首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chroni A  Kan HY  Shkodrani A  Liu T  Zannis VI 《Biochemistry》2005,44(10):4108-4117
The objective of this study was to determine the effect of two amino-terminal apolipoprotein A-I (apoA-I) deletions on high-density lipoprotein (HDL) biosynthesis and lipid homeostasis. Adenovirus-mediated gene transfer showed that the apoA-I[Delta(89-99)] deletion mutant caused hypercholesterolemia, characterized by increased plasma cholesterol and phospholipids, that were distributed in the very low density/intermediate density/low-density lipoprotein (VLDL/IDL/LDL) region, and normal triglycerides. The capacity of the mutant protein to promote ATP-binding cassette transporter A1- (ABCA1-) mediated cholesterol efflux and to activate lecithin:cholesterol acyltranserase (LCAT) was approximately 70-80% of the wild-type (WT) control. The phospholipid transfer protein (PLTP) activity of plasma containing the apoA-I[Delta(89-99)] mutant was decreased to 32% of the WT control. Similar analysis showed that the apoA-I[Delta(62-78)] deletion mutant in apoA-I-deficient mice caused combined hyperlipidemia characterized by increased triglycerides, cholesterol, and phospholipids in the VLDL/IDL region. There was enrichment of the VLDL/IDL with mutant apoA-I that resulted in reduction of in vitro lipolysis. The capacity of this mutant to promote ABCA1-mediated cholesterol efflux was normal, and the capacity to activate LCAT in vitro was reduced by 53%. The WT apoA-I and the apoA-I[Delta(62-78)] mutant formed spherical HDL particles, whereas the apoA-I[Delta(89-99)] mutant formed discoidal HDL particles. We conclude that alterations in apoA-I not only may have adverse effects on HDL biosynthesis but also may promote dyslipidemia due to interference of the apoA-I mutants on the overall cholesterol and triglycerides homeostasis.  相似文献   

2.
We investigated the significance of hydrophobic and charged residues 218–226 on the structure and functions of apoA-I and their contribution to the biogenesis of HDL. Adenovirus-mediated gene transfer of apoA-I[L218A/L219A/V221A/L222A] in apoA-I−/− mice decreased plasma cholesterol and apoA-I levels to 15% of wild-type (WT) control mice and generated pre-β- and α4-HDL particles. In apoA-I−/− × apoE−/− mice, the same mutant formed few discoidal and pre-β-HDL particles that could not be converted to mature α-HDL particles by excess LCAT. Expression of the apoA-I[E223A/K226A] mutant in apoA-I−/− mice caused lesser but discrete alterations in the HDL phenotype. The apoA-I[218–222] and apoA-I[E223A/K226A] mutants had 20% and normal capacity, respectively, to promote ABCA1-mediated cholesterol efflux. Both mutants had ∼65% of normal capacity to activate LCAT in vitro. Biophysical analyses suggested that both mutants affected in a distinct manner the structural integrity and plasticity of apoA-I that is necessary for normal functions. We conclude that the alteration of the hydrophobic 218–222 residues of apoA-I disrupts apoA-I/ABCA1 interactions and promotes the generation of defective pre-β particles that fail to mature into α-HDL subpopulations, thus resulting in low plasma apoA-I and HDL. Alterations of the charged 223, 226 residues caused milder but discrete changes in HDL phenotype.  相似文献   

3.
We studied the significance of four hydrophobic residues within the 225–230 region of apoA-I on its structure and functions and their contribution to the biogenesis of HDL. Adenovirus-mediated gene transfer of an apoA-I[F225A/V227A/F229A/L230A] mutant in apoA-I−/− mice decreased plasma cholesterol, HDL cholesterol, and apoA-I levels. When expressed in apoA-I−/− × apoE−/− mice, approximately 40% of the mutant apoA-I as well as mouse apoA-IV and apoB-48 appeared in the VLDL/IDL/LDL. In both mouse models, the apoA-I mutant generated small spherical particles of pre-β- and α4-HDL mobility. Coexpression of the apoA-I mutant and LCAT increased and shifted the-HDL cholesterol peak toward lower densities, created normal αHDL subpopulations, and generated spherical-HDL particles. Biophysical analyses suggested that the apoA-I[225–230] mutations led to a more compact folding that may limit the conformational flexibility of the protein. The mutations also reduced the ability of apoA-I to promote ABCA1-mediated cholesterol efflux and to activate LCAT to 31% and 66%, respectively, of the WT control. Overall, the apoA-I[225–230] mutations inhibited the biogenesis of-HDL and led to the accumulation of immature pre-β- and α4-HDL particles, a phenotype that could be corrected by administration of LCAT.  相似文献   

