首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Nerve elements in the small intestine of the bullfrog. Rana catesbeiana, were studied by immunohistochemistry with anti-methionine enkephalin antisera and by nerve lesion experiments, using laser irradiation. Methionine-enkephalin immunopositive nerve fibers occur in the myenteric plexus, circular muscle layer, submucosa, and mucosa. Immunopositive nerve cell bodies in the myenteric plexus have dendrite-like and a long axon-like processes. In the froglet (3 months after metamorphosis), these axon-like processes lead posteriorly in the nerve strand of the myenteric plexus. Some bifurcate, one branch continuing posteriorly, the other doubling back to lead anteriorly; both form terminal varicose fibers in the circular muscle layer. Nerve lesion experiments, in the adult bullfrog, resulted in accumulations of methionine-enkephalin immunoreactivity at the oral and hinder edges of the laser-irradiated necrotic area; there were sprouting and nonsprouting immunopositive stumps. It is suggested that bidirectional flow of methionine-enkephalin in the myenteric plexus is mediated via the anterior and posterior branches of the axon-like process. The difference in sprouting behavior of immunopositive nerve fiber stumps, after nerve lesion, is discussed with reference to regional differences of the axon-like process.  相似文献   

2.
Indirect double immunofluorescence labelling for eight neuropeptides in the pancreas of the bullfrog, Rana catesbeiana, demonstrated the occurrence, distribution, and coexistence of certain neuropeptides in the exocrine and endocrine pancreas. Immunoreactivity of substance P (SP), calcitonin gene-related peptide (CGRP), vasoactive intestinal polypeptide (VIP), neuropeptide Y (NPY), FMRFamide (FMRF), and galanin (GAL) was localized in nerve fibers distributed between the acini and around the duct system and vasculature of the exocrine pancreas. In these regions, CGRP-immunoreactive fibers were more numerous than those containing the other five peptides. Almost all SP fibers showed coexistence of SP with CGRP, and about one third of fibers also showed coexistence of SP with VIP, NPY, FMRF, and GAL. In the endocrine pancreas, SP, CGRP, VIP, and GAL were recognized in the nerve fibers around and within the islets of Langerhans, and VIP and GAL fibers were more numerous than SP and CGRP fibers. All CGRP fibers, and about half of the VIP and GAL fibers were immunoreactive for SP. NPY- and FMRF-immunoreactive cells were found at the periphery of the islets. These findings suggest that the exocrine and endocrine pancreatic functions of the bullfrog are under the control of peptidergic innervation.  相似文献   

3.
Summary Actin-containing cytoplasmic fibers were visualized in the mesenteric mesothelial cells of the large intestine of bullfrog tadpoles by rhodamine-phalloidin staining of en face preparations of mesothelial cells. These fibers were concurrently stained by immunofluorescence using antibodies to myosin or -actinin. Electron microscopy showed the presence of bundles of microfilaments in the basal cytoplasm of the cells. Such fibers in the mesothelial cells may be comparable to the stress fibers present in cultured cells. The mesothelial cells initially formed axially oriented stress fibers when they changed from a rhombic to a slender spindle-like shape. On the other hand, stress fibers disappeared as cells transformed from elongated to polygonal shapes during the period of metamorphic climax. Expression of stress fibers in these cells appears to be related to the degree of tension loaded on the mesentery, which may be generated by mesenteric winding. These stress fibers in the mesothelial cells may serve to regulate cellular transformation. They may also help to maintain cellular integrity by strengthening the cellular attachment to subepithelial tissue against tensile stress exerted on the mesentery.  相似文献   

4.
Indirect double immunofluorescence labelling for demonstrating nine neuropeptides in the kidney of the bullfrog, Rana catesbeiana, revealed for the first time the occurrence, distribution, and coexistence of certain neuropeptides in the kidney of the submammalian vertebrates. Substance P, neuropeptide Y, and calcitonin generelated peptide were localized in nerve fibers distributed along the afferent arterioles connected with the glomeruli, and along the capillary network between uriniferous tubules. Neuropeptide Y and calcitonin gene-related peptide immunoreactive fibers were more numerous than substance P immunoreactive fibers. In these two regions, about one half of the neuropeptide Y or calcitonin in gene-related peptide fibers contained substance P. No immunoreactivity of vasoactive intestinal polypeptide, somatostatin, FMRFamide, or leucine- and methionine-enkephalins was detected in the bullfrog kidney.  相似文献   

