首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have developed a non-isotopic TR-FIA for Cyproterone acetate and Cyproterone in plasma. Synthesis of the biotinylated tracers, biotinylated Cyproterone acetate, and Cyproterone, as well as the preparation of anti–Cyproterone acetate and anti-Cyproterone antisera are reported. The specificity of anti-Cyproterone acetate antiserum resulting from the coupling of link bridge (link bridge between steroid and BSA), on the 3-position on the steroid skeleton, allowed to carry out the Cyproterone acetate assay directly on extracted plasma (without chromatography). On the other hand Cyproterone assays require a purification step, including extraction plus chromatography, because the plasma Cyproterone acetate concentrations in Cyproterone acetate-treated women are 200 times higher than for Cyproterone. Theses plasma TR-FIA of Cyproterone acetate and Cyproterone presented the advantage of needing only small doses of radioactivity for recovery controls, and better praticability related to the only existing RIA described to date.  相似文献   

2.
Book Reviews     
《Journal of neurochemistry》1984,42(5):1502-1503
Book reviews in this article:
Immunohistochemistry edited by A. C. Cuello.
Methods of Enzymatic Analysis, 3rd Edition, Vol. 1: Fundamentals edited by H. U. Bergmeyer, J. Bergmeyer, and M. Grassl.  相似文献   

3.
Conventional methods to determine esterase activity from insects are composed of a three-step process where the enzyme is allowed to hydrolyze a 1-naphthyl acetate substrate, that reaction is quenched by a SDS detergent, and then a Fast Blue B dye complex is formed with 1-naphthol, the product of 1-naphthyl acetate hydrolysis. These methods measure dye-product complex rather than the product, 1-naphthol. A new assay is presented that continuously monitors the formation of 1-naphthol with the hydrolysis of an esterase substrate. The esterase activity was determined as the slope of the linear regression change in absorbance over time at 320 nm. The continuous assay provides a simple, rapid, and sensitive method for measuring esterases extracted from a single diamondback moth in 1-10 min. The detection limit of the assay is approximately 0.6 microM 1-naphthol. The 1-naphthol product from the esterase reaction was confirmed by HPLC analysis. According to the assay, the K(m) and V(max) values of the esterase were 28 +/- 2 microM and 6.0 +/- 0.1 microM/min, respectively, at 37 degrees C for 1-naphthyl acetate. The K(i) value was 9 +/- 2 microM using azadirachtin, an insecticide from neem tree, Azadirachta indica (A.Juss). Azadirachtin was a reversible competitive inhibitor of the esterase activity.  相似文献   

4.
Adenosine monophosphate (AMP)-forming acetyl-CoA synthetase (ACS; acetate:CoA ligase (AMP-forming), EC 6.2.1.1) is a key enzyme for conversion of acetate to acetyl-CoA, an essential intermediate at the junction of anabolic and catabolic pathways. Phylogenetic analysis of putative short and medium chain acyl-CoA synthetase sequences indicates that the ACSs form a distinct clade from other acyl-CoA synthetases. Within this clade, the archaeal ACSs are not monophyletic and fall into three groups composed of both bacterial and archaeal sequences. Kinetic analysis of two archaeal enzymes, an ACS from Methanothermobacter thermautotrophicus (designated as MT-ACS1) and an ACS from Archaeoglobus fulgidus (designated as AF-ACS2), revealed that these enzymes have very different properties. MT-ACS1 has nearly 11-fold higher affinity and 14-fold higher catalytic efficiency with acetate than with propionate, a property shared by most ACSs. However, AF-ACS2 has only 2.3-fold higher affinity and catalytic efficiency with acetate than with propionate. This enzyme has an affinity for propionate that is almost identical to that of MT-ACS1 for acetate and nearly tenfold higher than the affinity of MT-ACS1 for propionate. Furthermore, MT-ACS1 is limited to acetate and propionate as acyl substrates, whereas AF-ACS2 can also utilize longer straight and branched chain acyl substrates. Phylogenetic analysis, sequence alignment and structural modeling suggest a molecular basis for the altered substrate preference and expanded substrate range of AF-ACS2 versus MT-ACS1.  相似文献   

