首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Oral bacterial biofilms trigger chronic inflammatory responses in the host that can result in the tissue destructive events of periodontitis. However, the characteristics of the capacity of specific host cell types to respond to these biofilms remain ill-defined. This report describes the use of a novel model of bacterial biofilms to stimulate oral epithelial cells and profile select cytokines and chemokines that contribute to the local inflammatory environment in the periodontium. Monoinfection biofilms were developed with Streptococcus sanguinis, Streptococcus oralis, Streptococcus gordonii, Actinomyces naeslundii, Fusobacterium nucleatum, and Porphyromonas gingivalis on rigid gas-permeable contact lenses. Biofilms, as well as planktonic cultures of these same bacterial species, were incubated under anaerobic conditions with a human oral epithelial cell line, OKF4, for up to 24h. Gro-1α, IL1α, IL-6, IL-8, TGFα, Fractalkine, MIP-1α, and IP-10 were shown to be produced in response to a range of the planktonic or biofilm forms of these species. P. gingivalis biofilms significantly inhibited the production of all of these cytokines and chemokines, except MIP-1α. Generally, the biofilms of all species inhibited Gro-1α, TGFα, and Fractalkine production, while F. nucleatum biofilms stimulated significant increases in IL-1α, IL-6, IL-8, and IP-10. A. naeslundii biofilms induced elevated levels of IL-6, IL-8 and IP-10. The oral streptococcal species in biofilms or planktonic forms were poor stimulants for any of these mediators from the epithelial cells. The results of these studies demonstrate that oral bacteria in biofilms elicit a substantially different profile of responses compared to planktonic bacteria of the same species. Moreover, certain oral species are highly stimulatory when in biofilms and interact with host cell receptors to trigger pathways of responses that appear quite divergent from individual bacteria.  相似文献   

2.
The aim of this in vitro study was to evaluate the effects of nicotine, cotinine, and caffeine on the viability of some oral bacterial species. It also evaluated the ability of these bacteria to metabolize those substances. Single-species biofilms of Streptococcus gordonii, Porphyromonas gingivalis, or Fusobacterium nucleatum and dual-species biofilms of S. gordonii -- F. nucleatum and F. nucleatum -- P. gingivalis were grown on hydroxyapatite discs. Seven species were studied as planktonic cells, including Streptococcus oralis, Streptococcus mitis, Propionibacterium acnes, Actinomyces naeslundii, and the species mentioned above. The viability of planktonic cells and biofilms was analyzed by susceptibility tests and time-kill assays, respectively, against different concentrations of nicotine, cotinine, and caffeine. High-performance liquid chromatography was performed to quantify nicotine, cotinine, and caffeine concentrations in the culture media after the assays. Susceptibility tests and viability assays showed that nicotine, cotinine, and caffeine cannot reduce or stimulate bacterial growth. High-performance liquid chromatography results showed that nicotine, cotinine, and caffeine concentrations were not altered after bacteria exposure. These findings indicate that nicotine, cotinine, and caffeine, in the concentrations used, cannot affect significantly the growth of these oral bacterial strains. Moreover, these species do not seem to metabolize these substances.  相似文献   

3.
Microbial communities within the human oral cavity are dynamic associations of more than 500 bacterial species that form biofilms on the soft and hard tissues of the mouth. Understanding the development and spatial organization of oral biofilms has been facilitated by the use of in vitro models. We used a saliva-conditioned flow cell, with saliva as the sole nutritional source, as a model to examine the development of multispecies biofilm communities from an inoculum containing the coaggregation partners Streptococcus gordonii, Actinomyces naeslundii, Veillonella atypica, and Fusobacterium nucleatum. Biofilms inoculated with individual species in a sequential order were compared with biofilms inoculated with coaggregates of the four species. Our results indicated that flow cells inoculated sequentially produced biofilms with larger biovolumes compared to those biofilms inoculated with coaggregates. Individual-species biovolumes within the four-species communities also differed between the two modes of inoculation. Fluorescence in situ hybridization with genus- and species-specific probes revealed that the majority of cells in both sequentially and coaggregate-inoculated biofilms were S. gordonii, regardless of the inoculation order. However, the representation of A. naeslundii and V. atypica was significantly higher in biofilms inoculated with coaggregates compared to sequentially inoculated biofilms. Thus, these results indicate that the development of multispecies biofilm communities is influenced by coaggregations preformed in planktonic phase. Coaggregating bacteria such as certain streptococci are especially adapted to primary colonization of saliva-conditioned surfaces independent of the mode of inoculation and order of addition in the multispecies inoculum. Preformed coaggregations favor other bacterial strains and may facilitate symbiotic relationships.  相似文献   

