首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Size heterogeneity of polyadenylate sequences in mouse globin messenger RNA   总被引:21,自引:0,他引:21  
Heterogeneity in the length of the poly(A) region has been demonstrated in mouse α and β-globin messenger RNAs. This finding is based on the initial observation that only 30% of the globin mRNA purified by oligo(dT)-cellulose affinity chromatography binds to Millipore filters under conditions where other poly(A)-containing mRNAs have been shown to bind, and the subsequent finding that the bound and non-bound fractions contain different size classes of poly(A). The poly(A) size was determined by polyacrylamide gel electrophoresis of the T1 and pancreatic RNAase-resistant fragments. The unbound mRNA fraction gives a fragment 35 to 45 adenine nucleotides long, while the bound mRNA contains two fragments with average lengths of 55 to 65 and 75 to 120 nucleotides.The heterogeneity of the poly(A) region is present in both α and β-globin mRNAs as both Millipore-bound and unbound RNA fractions directed the synthesis of comparable amounts of mouse α and β-globin chains.Change in the distribution of the various size classes of poly(A) was analyzed by Millipore binding assays after various times of labeling in vivo. The percentage of labeled mRNA bound to Millipore filters decreased with time, suggesting either a shortening of the poly(A) region or differential synthesis of mRNAs containing shorter poly(A) at earlier stages in erythropoeisis.  相似文献   

2.
Tony Hunter  James I. Garrels 《Cell》1977,12(3):767-781
The mRNAs for α-, β- and γ-actin have been characterized with respect to molecular weight and poly(A) content. Polyacrylamide gel electrophoresis under denaturing conditions shows that the mRNA for α-actin (muscle-specific actin) is approximately 4.6 × 105 daltons in size, and that the mRNAs for β- and γ-actin (nonmuscle actins) are much larger, approximately 6.6 × 105 daltons in size. We therefore calculate that the noncoding regions of the β- and γ-actin mRNAs contain about 800 nucleotides. This is in marked contrast to the noncoding regions of α-actin mRNA which contain only about 180 nucleotides. During electrophoresis in high-resolution nondenaturing gels, the β-actin mRNA migrates slightly slower than the γ-actin mRNA. This indicates either that β-actin mRNA is about 100 nucleotides longer than γ-actin mRNA, or that these mRNAs differ in secondary structure. Fractionation of actin mRNA on the basis of poly(A) content shows that a substantial portion of the β-actin mRNA, but very little of the α- or γ-actin mRNAs, fails to bind to oligo(dT)-cellulose. Much of this poly(A)-deficient β-actin mRNA, however, does bind to poly(U)-Sepharose, a substrate with higher affinity for short poly(A) sequences. This indicates that many of these β-actin mRNA molecules are polyadenylated, but that they have unusually short poly(A) tails. The finding that β- and γ-actins are translated from mRNAs of different electrophoretic mobility and different poly(A) content strongly suggests that these two closely related proteins are products of different genes.  相似文献   

3.
Analysis of the slowed turnover rates of several specific mRNA species and the higher cellular levels of some of these mRNAs in Saccharomyces cerevisiae lacking 5'-->3' exoribonuclease 1 (xrn1 cells) has led to the finding that these yeast contain higher amounts of essentially full-length mRNAs that do not bind to oligo(dT)-cellulose. On the other hand, the length of mRNA poly(A) chains found after pulse-labeling of cells lacking the exoribonuclease, the cellular rate of synthesis of oligo(dT)-bound mRNA, and the initial rate of its deadenylation appeared quite similar to the same measurements in wild-type yeast cells. Examination of the 5' cap structure status of the poly(A)-deficient mRNAs by comparative analysis of the m7G content of poly(A)- and poly(A)+ RNA fractions of wild-type and xrn1 cells suggested that the xrn1 poly(A)- mRNA fraction is low in cap structure content. Further analysis of the 5' termini by measurements of the rate of 5'-->3' exoribonuclease 1 hydrolysis of specific full-length mRNA species showed that approximately 50% of the xrn1 poly(A)-deficient mRNA species lack the cap structure. Primer extension analysis of the 5' terminus of ribosomal protein 51A (RP51A) mRNA showed that about 30% of the poly(A)-deficient molecules of the xrn1 cells are slightly shorter at the 5' end. The finding of some accumulation of poly(A)-deficient mRNA species partially lacking the cap structure together with the reduction of the rate of mRNA turnover in cells lacking the enzyme suggest a possible role for 5'-->3' exoribonuclease 1 in the mRNA turnover process.  相似文献   