5.
Indirect double immunofluorescence labelling in the pharynx and lung of the bullfrog, Rana catesbeiana, demonstrated the occurrence, distribution, and coexistence of two neuropeptides. In the pharynx, immunoreactive calcitonin gene-related peptide (CGRP) and substance P (SP) were localized in nerve fibers distributed within and just beneath the ciliated epithelium. In the lung, CGRP and SP were localized in nerve fibers in five principal locations: 1) within the smooth muscle layer in the interfaveolar septa; 2) in the luminal thickened edges of the septa; 3) around the pulmonary vasculature; 4) within, and 5) under the ciliated epithelium. Within the smooth muscle layer in the septa, luminal thickened septa, and around blood vessels, almost all fibers showed coexistence of CGRP and SP. Within and just beneath the ciliated epithelium in the thickened septa, all fibers showed coexistence of CGRP and SP. No immunoreactivity for vasoactive intestinal polypeptide, neuropeptide Y, galanin, somatostatin, FMRFamide, and leucine-and methionine-enkephalins was detected in the nerve fibers within the larynx and the lung. Together with our previous data, the present findings suggest that peptidergic mechanisms are involved in the regulation of amphibian respiratory systems throughout their life.  相似文献   

6.
Summary Immunocytochemical methods were used to investigate the occurrence and distribution of sauvagine, corticotropin-releasing factor-, or urotensin I-like immunoreactivities (SVG-ir, CRF-ir, UI-ir, respectively) in the bullfrog (Rana catesbeiana) brain, using specific antisera raised against non-conjugated SVG, ovine CRF, rat/human CRF, and UI. In the hypothalamus, SVG-ir was found in the magnocellular perikarya, in the dorsal and ventral regions of the preoptic nucleus, and in the hypothalamo-hypophyseal projections to the external zone as well as the internal zone of the median eminence, to pars nervosa, and in fibres running from the pars nervosa to the pars intermedia of the pituitary. In contrast, CRF-ir was found only in parvocellular perikarya, mainly localized in the rostro-ventral part of the preoptic nucleus, with fine processes protruding through the ependyma of the third ventricle, fibre projections terminating in the anterior preoptic area and in the neuropil of the periventricular gray, and a caudal projection to the external zone of the median eminence. No CRF-ir staining was seen in the pars nervosa and pars intermedia. The use of UI-specific antisera failed to give a positive response in the frog brain. It is concluded that, in the frog brain, two anatomically different CRF-like (or SVG-like) systems co-exist, comparable to the reported co-existence of UI-ir and CRF-ir neuronal systems in fish brain.  相似文献   

7.
Summary In anuran tadpole tails, the myelinated motor nerve fibers branch in the myoseptum to innervate both red and white muscle fibers at, or near, their ends. There are no significant ultrastructural differences between the nerve endings of the two types of muscle fibers.Intense acetylcholinesterase reaction product was observed in synaptic clefts and junctional folds, as well as in transverse tubules. As metamorphosis proceeded, the junctional folds of the nerve endings disappeared, however, acetylcholinesterase reaction product was still observed in the synaptic clefts. As muscle fibers began to degenerate, nerve endings began to separate from them. However, after nerve endings were completely separated from the surfaces, degenerated muscle fibers, synaptic and cored vesicles were still well preserved although no acetylcholinesterase reaction product was found. It seems clear that the mechanism of the muscle degeneration in the tadpole tail during metamorphosis is not the result of the degeneration of its nerve endings.  相似文献   