4.
In the present study we have used adenovirus-mediated gene transfer of apoA-I (apolipoprotein A-I) mutants in apoA-I-/- mice to investigate how structural mutations in apoA-I affect the biogenesis and the plasma levels of HDL (high-density lipoprotein). The natural mutants apoA-I(R151C)Paris, apoA-I(R160L)Oslo and the bioengineered mutant apoA-I(R149A) were secreted efficiently from cells in culture. Their capacity to activate LCAT (lecithin:cholesterol acyltransferase) in vitro was greatly reduced, and their ability to promote ABCA1 (ATP-binding cassette transporter A1)-mediated cholesterol efflux was similar to that of WT (wild-type) apoA-I. Gene transfer of the three mutants in apoA-I-/- mice generated aberrant HDL phenotypes. The total plasma cholesterol of mice expressing the apoA-I(R160L)Oslo, apoA-I(R149A) and apoA-I(R151C)Paris mutants was reduced by 78, 59 and 61% and the apoA-I levels were reduced by 68, 64 and 55% respectively, as compared with mice expressing the WT apoA-I. The CE (cholesteryl ester)/TC (total cholesterol) ratio of HDL was decreased and the apoA-I was distributed in the HDL3 region. apoA-I(R160L)Oslo and apoA-I(R149A) promoted the formation of prebeta1 and alpha4-HDL subpopulations and gave a mixture of discoidal and spherical particles. apoA-I(R151C)Paris generated subpopulations of different sizes that migrate between prebeta and alpha-HDL and formed mostly spherical and a few discoidal particles. Simultaneous treatment of mice with adenovirus expressing any of the three mutants and human LCAT normalized plasma apoA-I, HDL cholesterol levels and the CE/TC ratio. It also led to the formation of spherical HDL particles consisting mostly of alpha-HDL subpopulations of larger size. The correction of the aberrant HDL phenotypes by treatment with LCAT suggests a potential therapeutic intervention for HDL abnormalities that result from specific mutations in apoA-I.  相似文献   

5.
Chroni A  Duka A  Kan HY  Liu T  Zannis VI 《Biochemistry》2005,44(43):14353-14366
We have analyzed the effect of charged to neutral amino acid substitutions around the kinks flanking helices 4 and 6 of apoA-I and of the deletion of helix 6 on the in vivo activity of LCAT and the biogenesis of HDL. The LCAT activation capacity of apoA-I in vitro was nearly abolished by the helix 6 point (helix 6P-apoA-I[R160V/H162A]) and deletion {helix 6Delta-apoA-I[Delta(144-165)]} mutants, but was reduced to 50% in the helix 4 point mutant (helix 4P-apoA-I[D102A/D103A]). Following adenovirus-mediated gene transfer in apoA-I deficient mice, the level of plasma HDL cholesterol was greatly reduced in helix 6P and helix 6Delta mutants. Electron microscopy and two-dimensional gel electrophoresis showed that the helix 6P mutant formed predominantly high levels of apoA-I containing discoidal particles and had an increased prebeta1-HDL/alpha-HDL ratio. The helix 6Delta mutant formed few spherical particles and had an increased prebeta1-HDL/alpha-HDL ratio. Mice infected with adenovirus expressing the helix 4P mutant or wild-type apoA-I had normal HDL cholesterol and formed spherical alpha-HDL particles. Coinfection of mice with adenoviruses expressing human LCAT and the helix 6P mutant dramatically increased plasma HDL and apoA-I levels and converted the discoidal into spherical HDL, indicating that the LCAT activity was rate-limiting for the biogenesis of HDL. The LCAT treatment caused only a small increase in HDL cholesterol and apoA-I levels and in alpha-HDL particle numbers in the helix 6Delta mutant. The findings indicate a critical contribution of residue 160 of apoA-I to the in vivo activity of LCAT and the subsequent maturation of HDL and explain the low HDL levels in heterozygous subjects carrying this mutation.  相似文献   