4.
The metabolism of a poly(A) minus mRNA fraction in HeLa cells   总被引:40,自引:0,他引:40  
C Milcarek  R Price  S Penman 《Cell》1974,3(1):1-10
About 30% of HeLa cell mRNA lacks poly(A) when labeled in the presence of different rRNA inhibitors. Our method of RNA fractionation precludes contamination of the poly(A)? mRNA with large amounts of poly(A)+ sequences. The poly(A)? species is associated with polyribosomes, has an average sedimentation value equal to or greater than poly(A)+ mRNA, and behaves like the poly(A)+ mRNA in its sensitivity to EDTA and puromycin release from polyribosomes. There is very little, if any, hybridization at Rot values characteristic of abundant RNA sequences between the poly(A)? RNA fractions from total cytoplasm or from polyribosomes and 3H-cDNA made to poly(A)+ RNA. This indicates that poly(A)? mRNA does not arise from poly(A)+ mRNA by nonadenylation, deadenylation, or degradation of random abundant mRNA sequences. The rate of accumulation of poly(A)? mRNA larger than 9S in the cytoplasm parallels the accumulation of poly(A)? mRNA. The poly(A)? mRNA is maintained as approximately 30% of the total labeled mRNA in a short (90 min) and in a long (20 hr) time period. These data indicate that poly(A)? mRNA is not short-lived nuclear or cytoplasmic heterogeneous RNA contamination, and that the half-life of the poly(A)? mRNA may parallel that of the poly(A)+ mRNA. Cordycepin appears to almost completely (95%) inhibit poly(A)+ mRNA while only partially (60%) inhibiting the poly(A)? mRNA. The origin of the cordycepin-insensitive mRNA has not been ascertained.  相似文献   

5.
Ribonucleic acid (RNA) extracted from Neurospora crassa has been fractionated by oligodeoxythymidylic acid [oligo(dT)]-cellulose chromatography into polyadenylated messenger RNA [poly(A) mRNA] and unbound RNA. The poly(A) mRNA, which comprises approximately 1.7% of the total cellular RNA, was further characterized by Sepharose 4B chromatography and polyacrylamide gel electrophoresis. Both techniques showed that the poly(A) mRNA was heterodisperse in size, with an average molecular weight similar to that of 17S ribosomal RNA (rRNA). The poly(A) segments isolated from the poly(A) mRNA were relatively short, with three major size classes of 30, 55, and 70 nucleotides. Gel electrophoresis of the non-poly(A) RNA indicated that it contained primarily rRNA and 4S RNA. The optimal conditions were determined for the translation of Neurospora mRNA in a cell-free wheat germ protein-synthesizing system. Poly(A) mRNA stimulated the incorporation of [14C]leucine into polypeptides ranging in size from 10,000 to 100,000 daltons. The RNA that did not bind to oligo(dT)-cellulose also stimulated the incorporation of [14C]leucine, indicating that this fraction contains a significant concentration of mRNA which has either no poly(A) or very short poly(A) segments. In addition, the translation of both poly(A) mRNA and unbound mRNA was inhibited by 7-methylguanosine-5'-monophosphate (m7G5'p). This is preliminary evidence for the existence of a 5'-RNA "cap" on Neurospora mRNA.  相似文献   

6.
We have previously shown that destabilization of gro alpha mRNA is associated with poly(A) shortening. In this study, we used high-resolution Northern blots to determine the rate and extent of gro alpha mRNA poly(A) shortening. gro alpha mRNA was found to undergo complete deadenylation within 2 h following withdrawal of IL-1. However, the process was not uniform: at 1 h following IL-1 withdrawal, gro alpha mRNA poly(A) lengths ranged from 0 to 180 nucleotides. There was an accumulation of deadenylated gro alpha mRNA which suggested that there may be another step before the mRNA is destroyed. Cycloheximide was found to block gro alpha mRNA degradation at the level of poly(A) shortening. Northern blots revealed a previously unrecognized periodic distribution of poly(A) lengths that was consistent with endonucleolytic cleavage between complexes of poly(A)-binding protein. The findings indicate that the degradation pathway of gro alpha mRNA is a slower version of the c-fos mRNA model, with the important additional feature that deadenylation and degradation are subject to physiologic regulation. This study provides a detailed picture of gro alpha mRNA poly(A) shortening and establishes a basis for further investigation of the mechanism by which IL-1 stabilizes specific mRNAs.  相似文献   