5.
An integrated metabolic model for the production of acetate by growing Escherichia coli on glucose under aerobic conditions is presented. The model is based on parameters which are easily determined by experiments. Forming the basis for this integrated metabolic model are the 12 principal precursor metabolites for biosynthetic pathways, the Embden-Meyerhof-Parnas pathway, the pentose phosphate cycle, the tricarboxylic acid cycle and the anapleurotic reactions, the Crabtree effect, the Pasteur effect, and the details of bacterial respiration. The result can be used to explain phenomena often observed in industrial fermentations, i.e., increased acetate production which follows from high glucose uptake rate, a low oxygen concentration, a high specific growth rate, or a combination of these conditions. (c) 1993 John Wiley & Sons, Inc.  相似文献   

6.
Abstract

In this paper, two types of bacterial fusion protein, cutinase-CBMCel6A and cutinase-CBMCenA, were used to modify the surface of cellulose acetate fibre. The enzyme binding on cellulose acetate fibres and the hydrolysis of acetyl groups were monitored. Water absorbency and dye uptake were measured to assess the extent of enzymatic modification. The results demonstrated that cutinase-carbohydrate-binding module (CBM) has a greater effect on cellulose acetate fibres than that of cutinase. The use of non-ionic surfactant Triton X-100 could further improve enzymatic modification of cellulose acetate fibres in terms of wettability and dyeability. Scanning electron microscopy confirmed that both cutinase-CBMs could lead to the formation of carving characters on the surface of treated cellulose acetate fibres. Our studies provide a foundation for the potential application of cutinase-CBM in the surface modification of cellulose acetate fibre.  相似文献   

7.
Acetate kinase, a member of the acetate and sugar kinase-Hsp70-actin (ASKHA) enzyme superfamily1-5, is responsible for the reversible phosphorylation of acetate to acetyl phosphate utilizing ATP as a substrate. Acetate kinases are ubiquitous in the Bacteria, found in one genus of Archaea, and are also present in microbes of the Eukarya6. The most well characterized acetate kinase is that from the methane-producing archaeon Methanosarcina thermophila7-14. An acetate kinase which can only utilize PPi but not ATP in the acetyl phosphate-forming direction has been isolated from Entamoeba histolytica, the causative agent of amoebic dysentery, and has thus far only been found in this genus15,16.In the direction of acetyl phosphate formation, acetate kinase activity is typically measured using the hydroxamate assay, first described by Lipmann17-20, a coupled assay in which conversion of ATP to ADP is coupled to oxidation of NADH to NAD+ by the enzymes pyruvate kinase and lactate dehydrogenase21,22, or an assay measuring release of inorganic phosphate after reaction of the acetyl phosphate product with hydroxylamine23. Activity in the opposite, acetate-forming direction is measured by coupling ATP formation from ADP to the reduction of NADP+ to NADPH by the enzymes hexokinase and glucose 6-phosphate dehydrogenase24.Here we describe a method for the detection of acetate kinase activity in the direction of acetate formation that does not require coupling enzymes, but is instead based on direct determination of acetyl phosphate consumption. After the enzymatic reaction, remaining acetyl phosphate is converted to a ferric hydroxamate complex that can be measured spectrophotometrically, as for the hydroxamate assay. Thus, unlike the standard coupled assay for this direction that is dependent on the production of ATP from ADP, this direct assay can be used for acetate kinases that produce ATP or PPi.  相似文献   

8.
9.
Book Reviews     
Book reviewed in this article:
Methods of Enzymatic Analysis, 3rd Edition, Vol. 2: Samples, Reagents, Assessment of Results; Vol. 3: Enzymes 1: Oxidoreductases, Transferases edited by H. U. Bergmeyer, J. Bergmeyer, and M. Grassl.
Growth and Maturation Factors, Vol. 1 edited by G. Guroff.  相似文献   