4.
Biofilms are polymicrobial, with diverse bacterial species competing for limited space and nutrients. Under healthy conditions, the different species in biofilms maintain an ecological balance. This balance can be disturbed by environmental factors and interspecies interactions. These perturbations can enable dominant growth of certain species, leading to disease. To model clinically relevant interspecies antagonism, we studied three well-characterized and closely related oral species, Streptococcus gordonii, Streptococcus sanguinis, and cariogenic Streptococcus mutans. S. sanguinis and S. gordonii used oxygen availability and the differential production of hydrogen peroxide (H(2)O(2)) to compete effectively against S. mutans. Interspecies antagonism was influenced by glucose with reduced production of H(2)O(2). Furthermore, aerobic conditions stimulated the competence system and the expression of the bacteriocin mutacin IV of S. mutans, as well as the H(2)O(2)-dependent release of heterologous DNA from mixed cultures of S. sanguinis and S. gordonii. These data provide new insights into ecological factors that determine the outcome of competition between pioneer colonizing oral streptococci and the survival mechanisms of S. mutans in the oral biofilm.  相似文献   

5.
6.
It is important to ensure DNA availability when bacterial cells develop competence. Previous studies in Streptococcus pneumoniae demonstrated that the competence-stimulating peptide (CSP) induced autolysin production and cell lysis of its own non-competent cells, suggesting a possible active mechanism to secure a homologous DNA pool for uptake and recombination. In this study, we found that in Streptococcus mutans CSP induced co-ordinated expression of competence and mutacin production genes. This mutacin (mutacin IV) is a non-lantibiotic bacteriocin which kills closely related Streptococcal species such as S. gordonii. In mixed cultures of S. mutans and S. gordonii harbouring a shuttle plasmid, plasmid DNA transfer from S. gordonii to S. mutans was observed in a CSP and mutacin IV-dependent manner. Further analysis demonstrated an increased DNA release from S. gordonii upon addition of the partially purified mutacin IV extract. On the basis of these findings, we propose that Streptococcus mutans, which resides in a multispecies oral biofilm, may utilize the competence-induced bacteriocin production to acquire transforming DNA from other species living in the same ecological niche. This hypothesis is also consistent with a well-known phenomenon that a large genomic diversity exists among different S. mutans strains. This diversity may have resulted from extensive horizontal gene transfer.  相似文献   

7.
Dental plaque biofilm formation proceeds through a developmental pathway initiated by the attachment of pioneer organisms, such as Streptococcus gordonii, to tooth surfaces. Through a variety of synergistic interactions, pioneer organisms facilitate the colonization of later arrivals including Porphyromonas gingivalis, a potential periodontal pathogen. We have investigated genes of S. gordonii required to support a heterotypic biofilm community with P. gingivalis. By screening a plasmid integration library of S. gordonii, genes were identified that are crucial for the accumulation of planktonic P. gingivalis cells into a multispecies biofilm. These genes were further investigated by specific mutation and complementation analyses. The biofilm-associated genes can be grouped into broad categories based on putative function as follows: (i) intercellular or intracellular signalling (cbe and spxB), (ii) cell wall integrity and maintenance of adhesive proteins (murE, msrA and atf), (iii) extracellular capsule biosynthesis (pgsA and atf), and (iv) physiology (gdhA, ccmA and ntpB). In addition, a gene for a hypothetical protein was identified. Biofilm visualization and quantification by confocal microscopy confirmed the role of these genes in the maturation of the multispecies community, including biofilm architectural development. The results suggest that S. gordonii governs the development of heterotypic oral biofilms through multiple genetic pathways.  相似文献   