6.
Drosatos K  Kypreos KE  Zannis VI 《Biochemistry》2007,46(33):9645-9653
Overexpression of apolipoprotein E (apoE) induces hypertriglyceridemia in apoE-deficient mice, which is abrogated by deletion of the carboxy-terminal segment of residues 260-299. We have used adenovirus-mediated gene transfer in apoE-/- and apoA-I-/- mice to test the effect of three sets of apoE mutations within the region of residues 261-265 on the induction of hypertriglyceridemia, the esterification of cholesterol of very low-density lipoprotein (VLDL) and high-density lipoprotein (HDL), and the formation of spherical or discoidal apoE-containing HDL. A single-amino acid substitution (apoE4[Phe265Ala]) induced hypertriglyceridemia in apoE-/- or apoA-I-/- mice, promoted the accumulation of free cholesterol in the very low-density lipoprotein (VLDL) and HDL region, and decreased HDL cholesterol levels. A double substitution (apoE4[Leu261Ala/Trp264Ala]) induced milder hypertriglyceridemia and increased HDL cholesterol levels. A triple substitution (apoE4[Leu261Ala/Trp264Ala/Phe265Ala] or apoE2[Leu261Ala/Trp264Ala/Phe265Ala]) did not induce hypertriglyceridemia and increased greatly the HDL cholesterol levels. Electron microscopy (EM) analysis of the HDL fractions showed that apoE4[Leu261Ala/Trp264Ala/Phe265Ala] and apoE2[Leu261Ala/Trp264Ala/Phe265Ala] contained spherical HDL, apoE4[Leu261Ala/Trp264Ala] contained mostly spherical and few discoidal HDL particles, and apoE4[Phe265Ala] contained discoidal HDL. We conclude that residues Leu261, Trp264, and Phe265 play an important role in apoE-induced hypertriglyceridemia, the accumulation of free cholesterol in VLDL and HDL, and the formation of discoidal HDL. Substitution of these residues with Ala improves the apoE functions by preventing hypertriglyceridemia and promoting formation of spherical apoE-containing HDL.  相似文献   

7.
Hypertriglyceridemia is a common pathological condition in humans of mostly unknown etiology. Here we report induction of dyslipidemia characterized by severe hypertriglyceridemia as a result of point mutations in human apolipoprotein A-I (apoA-I). Adenovirus-mediated gene transfer in apoA-I-deficient (apoA-I(-)(/)(-)) mice showed that mice expressing an apoA-I[E110A/E111A] mutant had comparable hepatic mRNA levels with WT controls but greatly increased plasma triglyceride and elevated plasma cholesterol levels. In addition, they had decreased apoE and apoCII levels and increased apoB48 levels in very low-density lipoprotein (VLDL)/intermediate-density lipoprotein (IDL). Fast protein liquid chromatography (FPLC) analysis of plasma showed that most of cholesterol and approximately 15% of the mutant apoA-I were distributed in the VLDL and IDL regions and all the triglycerides in the VLDL region. Hypertriglyceridemia was corrected by coinfection of mice with recombinant adenoviruses expressing the mutant apoA-I and human lipoprotein lipase. Physicochemical studies indicated that the apoA-I mutation decreased the alpha-helical content, the stability, and the unfolding cooperativity of both lipid-free and lipid-bound apoA-I. In vitro functional analyses showed that reconstituted HDL (rHDL) particles containing the mutant apoA-I had 53% of scavenger receptor class B type I (SR-BI)-mediated cholesterol efflux capacity and 37% capacity to activate lecithin:cholesterol acyltransferase (LCAT) as compared to the WT control. The mutant lipid-free apoA-I had normal capacity to promote ATP-binding cassette transporter A1 (ABCA1)-dependent cholesterol efflux. The findings indicate that subtle structural alterations in apoA-I may alter the stability and functions of apoA-I and high-density lipoprotein (HDL) and may cause hypertriglyceridemia.  相似文献   