7.
Detachment of flagella in Chlamydomonas reinhardii stimulates a rapid accumulation of tubulin mRNAs. The induced tubulin mRNAs are normally rapidly degraded following flagellar regeneration, but inhibition of protein synthesis with cycloheximide prevents their degradation. alpha-Tubulin poly(A) tail lengths were measured during normal accumulation and degradation, and in cycloheximide-treated cells. To measure alpha-tubulin mRNA poly(A) chain lengths with high resolution, specific 3' fragments of alpha 1- and alpha 2-tubulin mRNAs, generated by RNase H digestion of mRNA-oligonucleotide hybrids, were sized by Northern analysis. Both alpha-tubulin mRNAs have a newly synthesized poly(A) chain of about 110 adenylate residues. The poly(A) tails shorten with time, and show an average length of 40 to 60 adenylate residues by 90 minutes after deflagellation, at which time induced alpha-tubulin mRNA is being rapidly degraded. Poly(A) loss is significantly accelerated in cycloheximide-treated cells, and this loss is not attributible simply to the longer time the stabilized molecules spend in the cytoplasm. A large fraction of alpha-tubulin mRNA accumulates as mRNA with very short poly(A) tails (less than 10 residues) in the presence of cycloheximide, indicating that deadenylated alpha-tubulin mRNAs can be stable in vivo, at least in the absence of protein synthesis. The rate and extent of poly(A) loss in cycloheximide are greater for alpha 2-tubulin mRNA than for alpha 1-tubulin mRNA. This difference cannot be attributed to differential ribosome loading. This finding is interesting in that the two mRNAs are very similar in sequence with the exception of their 3' untranslated regions.  相似文献   

8.
9.
Treatment of mouse sarcoma 180 ascites cell polysomes with low levels of micrococcal nuclease, under conditions that cause relatively little fragmentation of the messenger RNA chains, results in considerable loss of poly(A) from these chains. This treatment generates a substantial amount of functional poly(A)-lacking mRNA. Brief incubation of cytoplasmic extracts of the ascites cells, and of mouse liver extracts, has similar effects on the polysomes present in the extracts and on the generation of poly(A)-lacking mRNA chains.The poly(A) segment is released from the polysomes treated with micrococcal nuclease as a nucleoprotein complex, and is protected from the action of the enzyme because of its association with protein. There is considerable poly(A) hydrolysis in incubated ascites cell extracts, and accumulation of a poly(A)-protein complex does not take place in this case. The liver extracts have little poly(A)-hydrolyzing activity, and free poly(A)-protein complexes are observed in these extracts.The poly(A)-cleavage process shows evidence of considerable selectivity. The newly synthesized mRNA population is more susceptible to this process than is the steady-state population. Moreover, only a portion of the steady-state mRNA loses its poly(A) readily upon incubation with micrococcal nuclease. Two-dimensional gel electrophoresis of translation products from total and poly(A)-lacking polysomal RNA preparations shows that not all mRNA species lose their poly(A) upon incubation of polysomes in ascites cell extracts. The sensitive population resembles the normal population of translatable poly (A)-lacking mRNA that is obtained from untreated polysomes. Individual species within this population show wide differences in their degree of susceptibility to the poly(A)-release process in vitro. Analysis by one-dimensional gel electrophoresis indicates that the same general population is generated by the incubation of cytoplasmic extracts and by the treatment of polysomes with micrococcal nuclease.It is suggested that the 3′ non-coding region of mRNA in polysomes is particularly sensitive to endonucleolytic cleavage, and that loss of poly(A) via this cleavage may be a normal cellular process. The diversity in nucleotide sequence and in overall configuration in this region could provide a basis for the observed differences in susceptibility to cleavage by nucleases.  相似文献   

10.
Regulated nuclear polyadenylation of Xenopus albumin pre-mRNA.   总被引:3,自引:0,他引:3       下载免费PDF全文
Cytoplasmic regulation of the length of poly(A) on mRNA is a well-characterized process involved in translational control during development. In contrast, there is no direct in vivo evidence for regulation of the length of poly(A) added during nuclear pre-mRNA processing in somatic cells. We previously reported that Xenopus serum albumin [Schoenberg et al. (1989) Mol. Endocrinol. 3, 805-815] and transferrin [Pastori et al. (1992) J. Steroid Biochem. Mol. Biol. 42, 649-657], mRNA have exceptionally short poly(A) tails ranging from 12 to 17 residues, whereas vitellogenin mRNA has long poly(A). An RT-PCR protocol was adapted to determine the length of poly(A) added onto pre-mRNA, defined here as that species bearing the terminal intron. Using this assay we show that vitellogenin pre-mRNA has the same long poly(A) tail as mature vitellogenin mRNA. In contrast, albumin pre-mRNA has the same short poly(A) as found on fully-processed albumin mRNA. These results indicate that the short poly(A) tail on albumin mRNA results from regulation of poly(A) addition during nuclear 3' processing.  相似文献   