8.
Microbial interactions with host molecules, and programmed responses to host environmental stimuli, are critical for colonization and initiation of pathogenesis. Bacteria of the genus Streptococcus are primary colonizers of the human mouth. They express multiple cell-surface adhesins that bind salivary components and other oral bacteria and enable the development of polymicrobial biofilms associated with tooth decay and periodontal disease. However, the mechanisms by which streptococci invade dentine to infect the tooth pulp and periapical tissues are poorly understood. Here we show that production of the antigen I/II (AgI/II) family polypeptide adhesin and invasin SspA in Streptococcus gordonii is specifically upregulated in response to a collagen type I signal, minimally the tri-peptide Gly-Pro-Xaa (where Xaa is hydroxyproline or alanine). Increased AgI/II polypeptide expression promotes bacterial adhesion and extended growth of streptococcal cell chains along collagen type I fibrils that are characteristically found within dentinal tubules. These observations define a new model of host matrix signal-induced tissue penetration by bacteria and open the way for novel therapy opportunities for oral invasive diseases.  相似文献   

9.
Microbial communities within the human oral cavity are dynamic associations of more than 500 bacterial species that form biofilms on the soft and hard tissues of the mouth. Understanding the development and spatial organization of oral biofilms has been facilitated by the use of in vitro models. We used a saliva-conditioned flow cell, with saliva as the sole nutritional source, as a model to examine the development of multispecies biofilm communities from an inoculum containing the coaggregation partners Streptococcus gordonii, Actinomyces naeslundii, Veillonella atypica, and Fusobacterium nucleatum. Biofilms inoculated with individual species in a sequential order were compared with biofilms inoculated with coaggregates of the four species. Our results indicated that flow cells inoculated sequentially produced biofilms with larger biovolumes compared to those biofilms inoculated with coaggregates. Individual-species biovolumes within the four-species communities also differed between the two modes of inoculation. Fluorescence in situ hybridization with genus- and species-specific probes revealed that the majority of cells in both sequentially and coaggregate-inoculated biofilms were S. gordonii, regardless of the inoculation order. However, the representation of A. naeslundii and V. atypica was significantly higher in biofilms inoculated with coaggregates compared to sequentially inoculated biofilms. Thus, these results indicate that the development of multispecies biofilm communities is influenced by coaggregations preformed in planktonic phase. Coaggregating bacteria such as certain streptococci are especially adapted to primary colonization of saliva-conditioned surfaces independent of the mode of inoculation and order of addition in the multispecies inoculum. Preformed coaggregations favor other bacterial strains and may facilitate symbiotic relationships.  相似文献   

10.
The Mfa1 protein of Porphyromonas gingivalis is the structural subunit of the short fimbriae and mediates coadhesion between P. gingivalis and Streptococcus gordonii. We utilized a promoter-lacZ reporter construct to examine the regulation of mfa1 expression in consortia with common oral plaque bacteria. Promoter activity of mfa1 was inhibited by S. gordonii, Streptococcus sanguinis and Streptococcus mitis. In contrast, Streptococcus mutans, Streptococcus cristatus, Actinomyces naeslundii, Actinobacillus actinomycetemcomitans and Fusobacterium nucleatum did not affect mfa1 expression. Expression of SspA/B, the streptococcal receptor for Mfa1, was not required for regulation of mfa1 promoter activity. Proteinaceous molecule(s) in oral streptococci may be responsible for regulation of Mfa1 expression. Porphyromonas gingivalis is capable of detecting heterologous organisms, and responds to selected organisms by specific gene regulation.  相似文献   