8.
Population studies have found that a natural human apoA-I variant, apoA-I[K107del], is strongly associated with low HDL-C but normal plasma apoA-I levels. We aimed to reveal properties of this variant that contribute to its unusual phenotype associated with atherosclerosis. Our oil-drop tensiometry studies revealed that compared to WT, recombinant apoA-I[K107del] adsorbed to surfaces of POPC-coated triolein drops at faster rates, remodeled the surfaces to a greater extent, and was ejected from the surfaces at higher surface pressures on compression of the lipid drops. These properties may drive increased binding of apoA-I[K107del] to and its better retention on large triglyceride-rich lipoproteins, thereby increasing the variant’s content on these lipoproteins. While K107del did not affect apoA-I capacity to promote ABCA1-mediated cholesterol efflux from J774 cells, it impaired the biogenesis of large nascent HDL particles resulting in the formation of predominantly smaller nascent HDL. Size-exclusion chromatography of spontaneously reconstituted 1,2-dimyristoylphosphatidylcholine-apoA-I complexes showed that apoA-I[K107del] had a hampered ability to form larger complexes but formed efficiently smaller-sized complexes. CD analysis revealed a reduced ability of apoA-I[K107del] to increase α-helical structure on binding to 1,2-dimyristoylphosphatidylcholine or in the presence of trifluoroethanol. This property may hinder the formation of large apoA-I[K107del]-containing discoidal and spherical HDL but not smaller HDL. Both factors, the increased content of apoA-I[K107del] on triglyceride-rich lipoproteins and the impaired ability of the variant to stabilize large HDL particles resulting in reduced lipid:protein ratios in HDL, may contribute to normal plasma apoA-I levels along with low HDL-C and increased risk for CVD.  相似文献   

9.
Chroni A  Koukos G  Duka A  Zannis VI 《Biochemistry》2007,46(19):5697-5708
ATP-binding cassette transporter A-1 (ABCA1)-mediated lipid efflux to lipid-poor apolipoprotein A-I (apoA-I) results in the gradual lipidation of apoA-I. This leads to the formation of discoidal high-density lipoproteins (HDL), which are subsequently converted to spherical HDL by the action of lecithin:cholesterol acyltransferase (LCAT). We have investigated the effect of point mutations and deletions in the carboxy-terminal region of apoA-I on the biogenesis of HDL using adenovirus-mediated gene transfer in apoA-I-deficient mice. It was found that the plasma HDL levels were greatly reduced in mice expressing the carboxy-terminal deletion mutants apoA-I[Delta(185-243)] and apoA-I[Delta(220-243)], shown previously to diminish the ABCA1-mediated lipid efflux. The HDL levels were normal in mice expressing the WT apoA-I, the apoA-I[Delta(232-243)] deletion mutant, or the apoA-I[E191A/H193A/K195A] point mutant, which promote normal ABCA1-mediated lipid efflux. Electron microscopy and two-dimensional gel electrophoresis showed that the apoA-I[Delta(185-243)] and apoA-I[Delta(220-243)] mutants formed mainly prebeta-HDL particles and few spherical particles enriched in apoE, while WT apoA-I, apoA-I[Delta(232-243)], and apoA-I[E191A/H193A/K195A] formed spherical alpha-HDL particles. The findings establish that (a) deletions that eliminate the 220-231 region of apoA-I prevent the synthesis of alpha-HDL but allow the synthesis of prebeta-HDL particles in vivo, (b) the amino-terminal segment 1-184 of apoA-I can promote synthesis of prebeta-HDL-type particles in an ABCA1-independent process, and (c) the charged residues in the 191-195 region of apoA-I do not influence the biogenesis of HDL.  相似文献   

