal biofilm matrix polymers: poly-N-acetylglucosamine surface polysaccharide (PNAG) and extracellular DNA (ecDNA). We measured the ability of a PNAG-degrading enzyme (dispersin B) and DNase I to inhibit biofilm formation, detach preformed biofilms, and sensitize biofilms to killing by the cationic detergent cetylpyridinium chloride (CPC) in a 96-well microtiter plate assay. When added to growth medium, both dispersin B and DNase I inhibited biofilm formation by both S. aureus and S. epidermidis. Dispersin B detached preformed S. epidermidis biofilms but not S. aureus biofilms, whereas DNase I detached S. aureus biofilms but not S. epidermidis biofilms. Similarly, dispersin B sensitized S. epidermidis biofilms to CPC killing, whereas DNase I sensitized S. aureus biofilms to CPC killing. We concluded that PNAG and ecDNA play fundamentally different structural roles in S. aureus and S. epidermidis biofilms.  相似文献   

4.
5.
Ceftaroline (CPT) is a novel cephalosporin with in vitro activity against Staphylococcus aureus. Ceftaroline exhibits a level of binding affinity for PBPs in S. aureus including PBP2a of methicillin-resistant S. aureus (MRSA). The aims of this study were to investigate the morphological, physiological and molecular responses of MRSA clinical strains and MRSA biofilms to sub-MICs (1/4 and 1/16 MIC) of ceftaroline by using transmission, scanning and confocal microscopy. We have also used quantitative Real-Time PCR to study the effect of sub-MICs of ceftaroline on the expression of the staphylococcal icaA, agrA, sarA and sasF genes in MRSA biofilms. In one set of experiments, ceftaroline was able to inhibit biofilm formation in all strains tested at MIC, however, a strain dependent behavior in presence of sub-MICs of ceftaroline was shown. In a second set of experiments, destruction of preformed biofilms by addition of ceftaroline was evaluated. Ceftaroline was able to inhibit biofilm formation at MIC in all strains tested but not at the sub-MICs. Destruction of preformed biofilms was strain dependent because the biofilm formed by a matrix-producing strain was resistant to a challenge with ceftaroline at MIC, whereas in other strains the biofilm was sensitive. At sub-MICs, the impact of ceftaroline on expression of virulence genes was strain-dependent at 1/4 MIC and no correlation between ceftaroline-enhanced biofilm formation and gene regulation was established at 1/16 MIC. Our findings suggest that sub-MICs of ceftaroline enhance bacterial attachment and biofilm formation by some, but not all, MRSA strains and, therefore, stress the importance of maintaining effective bactericidal concentrations of ceftaroline to fight biofilm-MRSA related infections.  相似文献   

6.
Staphylococcus aureus is a major cause of food poisoning outbreaks associated with dairy products, because of the ingestion of preformed enterotoxins. The biocontrol of S. aureus using lactic acid bacteria (LAB) offers a promising opportunity to fight this pathogen while respecting the product ecosystem. We had previously established the ability of Lactococcus lactis, a lactic acid bacterium widely used in the dairy industry, to downregulate a major staphylococcal virulence regulator, the accessory gene regulator (agr) system, and, as a consequence, agr-controlled enterotoxins. In the present paper, we have shown that the oxygen-independent reducing properties of L. lactis contribute to agr downregulation. Neutralizing lactococcal reduction by adding potassium ferricyanide or maintaining the oxygen pressure constant at 50% released agr downregulation in the presence of L. lactis. This downregulation still occurred in an S. aureus srrA mutant, indicating that the staphylococcal respiratory response regulator SrrAB was not the only component in the signaling pathway. Therefore, this study clearly demonstrates the ability of L. lactis reducing properties to interfere with the expression of S. aureus virulence, thus highlighting this general property of LAB as a lever to control the virulence expression of this major pathogen in a food context and beyond.  相似文献   

7.
Staphylococcus aureus is an opportunistic pathogen that colonizes the skin and mucosal surfaces of mammals. Persistent staphylococcal infections often involve surface-associated communities called biofilms. Here we report the discovery of a novel extracellular fibril structure that promotes S. aureus biofilm integrity. Biochemical and genetic analysis has revealed that these fibers have amyloid-like properties and consist of small peptides called phenol soluble modulins (PSMs). Mutants unable to produce PSMs were susceptible to biofilm disassembly by matrix degrading enzymes and mechanical stress. Previous work has associated PSMs with biofilm disassembly, and we present data showing that soluble PSM peptides disperse biofilms while polymerized peptides do not. This work suggests the PSMs'' aggregation into amyloid fibers modulates their biological activity and role in biofilms.  相似文献   