8.
Summary Vascular adrenergic sensitivity to exogenous catecholamines was examined in tadpoles of the American bullfrog (Rana catesbeiana), ranging from stage III to XIV. Central arterial blood pressure was measured in decerebrate bullfrog tadpoles to determine a reasonable initial infusion pressure. Solutions of epinephrine and phenylephrine were infused into the vasculature of pithed tadpoles, and the resulting changes in vascular resistance (R v) were used to construct log dose-response relationships. Epinephrine infusion produced a dose-dependent increase in R v (EC50=5.3·10-7 M), which could be reversed by sodium nitroprusside (a smooth muscle relaxant) and blocked by phenoxybenzamine (an -adrenergic antagonist). Larval R v also increased with infusion of the -agonist phenylephrine (EC50=7.4·108 M). Infusion of 10-6 M isoproterenol (a -agonist) largely reversed the phenylephrine-induced increase in R v. These results indicate that the capacity exists for both -mediated vasoconstriction and -mediated vasodilation early in bullfrog ontogeny. Neither initial R v nor the responses to infused epinephrine or phenylephrine were significantly correlated to development over the range of larval stages used in this study.Abbreviations ECG electrocardiogram - EPI epinephrine - ISO isoproterenol - PHE phenylephrine - POB phenoxybenzamine - R v vascular resistance - SNP sodium nitroprusside  相似文献   

9.
The contribution of brush border cytoskeletal proteins (actin, villin, fimbrin, and brush border myosin-1) to organization of the cytoskeletal network underlying apical plications of oxynticopeptic cells was examined by immunohistochemical techniques in frozen sections of gastric mucosa from the bullfrog, Rana catesbeiana. Apical localization of F-actin with phalloidin in oxynticopeptic cells inhibited with cimetidine revealed small, punctate domains within the apical cytoplasm that were consistent with the presence of short microvilli revealed by electron microscopy. Localization of F-actin in cells stimulated with forskolin was limited to a wide continuous band of cytoplasm corresponding to the location of numerous long surface folds. Inhibition of protein synthesis with cycloheximide did not prevent acid secretion or formation of actin filaments within surface folds in stimulated oxynticopeptic cells, suggesting that the formation of filaments does not require actin synthesis. Staining of gastric mucosae with fluorescent DNase-1 demonstrated that oxynticopeptic cells possess an unusually large pool of non-filamentous actin. Taken together, these results suggest that actin-filament formation in stimulated cells occurs by polymerization of an existing pool of non-filamentous actin. Localization of antibodies specific for villin and fimbrin revealed that these proteins were present within intestinal absorptive cells and gastric surface and neck cells but were not present within inhibited or stimulated oxynticopeptic cells. Brush border myosin-1, present in intestinal absorptive cells, was not present in gastric epithelium. Thus, we propose that actin-containing projections in oxynticopeptic cells are not organized like intestinal microvilli and that filament formation occurs after stimulation by modulating intracellular pools of filamentous and non-filamentous actin.  相似文献   

10.
Regional differences in potential difference and short-circuit current between the body (dorsal) and the tail skin during metamorphosis of Rana catesbeiana tadpoles were investigated. In body skin, the potential difference and the short-circuit current across the skin develop in two successive steps. At stage XX, the potential difference and the short-circuit current across the body skins were amiloride-insensitive (1st step). At stage XXII, however, amiloride-sensitive potential difference and the short circuit current appeared (2nd step). By contrast, in tail skin the potential difference and the short-circuit current remained amiloride-insensitive (1st step) even at stage XXIII. Since the tail regresses after stage XXIII, the appearance of the second step could not be followed in vivo. To determine whether or not the second step can be induced in the tail, tail skin was cultured under conditions where the skin survives for a much longer period than it does in normally developing tadpoles. Such cultured tail skin generated the amiloride-sensitive potential difference and the short-circuit current and cultured body skin also generated them. Therefore, development of the 2nd step in the tail skin may be delayed in vivo. To characterize the differences between body and tail skin, skins were mutally grafted between body and tail at stage XIII–XV. The body skin grafted on the tail underwent both the 1st and 2nd steps by stage XXII, whereas the tail skin grafted on the body only showed the 1st step by the same stage. These results suggest that the regional specificity of the skin is already established before the prometamorphic stage.Abbreviations CMFS Ca2+- and Mg2+-free saline - CTS charcoal-treated serum - EDTA ethylene diamine tetra-acetate - I current - PD potential difference - R skin resistance - SCC short-circuit current  相似文献   