10.
Mikania cordata is widely used for the treatment of cuts, wounds, and dengue fever in Bangladesh. In the present study, essential oil (12.5, 25 and 50?mg/kg) and two extracts, viz., chloroform and ethyl acetate extracts (200, 400, 800?mg/kg b.w.) were tested for peripheral and central anti-nociceptive activity by acetic acid-induced writhing and hot plate method, respectively. Carrageenan-induced rat paw edema assay and yeast-induced hyperthermia assay were also carried out to evaluate anti-inflammatory and antipyretic properties of oil and extracts, respectively at aforesaid doses. The essential oil (50?mg/kg), chloroform extract (800?mg/kg) and ethyl acetate extract (800?mg/kg) showed potent peripheral anti-nociceptive activity having 47.33%, 29.33% and 16.65% of writhing inhibition, respectively, comparable with standard diclofenac (52.0%). Essential oil (50?mg/kg), chloroform extract (800?mg/kg) and ethyl acetate extract (800?mg/kg) presented promising central anti-nociceptive activity as well having 95.86%, 79.18% and 42.37% elongation of reaction time, respectively, at 90?min after administration of essential oil, ethyl acetate extract and 60?min after administration of chloroform extract. In anti-inflammatory activity screening, the essential oil (50?mg/kg) produced the highest 72.80% edema inhibition at 4?h after administration of carrageenan which was comparable with that of standard phenylbutazoe (87.87%). On the other hand, chloroform extract (800?mg/kg) and ethyl acetate extract (800?mg/kg) showed up to 34.31% and 15.27% of edema inhibition, respectively, at 4?h after administration of carrageenan. In antipyretic assay, the essential oil and chloroform extract displayed a strong antipyretic effect in yeast-induced rats, whereas the ethyl acetate extract had no antipyretic activity. The present study revealed anti-nociceptive, anti-inflammatory and antipyretic potential of M. cordata which could be the therapeutic option against fever, inflammations as well as painful conditions and confirmed the traditional use of M. cordata.  相似文献   

11.
Corynebacterium glutamicum is an aerobic, Gram-positive microorganism, well known as a pro-ducer of several amino acids. Amino acid products are used on a large scale for food industry flavouring, feed additive, pharmaceutical and cosmetic purpose[1,2]. The organism is able to grow not only on glucose, fructose and lactose, but also on acetate, lactate as its sole carbon source. The growth on acetate requires its activation to acetyl-CoA. In C. glutamicum, acetate is activated in a two-step …  相似文献   

12.
All-trans [11-3H]4,4-difluororetinyl acetate was synthesized by treating methyl all-trans [11-3H]4-oxoretinoate with diethylaminosulfurtrifluoride, followed by reduction and acetylation of the product. After oral administration of the radioactive difluoro analog in oil to rats, difluororetinol, difluororetinyl palmitate and related esters, 4-oxoretinol, 4-oxoretinoic acid and polar conjugated derivatives were identified in the intestine, liver, kidney and / or blood. The major metabolic products were difluororetinyl palmitate and related esters, which were stored in the liver. The presence of the difluoro analog in liver oil from treated rats was confirmed by 19F-NMR spectroscopy. Neither retinol nor retinyl esters were detected as products of the metabolism of the difluoro analog. Nonetheless, all-trans difluororetinyl acetate showed 26 ± 12% of the biological activity of all-trans retinyl acetate in the rat growth assay. Presumably, the difluoro analog is active per se in growth rather than by conversion to retinol or to one of its known growth-promoting metabolites. In general, however, the difluoro analog was metabolized in a manner very similar to vitamin A. The vitamin A moiety of administered difluororetinyl acetate and retinyl acetate was poorly stored (1.8–3.3%) in the liver of vitamin A-depleted rats, confirming and extending past reports that the liver storage mechanism is severely impaired when initial liver stores are very low.  相似文献   

13.
The caspase family of protease is speculated to have a crucial role in apoptosis. The effect of treatment with Idarubicin (IDA) and Medroxyprogesterone acetate (MPA), used alone or in combination, on the activation of Caspase-3 in canine Chronic Lymphatic Leukaemia (CLL) cells was investigated, in order to clarify the mechanism of chemo- and hormone-therapy mediated apoptosis. Caspase activity was determined by a quantitative fluorimetric assay. Apoptosis was monitored by propidium iodide (PI) and nucleosomes assay. Treatment of CLL cells for 24 h with MPA 5 microM did not significantly activate caspase-3 but its activity was increased almost 5-fold more with IDA 1 microM (P < 0.05) than control. Treatment of CLL cells with IDA 1 microM in equimolecular association with MPA was able to increase the activation of caspase-3 induced by IDA of the 61.2% (P < 0.05) in comparison with IDA alone. The activation of caspase-3 was confirmed evaluating apoptosis by PI and nucleosomes assay. Furthermore, both caspase-3 activation and apoptosis triggered by IDA alone or in combination with MPA were significantly inhibited by specific caspase-3 inhibitor AC-DEVD-CMK. These findings provide an explanation for IDA and MPA induced-apoptosis mechanism.  相似文献   

