首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The consequences of physical disturbances to seagrasses depend on disturbance frequency relative to the capacity for recolonization and recovery following fragmentation. In a subtidal seagrass meadow of Zostera marina L., following a season of clam harvesting, we compared the temporal change of shoot density and biomass of this seagrass together with the community structure of the associated macroinvertebrates, at two sites differing in the intensity of the physical disturbance. The impacted site showed significantly lower shoot density and total biomass than the non-impacted site initially. The increase in above-ground biomass over four months (May to September) of this species was significantly higher (46%) at the impacted site than in the area not affected by the disturbance. Four months after cessation of the extraction activity, the biomass and density values of Z. marina reached similar values to those measured in the non-impacted site. The sexual reproductive effort of the seagrass population affected by the disturbance (4%) was significantly lower than at the non-impacted site (10%), which could influence genetic diversity and the seed bank. The community structure of molluscs showed 54% similarity between sites at the beginning of the study. Four months later, mollusc communities increased to a similarity of 74%. The current closure season (four months annually) established for the recovery of the exploited stocks of bivalves allowed the recovery of Z. marina density and biomass. Nevertheless, other population properties, such as those related to reproductive patterns, remained altered by the disturbance.  相似文献   

2.
Since the discovery of the green alga Caulerpa taxifolia in Lake Macquarie (New South Wales, Australia) in 2001, the New South Wales Department of Primary Industries (Fisheries) has attempted various control methods, including covering the alga with granulated sea salt to induce osmotic shock and cell lysis. In Lake Macquarie, C. taxifolia often occurs in patches within beds of the native seagrass Zostera capricorni. Although the effects of the salt treatment on blades of Z. capricorni and infauna have been shown to be minimal, there have been no tests of any effects on other native biota, including seagrass epifauna. In this study, we tested the general hypothesis that the abundance and diversity of epifauna would be reduced by salting. We used a ‘Beyond BACI’ experimental design whereby epifaunal invertebrates were sampled 3 months, 6 weeks and 6 days before and then again after salting. Epifaunal abundances at the putatively impacted (salted) location were compared to those at 4 control locations (where no salt was applied). Abundances of most organisms varied significantly among times and locations with no evidence of the consistent effect of salting on diversity or abundance of epifauna. The study represents an example of the use of large-scale managerial action as a scientific experiment. Electronic supplementary material Supplementary material is available for this article at <> and accessible for authorised users  相似文献   

3.
Although the Manila clam (Ruditapes philippinarum) culture grounds are occasionally located in Zostera japonica beds along the coasts of Korea, plant responses to the clamming activity have not been reported for this seagrass species. Intense Manila clam harvesting activity took place in the intertidal Z. japonica bed during April 2004. The Z. japonica bed at the study site has been monitored since January 2003. Thus, this study provided a unique opportunity to compare the structure of the Z. japonica population before and after the clamming activity, which was conducted for approximately 1 week in April 2004. All Z. japonica shoots were removed and buried in the sediment immediately after the clamming activity. However, a few shoots were found at the disturbed area in July 2004, 3 months after the clamming activity. By September 2004, 5 months after the disturbance, shoot density and biomass were almost recovered to the levels reported before the clamming activity. No Z. japonica seedlings were observed when the shoot density rapidly increased in August and September 2004, 4-5 months after the disturbance, because revegetation of the disturbed seagrass bed has occurred before the seed germination time which is typically winter or early spring in this area. Thus, the initial rapid revegetation of the disturbed area occurred via asexual reproduction through new shoot formation from the buried below-ground tissues. The reproductive shoot density and reproductive efforts of Z. japonica were significantly higher after the disturbance relative to the levels recorded before the disturbance, and the duration of the fertile period was approximately three times longer following the clamming activity. The belowground biomass after the disturbance was also significantly higher than that before the disturbance. These results suggest that Z. japonica allocated more energy to sexual reproduction, as well as the maintenance of belowground tissues, to persist their population under unstable environmental conditions.  相似文献   