11.
Immunoreactivity of galanin (GAL) was detected in the nerve fibers distributed within the intervascular stroma of the bullfrog carotid labyrinth. GAL-immunoreactive fibers are numerous, and some are close to the sinusoidal plexus. Most GAL fibers appear as thin processes with some varicosities. A combination of indirect double immunofluorescence labelling and image processing clearly demonstrated that the distribution patern of GAL fibers is different from that of SP fibers. This indicates that GAL and SP do not coexist in the same nerve fibers. The role of GAL fibers may be different from that of previously reported neuropeptides (substance P, calcitonin gene-related peptide, vasoactive intestinal polypeptide, neuropeptide Y, and others) as a neuromodulator in controlling vascular tone of the labyrinth.  相似文献   

12.
Summary The ontogeny of substance P, CGRP (calcitonin gene-related peptide), and VIP (vasoactive intestinal polypeptide) containing nerve fibers in the carotid labyrinth of the bullfrog, Rana catesbeiana, was examined by the peroxidase-antiperoxidase method. The time of appearance of these three peptides was different for each. First, CGRP fibers appeared in the wall of the carotid arch and external carotid arteries, and in a thin septum between these two arteries at an early stage of larval development (stage III). At stage V, substance P immunoreactive fibers appeared, and VIP fibers were detected at the early metamorphic stage (stage XXII). Up to the completion of metamorphosis, the number of these fibers remained low. From 1 to 5 weeks after metamorphosis, substance P, CGRP, and VIP fibers increased in number to varying degrees. By 8 weeks after metamorphosis, the distribution and abundance of these fibers closely resembled those of the adults. Some CGRP and VIP immunoreactive glomus cells were found at the stages immediately before and after the completion of metamorphosis. These findings suggest that substance P, CGRP, and VIP fibers during larval development and metamorphosis may be nonfunctional, and start to participate in vascular regulation only after metamorphosis. The transient CGRP and VIP in some glomus cells may be important for the development of the labyrinth, or may take part in vascular regulation through the close apposition of the glomus and smooth muscle cells (g-s connection).  相似文献   

13.
Summary Reserpine and guanethidine produce a highly significant reduction in electron density of the synaptic bars in the sensory cells of the bullfrog labyrinth. When amphetamine is administered simultaneously with guanethidine, the density of the synaptic bars is similar to those of untreated frogs. p-Chloramphetamine has no significant effect upon the electron density of synaptic bars. These observations are discussed in the light of what is known of the biological effects of these drugs, and are taken to indicate that the synaptic bars could be intracellular storage sites for a monoamine that mediates the synaptic contacts between the sensory cells and afferent nerve fibres. It is suggested that the monoamine involved is a catecholamine.Both of us thank Mrs. J. Birch and Miss J. Sutcliffe for their technical assistence. One of us (M. P. O.) was supported by a U.S. National Research Council Senior Research Associateship (1967–1968) during the earlier phase of this work, and we are both indebted to the Italian Consiglio Nazionale delle Ricerche for a grant (No. 69.01697.119.3) which financed the latter stages of this study.  相似文献   

14.
Summary The posterior rhombencephalic tela choroidea of the bullfrog was examined by electron microscopy. This membrane, the pia-ependymal roof of the caudal hindbrain, contains a large central region characterized by cuboidal ependymal cells which surround sizable microscopic apertures — the interependymal pores.Ultrastructurally ependymal cells of this area are characterized by infrequent apical microvilli and cilia. They contain irregularly shaped nuclei and few cytoplasmic organelles that are largely apical in position. The most striking feature is an abundance of cytoplasmic filaments forming an extensive cytoskeleton. Laterally these cells are joined by numerous elaborate desmosomes. The majority of the ependymal cells have a basal lamina consisting of single, double, or triple laminae lying parallel to the basal plasma membrane.Several unusual specializations are seen at the margins of the interependymal pores. The ependymal cells have lateral cytoplasmic processes that form the actual border of each pore. These processes originate from the apical surface of the cell and partially enclose an elaborate network of basal lamina associated with the interependymal pores.These findings demonstrate microscopic apertures in the roof of the fourth ventricle in the bullfrog that are associated with an unusual form of supportive ependyma.  相似文献   