14.
Tropical forests are an important source of atmospheric methane (CH4), and recent work suggests that CH4 fluxes from humid tropical environments are driven by variations in CH4 production, rather than by bacterial CH4 oxidation. Competition for acetate between methanogenic archaea and Fe(III)‐reducing bacteria is one of the principal controls on CH4 flux in many Fe‐rich anoxic environments. Upland humid tropical forests are also abundant in Fe and are characterized by high organic matter inputs, steep soil oxygen (O2) gradients, and fluctuating redox conditions, yielding concomitant methanogenesis and bacterial Fe(III) reduction. However, whether Fe(III)‐reducing bacteria coexist with methanogens or competitively suppress methanogenic acetate use in wet tropical soils is uncertain. To address this question, we conducted a process‐based laboratory experiment to determine if competition for acetate between methanogens and Fe(III)‐reducing bacteria influenced CH4 production and C isotope composition in humid tropical forest soils. We collected soils from a poor to moderately drained upland rain forest and incubated them with combinations of 13C‐bicarbonate, 13C‐methyl labeled acetate (13CH3COO?), poorly crystalline Fe(III), or fluoroacetate. CH4 production showed a greater proportional increase than Fe2+ production after competition for acetate was alleviated, suggesting that Fe(III)‐reducing bacteria were suppressing methanogenesis. Methanogenesis increased by approximately 67 times while Fe2+ production only doubled after the addition of 13CH3COO?. Large increases in both CH4 and Fe2+ production also indicate that the two process were acetate limited, suggesting that acetate may be a key substrate for anoxic carbon (C) metabolism in humid tropical forest soils. C isotope analysis suggests that competition for acetate was not the only factor driving CH4 production, as 13C partitioning did not vary significantly between 13CH3COO? and 13CH3COO?+Fe(III) treatments. This suggests that dissimilatory Fe(III)‐reduction suppressed both hydrogenotrophic and aceticlastic methanogenesis. These findings have implications for understanding the CH4 biogeochemistry of highly weathered wet tropical soils, where CH4 efflux is driven largely by CH4 production.  相似文献   

15.
The present study was carried out to evaluate the possible in vitro antibacterial potential of extracts of Eugenia jambolana seeds against multidrug-resistant human bacterial pathogens. Agar well diffusion and microbroth dilution assay methods were used for antibacterial susceptibility testing. Kill-kinetics study was done to know the rate and extent of bacterial killing. Phytochemical analysis and TLC-bioautography were performed by colour tests to characterize the putative compounds responsible for this antibacterial activity. Cytotoxic potential was evaluated on human erythrocytes by haemolytic assay method and acute oral toxicity study was done in mice. The plant extracts demonstrated varying degrees of strain specific antibacterial activity against all the test isolates. Further, ethyl acetate fraction obtained from fractionation of most active ethanol extract showed maximum antibacterial effect against all the test isolates. Phytochemical analysis and TLC-bioautography of ethyl acetate fraction revealed that phenolics were the major active phytoconstituents. Ethyl acetate fraction also demonstrated no haemolytic activity on human erythrocytes and no gross behavioural changes as well as toxic symptoms were observed in mice at recommended dosage level. The results provide justification for the use of E. jambolana in folk medicine to treat various infectious diseases and may contribute to the development of novel antimicrobial agents for the treatment of infections caused by these drug-resistant bacterial pathogens.  相似文献   

16.
The non-indigenous pest leaf miner Liriomyza huidobrensis and its close relatives L. bryoniae and L. strigata belong to a natural group. These species can be separated from one another by means of protein electrophoresis on a cellulose acetate membrane. The protocol for this diagnostic assay involves staining for two enzymes, glucose-6-phosphate dehydrogenase (G6PDH) and leucine-glycine peptidase (PEP). Other leaf miner species that might also be found under glass, Chromatomyia syngenesiae, C. horticola and the non-indigenous L. trifolii and L. sativae , are clearly distinguishable from the L. huidobrensis group of species by this assay. The effect of parasitism on L. huidobrensis by Dacnusa sibirica was investigated and shown unlikely to cause misidentification of the leaf miner host. Results obtained from practical use of the assay to identify unknown specimens from ports and nurseries are compared with those obtained from flies kept in laboratory culture and used during development of the assay. No new variation was found for G6PDH. New PEP variation was found for both L. huidobrensis and L. bryoniae but this did not affect the integrity of the assay. A biochemical key to these agromyzid leaf miners is presented.  相似文献   