11.
The glucan-binding protein-A (GbpA) of Streptococcus mutans has been shown to contribute to the architecture of glucan-dependent biofilms formed by this species and influence virulence in a rat model. As S. mutans synthesizes multiple glucosyltransferases and nonglucosyltransferase glucan-binding proteins (GBPs), it is possible that there is functional redundancy that overshadows the full extent of GbpA contributions to S. mutans biology. Glucan-associated properties such as adhesion, aggregation, and biofilm formation were examined independently of other S. mutans GBPs by cloning the gbpA gene into a heterologous host, Streptococcus gordonii, and derivatives with altered or diminished glucosyltransferase activity. The presence of GbpA did not alter dextran-dependent aggregation nor the initial sucrose-dependent adhesion of S. gordonii. However, expression of GbpA altered the biofilm formed by wild-type S. gordonii as well as the biofilm formed by strain CH107 that produced primarily alpha-1,6-linked glucan. Expression of gbpA did not alter the biofilm formed by strain DS512, which produced significantly lower quantities of parental glucan. These data are consistent with a role for GbpA in facilitating the development of biofilms that harbor taller microcolonies via binding to alpha-1,6-linkages within glucan. The magnitude of the GbpA effect appears to be dependent on the quantity and linkage of available glucan.  相似文献   

12.
Streptococcus gordonii is one of the predominant streptococci in the biofilm ecology of the oral cavity. It interacts with other bacteria through receptor-adhesin complexes formed between cognate molecules on the surfaces of the partner cells. To study the spatial organization of S. gordonii DL1 in oral biofilms, we used green fluorescent protein (GFP) as a species-specific marker to identify S. gordonii in a two-species in vitro oral biofilm flowcell system. To drive expression of gfp, we isolated and characterized an endogenous S. gordonii promoter, PhppA, which is situated upstream of the chromosomal hppA gene encoding an oligopeptide-binding lipoprotein. A chromosomal chloramphenicol acetyltransferase (cat) gene fusion with PhppA was constructed and used to demonstrate that PhppA was highly active throughout the growth of bacteria in batch culture. A promoterless 0.8-kb gfp ('gfp) cassette was PCR amplified from pBJ169 and subcloned to replace the cat cassette downstream of the S. gordonii-derived PhppA in pMH109-HPP, generating pMA1. Subsequently, the PhppA-'gfp cassette was PCR amplified from pMA1 and subcloned into pDL277 and pVA838 to generate the Escherichia coli-S. gordonii shuttle vectors pMA2 and pMA3, respectively. Each vector was transformed into S. gordonii DL1 aerobically to ensure GFP expression. Flow cytometric analyses of aerobically grown transformant cultures were performed over a 24-h period, and results showed that GFP could be successfully expressed in S. gordonii DL1 from PhppA and that S. gordonii DL1 transformed with the PhppA-'gfp fusion plasmid stably maintained the fluorescent phenotype. Fluorescent S. gordonii DL1 transformants were used to elucidate the spatial arrangement of S. gordonii DL1 alone in biofilms or with the coadhesion partner Streptococcus oralis 34 in two-species biofilms in a saliva-conditioned in vitro flowcell system. These results show for the first time that GFP expression in oral streptococci can be used as a species-specific marker in model oral biofilms.  相似文献   