8.
9.
We examined the bacterial aerobic nasal flora of 216 healthy volunteers to identify potential competitive interactions among different species, with special emphasis on the influence of staphylococcal agr alleles. The Staphylococcus aureus colonization rate correlated negatively with the rate of colonization by Corynebacterium spp. and non-aureus staphylococci, especially S. epidermidis, suggesting that both Corynebacterium spp. and S. epidermidis antagonize S. aureus colonization. Most of the S. aureus and S. epidermidis isolates were agr typed by a PCR method. Only one S. aureus agr (agrSa) allele was detected in each carrier. Multiple logistic regression of the two most prevalent agrSa alleles (agr-1Sa and agr-2Sa) and the three S. epidermidis agr (agrSe) alleles showed a specific influence of the agr system. The results of this model did not support conclusions drawn from previous in vitro agr-specific cross-inhibition experiments. Our findings suggest that the agr alleles, which are strongly linked to the bacterial genetic background, may simply be associated with common biological properties—including mediators of bacterial interference—in the strains that bear them.  相似文献   

10.
Streptococcus mutans, the primary etiological agent of human dental caries, is an obligate biofilm-forming bacterium. The goals of this study were to identify the gene(s) required for biofilm formation by this organism and to elucidate the role(s) that some of the known global regulators of gene expression play in controlling biofilm formation. In S. mutans UA159, the brpA gene (for biofilm regulatory protein) was found to encode a novel protein of 406 amino acid residues. A strain carrying an insertionally inactivated copy of brpA formed longer chains than did the parental strain, aggregated in liquid culture, and was unable to form biofilms as shown by an in vitro biofilm assay. A putative homologue of the enzyme responsible for synthesis of autoinducer II (AI-2) of the bacterial quorum-sensing system was also identified in S. mutans UA159, but insertional inactivation of the gene (luxSSm) did not alter colony or cell morphology or diminish the capacity of S. mutans to form biofilms. We also examined the role of the homologue of the Bacillus subtilis catabolite control protein CcpA in S. mutans in biofilm formation, and the results showed that loss of CcpA resulted in about a 60% decrease in the ability to form biofilms on an abiotic surface. From these data, we conclude that CcpA and BrpA may regulate genes that are required for stable biofilm formation by S. mutans.  相似文献   

11.
《Small Ruminant Research》2007,73(2-3):197-199
Staphylococcus aureus is one of the major causes of dairy sheep mastitis. The S. aureus agr locus (accessory gene regulator) regulates the production of most staphylococcal exoproteins, including exoenzymes, toxins, surface proteins, and other virulence factors. S. aureus have four agr groups (alleles) determined by PCR. In this study, 46 S. aureus isolates, recovered in south-east of France, were also characterized by their properties of adherence to smooth surfaces, slime production and resistance to 10 antibiotics. For 46 S. aureus associated with dairy sheep mastitis (subclinical mastitis, clinical mastitis, environment of dairy sheep farm), 80% (37/46) belonged to agr group 3, 39% (18/46) were adherent (adherent, strongly adherent or with maximal adherence). For the same isolates, 26% (12/46) were slime producers (moderate or strong producers). All the 46 isolates were susceptible to oxacillin, except for two isolates including two sheep subclinical mastitis isolates. The dairy sheep subclinical mastitis isolates were for 79% (22/28), susceptible to nine other antibiotics tested.  相似文献   