11.
Complex population of nonpolyadenylated messenger RNA in mouse brain   总被引:13,自引:0,他引:13  
J Van Ness  I H Maxwell  W E Hahn 《Cell》1979,18(4):1341-1349
The complexity of nonadenylated mRNA [poly(A)-mRNA] has been determined by hybridization with single-copy DNA (scDNA) and cDNA. Our results show that poly(A)- and poly(A)+ mRNA are essentially nonoverlapping (nonhomologous) sequence populations of similar complexity. The sum of the complexities of poly(A)+ mRNA and poly(A)- mRNA is equal to that of total polysomal RNA or total mRNA, or the equivalent of approximately 1.7 x 10(5) different sequences 1.5 kb in length. Poly(A)- mRNA, isolated from polysomal RNA by benzoylated cellulose chromatography, hybridized with 3.6% of the scDNA, corresponding to a complexity of 7.8 x 10(4) different 1.5 kb sequences. The equivalent of only one adenosine tract of approximately 20 nucleotides per 100 poly(A)- mRNA molecules 1.5 kb in size was observed by hybridization with poly(U). cDNA was transcribed from poly(A)- mRNA using random oligonucleotides as primers. Only 1-2% of the single-copy fraction of this cDNA was hybridized using poly(A)+ mRNA as a driver. These results show that poly(A)- mRNA shares few sequences with poly(A)+ mRNA and thus constitutes a separate, complex class of messenger RNA. These measurements preclude the presence of a complex class of bimorphic mRNAs [that is, species present in both poly(A)+ and poly(A)- forms] in brain polysomes.  相似文献   

12.
13.
The kinetics of accumulation of poly(A+)mRNA in polyribosomes and the ratio: poly(A+)mRNA/(poly A-)mRNA were studied in regenerating mouse liver. It has been found, that the ratio: (poly A+)mRNA/(poly A-)mRNA was associated with the function of the cells: (poly A+)mRNA fraction has been decreased to 7% at 7 hours after partial hepatectomy and then reached the original value (25%) at 30-40 hours. The kinetics of accumulation of (poly A+)mRNA in polyribosomes during the transition from resting to growing state has revealed that both the lifetime and the presumable time of processing of the mRNAs of free and membranebound polyribosomes were decreased as compared to resting liver cells.  相似文献   

14.
RNA excess hybridization experiments were used to measure the complexity of nuclear RNA, poly(A+) mRNA, poly(A-) mRNA, and EDTA-released polysomal RNA sedimenting at less than 80 S in mouse liver and in cultured mouse cells. With both cell types, poly(A-) RNA was found to contain 30-40% of the sequence diversity of total mRNA. In the case of liver this represents 5,700 poly(A-) molecules and 8,600 poly(A+) molecules for a total of approximately 14,300 different mRNAs. Comparison of the complexity of mRNA with that of nuclear RNA revealed that in liver and in cultured cells, mRNA has only 10-20% of the sequence diversity present in nuclear RNA. This latter observation is consistent with existing data on mammalian cells from this and other laboratories.  相似文献   

15.
We have analyzed mRNA coding for blood-stage antigens of Plasmodium yoelii by using cellfree translation of poly A+ and poly A- RNA in conjunction with immunoprecipitations. Most of the antigens recognized by mouse hyperimmune serum to P. yoelii were coded by poly A+ mRNA ranging in size from 15S to 28S. However, certain P. yoelii antigens, notably those with m.w. greater than 150 kilodaltons (kd), were coded by mRNA that purified as being poly A-. Antigens recognized by a protective monoclonal antibody (McAb) were coded by such operationally poly A- RNA. Three polypeptides apparently coded by different poly A- RNA were immunoprecipitated by this McAb. With the use of another McAb, a poly A+ mRNA of about 19S was identified as coding for a polypeptide of 46 kd synthesized in cellfree translation reactions. The same McAb recognized a 34 kd polypeptide in metabolically labeled polypeptides of P. yoelii. This antigen appeared to be processed in vivo but not in vitro. The observation that some mRNA of P. yoelii purify as being poly A- has significant implications for the construction of cDNA libraries that employ poly A+ mRNA of malarial parasites: if it applies to other species of plasmodia, some potentially important operationally poly A- mRNA may not be represented in such libraries.  相似文献   