13.
Multiplex FISH analysis of a six-species bacterial biofilm   总被引:7,自引:0,他引:7  
Established procedures use different and seemingly incompatible experimental protocols for fluorescent in situ hybridization (FISH) with Gram-negative and Gram-positive bacteria. The aim of this study was to develop a procedure, based on FISH and confocal laser scanning microscopy (CLSM), for the analysis of the spatial organization of in vitro biofilms containing both Gram-negative and Gram-positive oral bacteria. Biofilms composed of the six oral species Actinomyces naeslundii, Candida albicans, Fusobacterium nucleatum, Streptococcus oralis, Streptococcus sobrinus, and Veillonella dispar were grown anaerobically for 64.5 h at 37 degrees C on hydroxyapatite disks preconditioned with saliva. Conditions for the simultaneous in situ hybridization of both Gram-negative and Gram-positive bacteria were sought by systematic variation of fixation and exposure to lysozyme. After fixation and permeabilization biofilms were labeled by FISH with 16S rRNA-targeted oligonucleotide probes ANA103 (for the detection of A. naeslundii), EUK116 (C. albicans), FUS664 (F. nucleatum), MIT447 and MIT588 (S. oralis), SOB174 (S. sobrinus), and VEI217 (V. dispar). Probes were used as 6-FAM, Cy3 or Cy5 conjugates, resulting in green, orange-red or deep-red fluorescence of target cells, respectively. Thus, with two independent triple-hybridizations with three probes carrying different fluorescence-tags, all six species could be visualized. Results show that the simultaneous investigation by FISH of complex biofilms composed of multiple bacterial species with differential Gram-staining properties is possible. In combination with the optical sectioning properties of CLSM the technique holds great promise for the analysis of spatial alterations in biofilm composition in response to environmental challenges.  相似文献   

14.
Aims: We evaluated the ability of a dual‐species community of oral bacteria to produce the universal signalling molecule, autoinducer‐2 (AI‐2), in saliva‐fed biofilms. Methods and Results: Streptococcus oralis 34, S. oralis 34 luxS mutant and Actinomyces naeslundii T14V were grown as single‐ and dual‐species biofilms within sorbarods fed with 25% human saliva. AI‐2 concentration in biofilm effluents was determined by the Vibrio harveyi BB170 bioluminescence assay. After homogenizing the sorbarods to release biofilm cells, cell numbers were determined by fluorometric analysis of fluorescent antibody‐labelled cells. After 48 h, dual‐species biofilm communities of interdigitated S. oralis 34 and A. naeslundii T14V contained 3·2 × 109 cells: fivefold more than single‐species biofilms. However, these 48‐h dual‐species biofilms exhibited the lowest concentration ratio of AI‐2 to cell density. Conclusions: Oral bacteria produce AI‐2 in saliva‐fed biofilms. The decrease of more than 10‐fold in concentration ratio seen between 1 and 48 h in S. oralis 34–A. naeslundii T14V biofilms suggests that peak production of AI‐2 occurs early and is followed by a very low steady‐state level. Significance and Impact of the Study: High oral bacterial biofilm densities may be achieved by inter‐species AI‐2 signalling. We propose that low concentrations of AI‐2 contribute to the establishment of oral commensal biofilm communities.  相似文献   

15.
Porphyromonas gingivalis, a gram-negative oral anaerobic bacterium, has been implicated in the onset and development of periodontitis. The P. gingivalis fimbriae which mediate bacterial adherence to host oral sites and induce host inflammatory responses have been suggested as a potential antigen candidate. for vaccine development. This study was undertaken to generate Streptococcus gordonii vectors expressing the major subunit protein (FimA) of P. gingivalis fimbriae for testing as a potential live vaccine against periodontitis. We report here the expression of the C-terminal saliva-binding epitopes of P. gingivalis FimA on the surface of S. gordonii and demonstrate that domains containing free cysteine residues are poorly expressed on the surface of S. gordonii.  相似文献   

16.
17.
Periodontal diseases reflect a tissue destructive process of the hard and soft tissues of the periodontium that are initiated by the accumulation of multispecies bacterial biofilms in the subgingival sulcus. This accumulation, in both quantity and quality of bacteria, results in a chronic immunoinflammatory response of the host to control this noxious challenge, leading to collateral damage of the tissues. As knowledge of the characteristics of the host-bacterial interactions in the oral cavity has expanded, new knowledge has become available on the complexity of the microbial challenge and the repertoire of host responses to this challenge. Recent results from the Human Microbiome Project continue to extend the array of taxa, genera, and species of bacteria that inhabit the multiple niches in the oral cavity; however, there is rather sparse information regarding variations in how host cells discriminate commensal from pathogenic species, as well as how the host response is affected by the three-dimensional architecture and interbacterial interactions that occur in the oral biofilms. This review provides some insights into these processes by including existing literature on the biology of nonoral bacterial biofilms, and the more recent literature just beginning to document how the oral cavity responds to multispecies biofilms.  相似文献   