12.
Biofilm formed by Staphylococcus aureus significantly enhances antibiotic resistance by inhibiting the penetration of antibiotics, resulting in an increasingly serious situation. This study aimed to assess whether baicalein can prevent Staphylococcus aureus biofilm formation and whether it may have synergistic bactericidal effects with antibiotics in vitro. To do this, we used a clinically isolated strain of Staphylococcus aureus 17546 (t037) for biofilm formation. Virulence factors were detected following treatment with baicalein, and the molecular mechanism of its antibiofilm activity was studied. Plate counting, crystal violet staining, and fluorescence microscopy revealed that 32 μg/mL and 64 μg/mL baicalein clearly inhibited 3- and 7-day biofilm formation in vitro. Moreover, colony forming unit count, confocal laser scanning microscopy, and scanning electron microscopy showed that vancomycin (VCM) and baicalein generally enhanced destruction of biofilms, while VCM alone did not. Western blotting and real-time quantitative polymerase chain reaction analyses (RTQ-PCR) confirmed that baicalein treatment reduced staphylococcal enterotoxin A (SEA) and α-hemolysin (hla) levels. Most strikingly, real-time qualitative polymerase chain reaction data demonstrated that 32 μg/mL and 64 μg/mL baicalein downregulated the quorum-sensing system regulators agrA, RNAIII, and sarA, and gene expression of ica, but 16 μg/mL baicalein had no effect. In summary, baicalein inhibited Staphylococcus aureus biofilm formation, destroyed biofilms, increased the permeability of vancomycin, reduced the production of staphylococcal enterotoxin A and α-hemolysin, and inhibited the quorum sensing system. These results support baicalein as a novel drug candidate and an effective treatment strategy for Staphylococcus aureus biofilm-associated infections.  相似文献   

13.
14.
Eradication of Gram-positive biofilms is a critical aspect in implant-associated infection treatment. Although antibiotic-containing particulate carriers may be a promising strategy for overcoming biofilm tolerance, the assessment of their interaction with biofilms has not been fully explored. In the present work, the antibiofilm activity of daptomycin- and vancomycin-loaded poly(methyl methacrylate) (PMMA) and PMMA-Eudragit RL 100 (EUD) microparticles against methicillin-resistant Staphylococcus aureus (MRSA) and polysaccharide intercellular adhesin-positive S. epidermidis biofilms was investigated using isothermal microcalorimetry (IMC) and fluorescence in situ hybridization (FISH). The minimal biofilm inhibitory concentrations (MBIC) of MRSA biofilms, as determined by IMC, were 5 and 20 mg/mL for daptomycin- and vancomycin-loaded PMMA microparticles, respectively. S. epidermidis biofilms were less susceptible, with a MBIC of 20 mg/mL for daptomycin-loaded PMMA microparticles. Vancomycin-loaded microparticles were ineffective. Adding EUD to the formulation caused a 4- and 16-fold reduction of the MBIC values of daptomycin-loaded microparticles for S. aureus and S. epidermidis, respectively. FISH corroborated the IMC results and provided additional insights on the antibiofilm effect of these particles. According to microscopic analysis, only daptomycin-loaded PMMA-EUD microparticles were causing a pronounced reduction in biofilm mass for both strains. Taken together, although IMC indicated that a biofilm inhibition was achieved, microscopy showed that the biofilm was not eradicated and still contained FISH-positive, presumably viable bacteria, thus indicating that combining the two techniques is essential to fully assess the effect of microparticles on staphylococcal biofilms.  相似文献   

15.
Staphylococcal biofilms are a major concern in both clinical and food settings because they are an important source of contamination. The efficacy of established cleaning procedures is often hindered due to the ability of some antimicrobial compounds to induce biofilm formation, and to the presence of persister cells, a small bacterial subpopulation that exhibits multidrug tolerance. Phage lytic enzymes have demonstrated antimicrobial activity against planktonic and sessile bacteria. However, their ability to lyse and/or select persister cells remains largely unexplored so far. In this work, the lytic activity of the endolysin LysH5 against Staphylococcus aureus and Staphylococcus epidermidis biofilms was confirmed. LysH5 reduced staphylococcal sessile cell counts by 1–3 log units, compared with the untreated control, and sub-inhibitory concentrations of this protein did not induce biofilm formation. LysH5-surviving cells were not resistant to the lytic activity of this protein, suggesting that no persister cells were selected. Moreover, to prove the lytic ability of LysH5 against this subpopulation, both S. aureus exponential cultures and persister cells obtained after treatment with rifampicin and ciprofloxacin were subsequently treated with LysH5. The results demonstrated that besides the notable activity of endolysin LysH5 against staphylococcal biofilms, persister cells were also inhibited, which raises new opportunities as an adjuvant for some antibiotics.  相似文献   