17.
During growth ofCorynebacterium glutamicum on acetate as its carbon and energy source, the expression of theptaack operon is induced, coding for the acetate-activating enzymes, which are phosphotransacetylase (PTA) and acetate kinase (AK). By transposon rescue, we identified the two genesamrG1 andamrG2 found in the deregulated transposon mutant C.glutamicum G25. TheamrG1 gene (NCBI-accession: AF532964) has a size of 732 bp, encoding a polypeptide of 243 amino acids and apparently is partially responsible for the regulation of acetate metabolism in C.glutamicum. We constructed an in-frame deletion mutant and an overexpressing strain ofamrG1 in the C.glutamicum ATCC13032 wildtype. The strains were then analyzed with respect to their enzyme activities of PTA and AK during growth on glucose, acetate and glucose or acetate alone as carbon sources. Compared to the parental strain, theamrG1 deletion mutant showed higher specific AK and PTA activities during growth on glucose but showed the same high specific activities of AK and PTA on medium containing acetate plus glucose and on medium containing acetate. In contrast to the gene deletion, overexpression of theamrG1 gene in C.glutamicum 13032 had the adverse regulatory effect. These results indicate that theamrG1 gene encodes a repressor or co-repressor of theptaack operon.  相似文献   

18.
During growth ofCorynebacterium glutamicum on acetate as its carbon and energy source, the expression of theptaack operon is induced, coding for the acetate-activating enzymes, which are phosphotransacetylase (PTA) and acetate kinase (AK). By transposon rescue, we identified the two genesamrG1 andamrG2 found in the deregulated transposon mutant C.glutamicum G25. TheamrG1 gene (NCBI-accession: AF532964) has a size of 732 bp, encoding a polypeptide of 243 amino acids and apparently is partially responsible for the regulation of acetate metabolism in C.glutamicum. We constructed an in-frame deletion mutant and an overexpressing strain ofamrG1 in the C.glutamicum ATCC13032 wildtype. The strains were then analyzed with respect to their enzyme activities of PTA and AK during growth on glucose, acetate and glucose or acetate alone as carbon sources. Compared to the parental strain, theamrG1 deletion mutant showed higher specific AK and PTA activities during growth on glucose but showed the same high specific activities of AK and PTA on medium containing acetate plus glucose and on medium containing acetate. In contrast to the gene deletion, overexpression of theamrG1 gene in C.glutamicum 13032 had the adverse regulatory effect. These results indicate that theamrG1 gene encodes a repressor or co-repressor of theptaack operon.  相似文献   

19.
Advances in genome and metabolic pathway engineering have enabled large combinatorial libraries of mutant microbial hosts for chemical biosynthesis. Despite these advances, strain development is often limited by the lack of high throughput functional assays for effective library screening. Recent synthetic biology efforts have engineered microbes that synthesize acetyl and acyl esters and many yeasts naturally produce esters to significant titers. Short and medium chain volatile esters have value as fragrance and flavor compounds, while long chain acyl esters are potential replacements for diesel fuel. Here, we developed a biotechnology method for the rapid screening of microbial ester biosynthesis. Using a colorimetric reaction scheme, esters extracted from fermentation broth were quantitatively converted to a ferric hydroxamate complex with strong absorbance at 520 nm. The assay was validated for ethyl acetate, ethyl butyrate, isoamyl acetate, ethyl hexanoate, and ethyl octanoate, and achieved a z‐factor of 0.77. Screening of ethyl acetate production from a combinatorial library of four Kluyveromyces marxianus strains on seven carbon sources revealed ethyl acetate biosynthesis from C5, C6, and C12 sugars. This newly adapted method rapidly identified novel properties of K. marxianus metabolism and promises to advance high throughput microbial strain engineering for ester biosynthesis.  相似文献   

20.
The Ntr regulon in Escherichia coli has previously been engineered to control the expression of a heterologous metabolic pathway. In this study, we reengineered the same system for protein production. In the absence of NRII (glnL gene product), we showed that glnAp2 can be an effective promoter for protein production that is inducible by exogenous acetate, but both the induction ratio and the range of modulation are low. To deal with this issue, we inactivated phosphotransacetylase (pta gene product), which disrupts the acetate pathway and denies the cell the ability to synthesize acetate. With this additional modification, gene expression from glnAp2 can be controlled by directly adding acetate into the growth medium. Using a lacZ reporter fusion, we found that glnAp2 induction was modulatable over a range of potassium acetate concentrations, and the induction/noninduction ratio increased to 77 in the absence of pta. The extracellular acetate required for maximal induction is lower than the concentration that causes toxicity, and thus growth inhibition by acetate addition was not a matter of concern. Furthermore, compared to the P(tac) promoter, overexpression of a model protein using the modified glnAp2 promoter system did not cause significant growth inhibition, although a higher level of protein expression was achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号