15.
The brain of adult bullfrogs (Rana catesbeiana) contains six populations of cells which are immunoreactive for the neurohypophysial peptide arginine vasotocin (AVT). It is unknown when some of these cell populations first appear during development and when the sexual differences in AVT distribution first become apparent. We therefore used immunocytochemistry to examine development of AVT pathways in developing bullfrog tadpoles and in newly metamorphosed froglets of both sexes. AVT-immunoreactive (AVT-ir) cells were already present in the three diencephalic areas (magnocellular preoptic nucleus, suprachiasmatic nucleus and hypothalamus) at stage III (Taylor and Kollros stages), the earliest stage examined. Cell size in the magnocellular nucleus was not bimodally distributed in either tadpoles or froglets. AVT-ir cells in the telencephalic septal nucleus and amygdala did not appear until stage VI. There was no sexual difference in the density of AVT-ir cells or fibers in the amygdala of tadpoles or froglets. Finally, cells in the hindbrain pretrigeminal nucleus appeared much later-after stage XX. Thus, different populations of neurons begin to express AVT at unique times during development. The sexual dimorphism in AVT content observed in the amygdala of adult bullfrogs must appear during juvenile development or at adulthood.  相似文献   

16.
Double immunohistochemical staining with rhodamine- and fluorescein isothiocyanate (FITC)-conjugated antisera revealed the coexistence of substance P (SP) and neuropeptide Y (NPY), and SP and calcitonin gene-related peptide (CGRP) in most nerve fibers in the intervascular stroma of the carotid labyrinth of the bull-frog, Rana catesbeiana, although there were a few fibers which showed only SP- or NPY-immunoreactivity. Approximately one third of SP-immunoreactive fibers also showed coexistence with vasoactive intestinal polypeptide (VIP)-immunoreactivity, and a few fibers contained VIP without SP. The combination of the double immunofluorescence technique and alternate consecutive sections further demonstrated the possible coexistence of SP, VIP, NPY, and CGRP. This coexistence of four different peptides in the same nerve fibers was proved by the following two evident facts: 1) some SP fibers which demonstrated coexistence with NPY-immunoreactivity were assumed to be continuous with those showing VIP-immunoreactivity, and 2) almost all of the SP fibers showed coexistence with CGRP-immunoreactivity. By this reasoning, nearly one third of SP fibers may demonstrate coexistence with NPY-, VIP-, and CGRP-immunoreactivities. These multiple peptides might be involved in vascular regulatory function, which is a possible function of the amphibian carotid labyrinth.  相似文献   

17.
The functional development of the auditory system across metamorphosis was examined by recording neural activity from the torus semicircularis of larval and postmetamorphic bullfrog froglets in response to amplitude-modulated sound. Multiunit activity in the torus semicircularis during early larval stages showed significant phase-locking to the envelopes of amplitude-modulated noise bursts, up to modulation rates as high as 250 Hz. Beginning at metamorphic climax and continuing into the froglet period, phase locking was restricted to the more limited frequency range characteristic of adult frogs. The onset of operation of the tympanic pathway does not reinstate the highly synchronous neural activity characteristic of the operation of the fenestral pathway. Modulation transfer functions based on spike count did not show tuning for modulation rate in early stage tadpoles, but a greater variety of shapes of these functions emerged as development proceeded. Most of the different kinds of modulation transfer functions seen in adult frogs were also observed in froglets, but band-pass functions were not as sharply peaked. These data suggest that different neural codes for processing of the periodicity of complex signals operate in early stage tadpoles than in postmetamorphic froglets. Accepted: 7 October 1998  相似文献   