10.
PURPOSE OF THE REVIEW: This review clarifies the functions of key proteins of the chylomicron and the HDL pathways. RECENT FINDINGS: Adenovirus-mediated gene transfer of several apolipoprotein (apo)E forms in mice showed that the amino-terminal 1-185 domain of apoE can direct receptor-mediated lipoprotein clearance in vivo. Clearance is mediated mainly by the LDL receptor. The carboxyl-terminal 261-299 domain of apoE induces hypertriglyceridemia, because of increased VLDL secretion, diminished lipolysis and inefficient VLDL clearance. Truncated apoE forms, including apoE2-202, have a dominant effect in remnant clearance and may have future therapeutic applications for the correction of remnant removal disorders. Permanent expression of apoE and apoA-I following adenoviral gene transfer protected mice from atherosclerosis. Functional assays, protein cross-linking, and adenovirus-mediated gene transfer of apoA-I mutants in apoA-I deficient mice showed that residues 220-231, as well as the central helices of apoA-I, participate in ATP-binding cassette transporter A1-mediated lipid efflux and HDL biogenesis. Following apoA-I gene transfer, an amino-terminal deletion mutant formed spherical alpha-HDL, a double amino- and carboxyl-terminal deletion mutant formed discoidal HDL, and a carboxyl-terminal deletion mutant formed only pre-beta-HDL. The findings support a model of cholesterol efflux that requires direct physical interactions between apoA-I and ATP-binding cassette transporter A1, and can explain Tangier disease and other HDL deficiencies. SUMMARY: New insights are provided into the role of apoE in cholesterol and triglyceride homeostasis, and of apoA-I in the biogenesis of HDL. Clearance of the lipoprotein remnants and increase in HDL synthesis are obvious targets for therapeutic interventions.  相似文献   

11.
Apolipoprotein E (apoE) enters the plasma as a component of discoidal HDL and is subsequently incorporated into spherical HDL, most of which contain apoE as the sole apolipoprotein. This study investigates the regulation, origins, and structure of spherical, apoE-containing HDLs and their remodeling by cholesteryl ester transfer protein (CETP). When the ability of discoidal reconstituted high density lipoprotein (rHDL) containing apoE2 [(E2)rHDL], apoE3 [(E3)rHDL], or apoE4 [(E4)rHDL] as the sole apolipoprotein to act as substrates for LCAT were compared with that of discoidal rHDL containing apoA-I [(A-I)rHDL], the rate of cholesterol esterification was (A-I)rHDL > (E2)rHDL approximately (E3)rHDL > (E4)rHDL. LCAT also had a higher affinity for discoidal (A-I)rHDL than for the apoE-containing rHDL. When the discoidal rHDLs were incubated with LCAT and LDL, the resulting spherical (E2)rHDL, (E3)rHDL, and (E4)rHDL were larger than, and structurally distinct from, spherical (A-I)rHDL. Incubation of the apoE-containing spherical rHDL with CETP and Intralipid(R) generated large fusion products without the dissociation of apoE, whereas the spherical (A-I)rHDLs were remodeled into small particles with the formation of lipid-poor apoA-I. In conclusion, i) apoE activates LCAT less efficiently than apoA-I; ii) apoE-containing spherical rHDLs are structurally distinct from spherical (A-I)rHDL; and iii) the CETP-mediated remodeling of apoE-containing spherical rHDL differs from that of spherical (A-I)rHDL.  相似文献   

12.
To explore the functional interactions between apoA-I and ABCA1, we correlated the cross-linking properties of several apoA-I mutants with their ability to promote cholesterol efflux. In a competitive cross-linking assay, amino-terminal deletion and double amino- and carboxy-terminal deletion mutants of apoA-I competed effectively the cross-linking of WT (125)I-apoA-I to ABCA1, while the carboxy-terminal deletion mutant apoA-I[Delta(220-243)] competed poorly. Direct cross-linking of WT apoA-I, amino-terminal, and double deletion mutants of apoA-I to ABCA1 showed similar apparent K(d) values (49-74 nM), whereas the apparent K(d) values of the carboxy-terminal deletion mutants apoA-I[Delta(185-243)] and apoA-I[Delta(220-243)] were increased 3-fold. Analysis of several internal deletions and point mutants of apoA-I showed that apoA-I[Delta(61-78)], apoA-I[Delta(89-99)], apoA-I[Delta(136-143)], apoA-I[Delta(144-165)], apoA-I[D102A/D103A], apoA-I[E125K/E128K/K133E/E139K], apoA-I[L141R], apoA-I[R160V/H162A], and WT apoA-I had similar ABCA1-mediated lipid efflux, and all competed efficiently the cross-linking of WT (125)I-apoA-I to ABCA1. WT apoA-I and ABCA1 could be cross-linked with a 3 A cross-linker. The WT apoA-I, amino, carboxy and double deletion mutants of apoA-I showed differences in the cross-linking to WT ABCA1 and the mutant ABCA1[W590S]. The findings are consistent with a direct association of different combinations of apoA-I helices with a complementary ABCA1 domain. Mutations that alter ABCA1/apoA-I association affect cholesterol efflux and inhibit biogenesis of HDL.  相似文献   