16.
M.T. Doel  N.H. Carey 《Cell》1976,8(1):51-58
We present evidence that the poly(A) sequence at the 3′ end of ovalbumin mRNA has an effect on its translational efficiency in a reticulocyte lysate cell-free system. Polynucleotide phosphorylase has been used to remove selectively the poly(A) while leaving the rest of the molecule intact. It is shown that the stability of the mRNA in a cell-free system is not appreciably affected by this procedure.Measurements of the size of ovalbumin-synthesizing polysomes, rate of peptide elongation, and number of rounds of translation per messenger show a generally reduced efficiency for deadenylated mRNA compared to native mRNA. No comparable difference was observed in experiments with a wheat germ cell-free system, which gives few rounds of translation per mRNA. This indicates that the effect results from a lowering of the efficiency of reinitiation on deadenylated mRNA.  相似文献   

17.
18.
A variety of rapidly growing mammalian cells contain a substantial portion of their actin mRNA in a poly(A)- form. We have used DNA-driven hybridization of a cloned actin cDNA-containing plasmid with pulse-labeled RNA from mouse S-180 ascites cells to examine newly synthesized actin mRNA. Our results indicate that the same proportion of newly synthesized and steady-state actin mRNA (approx. 40%) exists in a poly(A)- deficient form. This suggests that the poly(A)- form arises by some process other than slow cytoplasmic de-adenylation of a poly(A)+ precursor. We have also examined cell cycle-enriched populations of S-180 ascites cells for the presence of poly(A)- actin mRNA. Results from these experiments indicate that cells in G1 phase of the cell cycle contain predominantly poly(A)+ actin mRNA, while the poly(A)- form is restricted to late-S and post-S phase cells.  相似文献   

19.
The addition of poly(A)-rich sequences to endonuclease cleavage products of chloroplast mRNA has recently been suggested to target the polyadenylated RNA for rapid exonucleolytic degradation. This study analyzed whether the addition of a poly(A)-rich tail to RNA molecules is required for degradation by chloroplast exonuclease(s). In lyzed chloroplasts from spinach, addition of the polyadenylation inhibitor, cordycepin triphosphate (3′-dATP), inhibited the degradation of psbA and rbcL mRNAs. Furthermore, degradation intermediates generated by endonucleolytic cleavages accumulated. Similar results were obtained when yeast tRNA was added to the mRNA degradation system as a non-specific exoribonuclease inhibitor. Nevertheless, the stabilization mechanisms differ: while tRNA directly affects the exonuclease activity, 3′dATP has an indirect effect by inhibiting polyadenylation. The results indicate that the addition of poly(A)-rich sequences to endonucleolytic cleavage products of chloroplast mRNA is required to target these RNAs for rapid exonucleolytic degradation. Together with previous work, the data reported here support a model for mRNA degradation in the chloroplast in which endonucleolytic cleavages are followed by the addition of poly(A)-rich sequences to the proximal cleavage products, targeting these RNAs for rapid exonucleolytic decay.  相似文献   

20.
A Barkoff  S Ballantyne    M Wickens 《The EMBO journal》1998,17(11):3168-3175
Cytoplasmic polyadenylation of specific mRNAs commonly is correlated with their translational activation during development. Here, we focus on links between cytoplasmic polyadenylation, translational activation and the control of meiotic maturation in Xenopus oocytes. We manipulate endogenous c-mos mRNA, which encodes a protein kinase that regulates meiotic maturation. We determined that translational activation of endogenous c-mos mRNA requires a long poly(A) tail per se, rather than the process of polyadenylation. For this, we injected 'prosthetic' poly(A)_synthetic poly(A) tails designed to attach by base pairing to endogenous c-mos mRNA that has had its own polyadenylation signals removed. This prosthetic poly(A) tail activates c-mos translation and restores meiotic maturation in response to progesterone. Thus the role of polyadenylation in activating c-mos mRNA differs from its role in activating certain other mRNAs, for which the act of polyadenylation is required. In the absence of progesterone, prosthetic poly(A) does not stimulate c-mos expression, implying that progesterone acts at additional steps to elevate c-Mos protein. By using a general inhibitor of polyadenylation together with prosthetic poly(A), we demonstrate that these additional steps include polyadenylation of at least one other mRNA, in addition to that of c-mos mRNA. These other mRNAs, encoding regulators of meiotic maturation, act upstream of c-Mos in the meiotic maturation pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号