16.
Staphylococcus aureus is now amongst the most important pathogenic bacteria responsible for bloodstream nosocomial infections and for biofilm formation on indwelling medical devices. Its increasing resistance to common antibiotics, partly attributed to its ability to form biofilms, is a challenge for the development of new antimicrobial agents. Accordingly, the goal of this study was to evaluate the effect of a coral associated actinomycete (CAA) - 3 on S. aureus biofilms both in vitro and in vivo. Methanolic extracts of CAA-3 showed a reduction in in vitro biofilm formation by S. aureus ATCC 11632, methicillin resistant S. aureus ATCC 33591 and clinical isolates of S. aureus at the biofilm inhibitory concentration (BIC) of 0.1 mg ml?1. Furthermore, confocal laser scanning microscope (CLSM) studies provide evidence of CAA-3 inhibiting intestinal colonisation of S. aureus in the nematode Caenorhabditis elegans. To conclude, this study for the first time, reports CAA as a promising source of anti-biofilm compounds, for developing novel drugs against highly resistant staphylococcal biofilms.  相似文献   

17.
The staphylococcal nuclease, encoded by the nuc1 gene, is an important virulence factor of Staphylococcus aureus. However, the physiological role of the nuclease has not been fully characterized. The current study observed that biofilm development could be prevented in staphylococcal nuclease-producing strains of S. aureus; however, when the nuc1 gene was knocked out, the ability to form a biofilm significantly increased. Scanning electron and confocal scanning laser microscopy were used to evaluate the role of the nuc1 gene in biofilm formation. Moreover, the nuc1 gene product, staphylococcal nuclease, and recombinant NUC1 protein were found to have a visible effect on other biofilm-forming bacteria, such as Pseudomonas aeruginosa, Actinobacillus pleuropneumoniae, and Haemophilus parasuis. The current study showed a direct relationship between staphylococcal nuclease production and the prevention of biofilm development. The findings from this study underscore the important role of staphylococcal nuclease activity to prevent biofilm formation in S. aureus. They also provided evidence for the biological role of staphylococcal nucleases in other organisms.  相似文献   

18.
BackgroundStaphylococcus aureus and Candida albicans have been co-isolated from biofilm-associated diseases such as denture stomatitis, periodontitis, and burn wound infections, as well as from medical devices. However, the polymicrobial biofilm of both microorganisms has not been fully characterized.AimsTo characterize the polymicrobial biofilm of C. albicans and S. aureus in terms of microbial density, synergy, composition, structure, and stability against antimicrobials and chemical agents.MethodsCrystal violet assay was used to measure the biofilm formation. Scanning electron microscopy and confocal microscopy were used to analyze the structure and chemical composition of the biofilms, respectively.ResultsSupplemented media with fetal bovine serum (FBS) decreased the biofilm formation of S. aureus and the polymicrobial biofilm. For C. albicans, depending on the culture media, the addition of glucose or FBS had a positive effect in biofilm formation. FBS decreased the adhesion to polystyrene wells for both microorganisms. Supplementing the media with glucose and FBS enhanced the growth of C. albicans and S. aureus, respectively. It seems that C. albicans contributes the most to the adhesion process and to the general structure of the biofilms on all the surfaces tested, including a catheter model. Interestingly, S. aureus showed a great adhesion capacity to the surface of C. albicans in the biofilms. Proteins and β-1,6-linked polysaccharides seem to be the most important molecules in the polymicrobial biofilm.ConclusionsThe polymicrobial biofilm had a complex structure, with C. albicans serving as a scaffold where S. aureus adheres, preferentially to the hyphal form of the fungus. Detection of polymicrobial infections and characterization of biofilms will be necessary in the future to provide a better treatment.  相似文献   

19.
Staphylococcus aureus is a potent biofilm former on host tissue and medical implants, and biofilm growth is a critical virulence determinant for chronic infections. Recent studies suggest that many clinical isolates form polysaccharide-independent biofilms. However, a systematic screen for defective mutants has not been performed to identify factors important for biofilm formation in these strains. We created a library of 14,880 mariner transposon mutants in a S. aureus strain that generates a proteinaceous and extracellular DNA based biofilm matrix. The library was screened for biofilm defects and 31 transposon mutants conferred a reproducible phenotype. In the pool, 16 mutants overproduced extracellular proteases and the protease inhibitor α2-macroglobulin restored biofilm capacity to 13 of these mutants. The other 15 mutants in the pool displayed normal protease levels and had defects in genes involved in autolysis, osmoregulation, or uncharacterized membrane proteins. Two transposon mutants of interest in the GraRS two-component system and a putative inositol monophosphatase were confirmed in a flow cell biofilm model, genetically complemented, and further verified in a community-associated methicillin-resistant S. aureus (CA-MRSA) isolate. Collectively, our screen for biofilm defective mutants identified novel loci involved in S. aureus biofilm formation and underscored the importance of extracellular protease activity and autolysis in biofilm development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号