13.
Apolipoprotein A-I (apoA-I) readily forms discoidal high density lipoprotein (HDL) particles with phospholipids serving as an ideal transporter of plasma cholesterol. In the lipid-bound conformation, apoA-I activates the enzyme lecithin:cholesterol acyltransferase stimulating the formation of cholesterol esters from free cholesterol. As esterification proceeds cholesterol esters accumulate within the hydrophobic core of the discoidal phospholipid bilayer transforming it into a spherical HDL particle. To investigate the change in apoA-I conformation as it adapts to a spherical surface, fluorescence resonance energy transfer studies were performed. Discoidal rHDL particles containing two lipid-bound apoA-I molecules were prepared with acceptor and donor fluorescent probes attached to cysteine residues located at specific positions. Fluorescence quenching was measured for probe combinations located within repeats 5 and 5 (residue 132), repeats 5 and 6 (residues 132 and 154), and repeats 6 and 6 (residue 154). Results from these experiments indicated that each of the 2 molecules of discoidal bound apoA-I exists in multiple conformations and support the concept of a "variable registry" rather than a "fixed helix-helix registry." Additionally, discoidal rHDL were transformed in vitro to core-containing particles by incubation with lecithin:cholesterol acyltransferase. Compositional analysis showed that core-containing particles contained 11% less phospholipid and 633% more cholesterol ester and a total of 3 apoA-I molecules per particle. Spherical particles showed a lowering of acceptor to donor probe quenching when compared with starting rHDL. Therefore, we conclude that as lipid-bound apoA-I adjusts from a discoidal to a spherical surface its intermolecular interactions are significantly reduced presumably to cover the increased surface area of the particle.  相似文献   

14.
A key step in plasma HDL maturation from discoidal to spherical particles is the esterification of cholesterol to cholesteryl ester, which is catalyzed by LCAT. HDL-like lipoproteins in cerebrospinal fluid (CSF) are also spherical, whereas nascent lipoprotein particles secreted from astrocytes are discoidal, suggesting that LCAT may play a similar role in the CNS. In plasma, apoA-I is the main LCAT activator, while in the CNS, it is believed to be apoE. apoE is directly involved in the pathological progression of Alzheimer’s disease, including facilitating β-amyloid (Aβ) clearance from the brain, a function that requires its lipidation by ABCA1. However, whether apoE particle maturation by LCAT is also required for Aβ clearance is unknown. Here we characterized the impact of LCAT deficiency on CNS lipoprotein metabolism and amyloid pathology. Deletion of LCAT from APP/PS1 mice resulted in a pronounced decrease of apoA-I in plasma that was paralleled by decreased apoA-I levels in CSF and brain tissue, whereas apoE levels were unaffected. Furthermore, LCAT deficiency did not increase Aβ or amyloid in APP/PS1 LCAT−/− mice. Finally, LCAT expression and plasma activity were unaffected by age or the onset of Alzheimer’s-like pathology in APP/PS1 mice. Taken together, these results suggest that apoE-containing discoidal HDLs do not require LCAT-dependent maturation to mediate efficient Aβ clearance.  相似文献   

15.
Small particles of high density lipoproteins (HDL) were isolated from fresh, fasting human plasma and from the ultracentrifugally isolated high density lipoprotein fraction by means of ultrafiltration through membranes of molecular weight cutoff of 70,000. These particles were found to contain cholesterol, phospholipids, and apolipoproteins A-I and A-II; moreover, they floated at a density of 1.21 kg/l. They contained 67.5% of their mass as protein and the rest as lipid. Two populations of small HDL particles were identified: one containing apolipoprotein A-I alone [(A-I)HDL] and the other containing both apolipoproteins A-I and A-II [A-I + A-II)HDL]. The molar ratio of apoA-I to apoA-II in the latter subclass isolated from plasma or HDL was 1:1. The molecular weights of these subpopulations were determined by nondenaturing gradient polyacrylamide gel electrophoresis and found to be 70,000; 1.5% of the plasma apoA-I was recovered in the plasma ultrafiltrate.  相似文献   