18.
Summary The distribution and morphology of neurons reacting with antisera against dopamine (DA), tyrosine hydroxylase (TH) and histamine (HA) were analyzed in the blowflies Calliphora erythrocephala and Phormia terraenovae. TH-immunoreactive (THIR) and HA-immunoreactive (HAIR) neurons were also mapped in the fruitfly Drosophila melanogaster. The antisera against DA and TH specifically labeled the same neurons in the blowflies. About 300 neurons displayed DA immunoreactivity (DAIR) and THIR in the brain and subesophageal ganglion of the blowflies. Most of these neurons were located in bilateral clusters; some were distributed as bilateral pairs, and two ventral unpaired median (VUM) neurons were seen in the subesophageal ganglion. Immunoreactive processes were found in all compartments of the mushroom bodies except the calyces, in all divisions of the central body complex, in the medulla, lobula and lobula plate of the optic lobe, and in non-glomerular neuropil of protocerebrum, tritocerebrum and the subesophageal ganglion. No DA or TH immunoreactivity was seen in the antennal lobes. In Drosophila, neurons homologous to the blowfly neurons were detected with the TH antiserum. In Phormia and Drosophila, 18 HA-immunoreactive neurons were located in the protocerebrum and 2 in the subesophageal ganglion. The HAIR neurons arborized extensively, but except for processes in the lobula, all HAIR processes were seen in non-glomerular neuropil. The deuto- and tritocerebrum was devoid of HAIR processes. Double labeling experiments demonstrated that TH and HA immunoreactivity was not colocalized in any neuron. In some regions there wasm however, substantial superposition between the two systems. The morphology of the extensively arborizing aminergic neurons described suggests that they have modulatory functions in the brain and subesophageal ganglion.  相似文献   

19.
The thyroid hormone (TH), 3,5,3′-triiodothyronine (T3), is an important regulator of diverse cellular processes including cell proliferation, differentiation, and apoptosis, with increasing evidence that the modulation of the phosphoproteome is an important factor in the TH-mediated response. However, little is understood regarding the mechanisms whereby phosphorylation may contribute to T3-mediated cellular outcomes during development. The cyclin-dependent kinases (Cdks) and mitogen-activated protein kinases (MAPK/ERK) have been implicated in TH signaling in mammalian cells. In this study, we have investigated, in frogs, the possible role that these kinases may have in the promotion of tail regression during tadpole metamorphosis, an important postembryonic process that is completely TH-dependent. Cdk2 steady state levels and activity increase in the tail concurrent with progression through the growth phase of metamorphosis, followed by a precipitous decrease coinciding with tail regression. Cyclin-A-associated kinase activity also follows a similar trend except that its associated kinase activity is maintained longer before a decrease in activity. Protein steady state levels of ERK1 and ERK2 remain relatively constant, and their kinase activities do not decrease until much later during tail regression. Tail tips cultured in serum-free medium in the presence of T3 undergo regression, which is accelerated by coincubation with a specific Cdk2 inhibitor. Coincubation with PD098059, a MAPK inhibitor, has no effect. Thus, T3-dependent tail regression does not require MAPKs, but a decrease in Cdk2 activity promotes tail regression. This work was supported by a NSERC operating grant, NSERC University Faculty Award, and Michael Smith Foundationfor Health Research Scholar Award.  相似文献   

20.
To determine the localization of the pyrimidine-guanine sequence-specific ribonuclease in Rana catesbeiana (bullfrog) oocytes, the RNase was first isolated and used to prepare a specific rabbit antiserum. Only one protein of similar molecular size to the RNase was immunoprecipitated from ovary homogenate by the antiserum, but two bands were observed by Western blotting analysis. These two proteins were shown by further purification of antibody and Western blotting analysis to have similar antigenicity. Immunoprecipitation and Western blotting of tissue homogenates showed that the RNase was found predominantly in the ovary, but not in other tissues. The specific localization of the RNase was determined by immuno-electron microscopy of oocyte sections incubated with the specific antiserum; the yolk granules, but not other organelles, were found to contain the RNase. Most of the RNase was evenly distributed in the lateral amorphous area of the yolk granule but not in the central yolk crystal area which contains stored vitellogenin proteins. Our results indicate that the RNase is compartmentalized in the yolk granules of oocytes, which might prevent damage to cellular RNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号