18.
Communication among Oral Bacteria   总被引:22,自引:0,他引:22       下载免费PDF全文
Human oral bacteria interact with their environment by attaching to surfaces and establishing mixed-species communities. As each bacterial cell attaches, it forms a new surface to which other cells can adhere. Adherence and community development are spatiotemporal; such order requires communication. The discovery of soluble signals, such as autoinducer-2, that may be exchanged within multispecies communities to convey information between organisms has emerged as a new research direction. Direct-contact signals, such as adhesins and receptors, that elicit changes in gene expression after cell-cell contact and biofilm growth are also an active research area. Considering that the majority of oral bacteria are organized in dense three-dimensional biofilms on teeth, confocal microscopy and fluorescently labeled probes provide valuable approaches for investigating the architecture of these organized communities in situ. Oral biofilms are readily accessible to microbiologists and are excellent model systems for studies of microbial communication. One attractive model system is a saliva-coated flowcell with oral bacterial biofilms growing on saliva as the sole nutrient source; an intergeneric mutualism is discussed. Several oral bacterial species are amenable to genetic manipulation for molecular characterization of communication both among bacteria and between bacteria and the host. A successful search for genes critical for mixed-species community organization will be accomplished only when it is conducted with mixed-species communities.  相似文献   

19.
Bacterial biofilms have been found to develop on root surfaces outside the apical foramen and be associated with refractory periapical periodontitis. However, it is unknown which bacterial species form extraradicular biofilms. The present study aimed to investigate the identity and localization of bacteria in human extraradicular biofilms. Twenty extraradicular biofilms, used to identify bacteria using a PCR-based 16S rRNA gene assay, and seven root-tips, used to observe immunohistochemical localization of three selected bacterial species, were taken from 27 patients with refractory periapical periodontitis. Bacterial DNA was detected from 14 of the 20 samples, and 113 bacterial species were isolated. Fusobacterium nucleatum (14 of 14), Porphyromonas gingivalis (12 of 14), and Tannellera forsythensis (8 of 14) were frequently detected. Unidentified and uncultured bacterial DNA was also detected in 11 of the 14 samples in which DNA was detected. In the biofilms, P. gingivalis was immunohistochemically detected in all parts of the extraradicular biofilms. Positive reactions to anti-F. nucleatum and anti-T. forsythensis sera were found at specific portions of the biofilm. These findings suggested that P. gingivalis, T. forsythensis, and F. nucleatum were associated with extraradicular biofilm formation and refractory periapical periodontitis.  相似文献   

20.
Communication among oral bacteria.   总被引:6,自引:0,他引:6  
Human oral bacteria interact with their environment by attaching to surfaces and establishing mixed-species communities. As each bacterial cell attaches, it forms a new surface to which other cells can adhere. Adherence and community development are spatiotemporal; such order requires communication. The discovery of soluble signals, such as autoinducer-2, that may be exchanged within multispecies communities to convey information between organisms has emerged as a new research direction. Direct-contact signals, such as adhesins and receptors, that elicit changes in gene expression after cell-cell contact and biofilm growth are also an active research area. Considering that the majority of oral bacteria are organized in dense three-dimensional biofilms on teeth, confocal microscopy and fluorescently labeled probes provide valuable approaches for investigating the architecture of these organized communities in situ. Oral biofilms are readily accessible to microbiologists and are excellent model systems for studies of microbial communication. One attractive model system is a saliva-coated flowcell with oral bacterial biofilms growing on saliva as the sole nutrient source; an intergeneric mutualism is discussed. Several oral bacterial species are amenable to genetic manipulation for molecular characterization of communication both among bacteria and between bacteria and the host. A successful search for genes critical for mixed-species community organization will be accomplished only when it is conducted with mixed-species communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号