16.
We have mapped the domains of lipid-free apoA-I that promote cAMP-dependent and cAMP-independent cholesterol and phospholipid efflux. The cAMP-dependent lipid efflux in J774 mouse macrophages was decreased by approximately 80-92% by apoA-I[delta(185-243)], only by 15% by apoA-I[delta(1-41)] or apoA-I[delta(1-59)], and was restored to 75-80% of the wild-type apoA-I control value by double deletion mutants apoA-I[delta(1-41)delta(185-243)] and apoA-I[delta(1-59)delta(185-243)]. Similar results were obtained in HEK293 cells transfected with an ATP-binding cassette transporter A1 (ABCA1) expression plasmid. The double deletion mutant of apoA-I had reduced thermal and chemical stability compared with wild-type apoA-I. Sequential carboxyl-terminal deletions showed that cAMP-dependent cholesterol efflux was diminished in all the mutants tested, except the apoA-I[delta(232-243)] which had normal cholesterol efflux. In cAMP-untreated or in mock-transfected cells, cholesterol efflux was not affected by the amino-terminal deletions, but decreased by 30-40% and 50-65% by the carboxyl-terminal and double deletions, respectively. After adenovirus-mediated gene transfer in apoA-I-deficient mice, wild-type apoA-I and apoA-I[delta(1-41)] formed spherical high density lipoprotein (HDL) particles, whereas apoA-I[delta(1-41)delta(185-243)] formed discoidal HDL. The findings suggest that although the central helices of apoA-I alone can promote ABCA1-mediated lipid efflux, residues 220-231 are necessary to allow functional interactions between the full-length apoA-I and ABCA1 that are required for lipid efflux and HDL biogenesis.  相似文献   

17.
Human plasma HDLs are classified on the basis of apolipoprotein composition into those that contain apolipoprotein A-I (apoA-I) without apoA-II [(A-I)HDL] and those containing apoA-I and apoA-II [(A-I/A-II)HDL]. ApoA-I enters the plasma as a component of discoidal particles, which are remodeled into spherical (A-I)HDL by LCAT. ApoA-II is secreted into the plasma either in the lipid-free form or as a component of discoidal high density lipoproteins containing apoA-II without apoA-I [(A-II)HDL]. As discoidal (A-II)HDL are poor substrates for LCAT, they are not converted into spherical (A-II)HDL. This study investigates the fate of apoA-II when it enters the plasma. Lipid-free apoA-II and apoA-II-containing discoidal reconstituted HDL [(A-II)rHDL] were injected intravenously into New Zealand White rabbits, a species that is deficient in apoA-II. In both cases, the apoA-II was rapidly and quantitatively incorporated into spherical (A-I)HDL to form spherical (A-I/A-II)HDL. These particles were comparable in size and composition to the (A-I/A-II)HDL in human plasma. Injection of lipid-free apoA-II and discoidal (A-II)rHDL was also accompanied by triglyceride enrichment of the endogenous (A-I)HDL and VLDL as well as the newly formed (A-I/A-II)HDL. We conclude that, irrespective of the form in which apoA-II enters the plasma, it is rapidly incorporated into spherical HDLs that also contain apoA-I to form (A-I/A-II)HDL.  相似文献   

18.
Apolipoprotein A-I (apoA-I) spontaneously associates with dimyristoylphosphatidylcholine (DMPC) liposomes to form discoidal high-density lipoprotein (HDL) recombinants. The uptake of cholesterol by this model HDL was studied by incubation with Celite-dispersed cholesterol. Separation of the resulting complexes by gradient centrifugation and gel filtration showed a heterogeneous distribution of particle size and composition as a consequence of the disruption and rearrangement of the recombinants. Quantitation of the amount of cholesterol taken up gave values between about 28 and 40 mol% cholesterol for the fractions within the protein peaks; the fractions with the lowest DMPC/apoA-I ratios had the lowest cholesterol contents. In another set of experiments, the association of apoA-I with DMPC-cholesterol liposomes was shown to result in complexes with characteristics similar to those obtained by the cholesterol-uptake experiments. Low concentrations of cholesterol in the liposomes enhanced the rate of lipid-protein association, but larger amounts decreased the yield of complexes by making the process thermodynamically and kinetically unfavorable. The enthalpy of recombinant formation increased with decreasing lipid/protein ratio and increasing cholesterol content, and became endothermic at about 23 mol% cholesterol. The effect of cholesterol on the thermal properties of HDL recombinants suggests that cholesterol is partially excluded from the boundary region adjacent to apoA-I. It is concluded that discoidal HDL recombinants, as a model for 'nascent' HDL, can acquire substantial amounts of cholesterol, which may be of great physiological importance for the reverse cholesterol transport and prevention of atherosclerosis.  相似文献   

19.
Gorshkova IN  Atkinson D 《Biochemistry》2011,50(12):2040-2047
Hypertriglyceridemia (HTG) is a common lipid abnormality in humans. However, its etiology remains largely unknown. It was shown that severe HTG can be induced in mice by overexpression of wild-type (WT) apolipoprotein E (apoE) or specific apoA-I mutants. Certain mutations in apoE4 were found to affect plasma triglyceride (TG) levels in mice overexpressing the protein. HTG appeared to positively correlate with the ability of the apoE4 variants to bind to TG-rich particles, protein destabilization, and the exposure of protein hydrophobic surface in solution. Here, we propose that the apoA-I mutations that cause HTG may also lead to changes in the conformation and stability that promote binding of apoA-I to TG-rich lipoproteins. To test this hypothesis, we studied binding to TG-rich emulsion and biophysical properties of the apoA-I mutants that induce HTG, apoA-I[E110A/E111A] and apoA-I[Δ(61-78)], and compared them to those of WT apoA-I and another apoA-I mutant, apoA-I[Δ(89-99)], that does not induce HTG but causes hypercholesterolemia in mice. We found that the apoA-I[E110A/E111A] and apoA-I[Δ(61-78)] mutations lead to enhanced binding of apoA-I to TG-rich particles, destabilization, and greater exposure of the hydrophobic surface of the protein. The apoA-I[Δ(89-99)] mutant did not show enhanced binding to the emulsion or a more exposed hydrophobic surface. Thus, like apoE4, the apoA-I variants that cause HTG in mice have the altered conformation and stability that facilitate their binding to TG-rich lipoproteins and thereby may lead to the reduced level of lipolysis of these lipoproteins. While many factors may be involved in induction of HTG, we suggest that an increased level of association of destabilized loosely folded apolipoproteins with TG-rich lipoproteins may contribute to some cases of HTG in humans.  相似文献   

20.
We have used adenovirus-mediated gene transfer in apoA-I-deficient (A-I-/-) mice to probe the in vivo assembly and metabolism of HDL using apoA-I variants, focusing primarily on the role of the C-terminal 32 amino acids (helices 9-10). Lipid, lipoprotein, and apoA-I analyses showed that plasma levels of apoA-I and HDL of the mutants were 40-88% lower than that of wild type (WT) human apoA-I despite comparable levels of expression in the liver. WT apoA-I and mutant 1 (P165A, E172A) formed spherical particles with the size and density of HDL2 and HDL3. Mutant 2 (E234A, E235A, K238A, K239A) generated spherical particles with density between HDL2 and HDL3. Mutant 3 (L211V, L214V, L218V, L219V) and mutant 4 (L222K, F225K, F229K), which have substitutions of hydrophobic residues in the C-terminus, generated discoidal HDL particles indicating a defect in their conversion to mature spherical HDL. Significant amounts of mutant 4 and mutant 5 (truncated at residue 219) were found in the lipid poor fractions after ultracentrifugation of the plasma (18 and 35%, respectively, of total apoA-I). These findings suggest that hydrophobic residues in and/or between helices 9 and 10 are important for the maturation of HDL in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号