4.
Zostera marina is the only seagrass species whose seeds have been successfully used in large‐scale restoration. Although progress has been made in refining Z. marina restoration protocols, additional information on Z. marina seed physiology is necessary as the science of seagrass restoration evolves. We tested the germination rates of Z. marina seeds under different relative humidities and temperatures for different periods of time. Z. marina seed moisture content (MC) and germination rates were also tested when seeds were exposed to a temperature of 25°C and relative humidity of 50%. Z. marina seeds suffered higher mortality when exposed to lower relative humidity and higher temperature for longer period of exposure time. A significant negative correlation was detected between seed germination rate and MC. Z. marina seeds are sensitive to desiccation exposure and long periods of exposure to air should be prevented to minimize seed mortality when seeds are used in restoration projects.  相似文献   

5.
Recolonisation and succession in a multi-species tropical seagrass meadow was examined by creating gaps (50×50 cm) in the meadow and manipulating the supply of sexual and asexual propagules. Measurements of leaf shoot density and estimates of above-ground biomass were conducted monthly to measure recovery of gaps between September 1995 and November 1997. Measurements of the seeds stored in the sediment (seed bank) and horizontal rhizome growth of colonising species were also conducted to determine their role in the recovery process.Asexual colonisation through horizontal rhizome growth from the surrounding meadow was the main mechanism for colonisation of gaps created in the meadow. The seed bank played no role in recolonisation of cleared plots. Total shoot density and above-ground biomass (all species pooled) of cleared plots recovered asexually to the level of the undisturbed controls in 10 and 7 months, respectively. There was some sexual recruitment into cleared plots where asexual colonisation was prevented but seagrass abundance (shoot density and biomass) did not reach the level of unmanipulated controls. Seagrass species did not appear to form seed banks despite some species being capable of producing long-lived seeds.The species composition of cleared plots remained different to the undisturbed controls throughout the 26-month experiment. Syringodium isoetifolium was a rapid asexual coloniser of disturbed plots and remained at higher abundances than in the control treatments for the duration of the study. S. isoetifolium had the fastest horizontal rhizome growth of species asexually colonising cleared plots (6.9 mm day−1). Halophila ovalis was the most successful sexual coloniser but was displaced by asexually colonising species. H. ovalis was the only species observed to produce fruits during the study.Small disturbances in the meadow led to long-term (>2 years) changes in community composition. This study demonstrated that succession in tropical seagrass communities was not a deterministic process. Variations in recovery observed for different tropical seagrass communities highlighted the importance of understanding life history characteristics of species within individual communities to effectively predict their response to disturbance. A reproductive strategy involving clonal growth and production of long-lived, locally dispersed seeds is suggested which may provide an evolutionary advantage to plants growing in tropical environments subject to temporally unpredictable major disturbances such as cyclones.  相似文献   

6.
The rate of exchange, or connectivity, among populations effects their ability to recover after disturbance events. However, there is limited information on the extent to which populations are connected or how multiple disturbances affect connectivity, especially in coastal and marine ecosystems. We used network analysis and the outputs of a biophysical model to measure potential functional connectivity and predict the impact of multiple disturbances on seagrasses in the central Great Barrier Reef World Heritage Area (GBRWHA), Australia. The seagrass networks were densely connected, indicating that seagrasses are resilient to the random loss of meadows. Our analysis identified discrete meadows that are important sources of seagrass propagules and that serve as stepping stones connecting various different parts of the network. Several of these meadows were close to urban areas or ports and likely to be at risk from coastal development. Deep water meadows were highly connected to coastal meadows and may function as a refuge, but only for non‐foundation species. We evaluated changes to the structure and functioning of the seagrass networks when one or more discrete meadows were removed due to multiple disturbance events. The scale of disturbance required to disconnect the seagrass networks into two or more components was on average >245 km, about half the length of the metapopulation. The densely connected seagrass meadows of the central GBRWHA are not limited by the supply of propagules; therefore, management should focus on improving environmental conditions that support natural seagrass recruitment and recovery processes. Our study provides a new framework for assessing the impact of global change on the connectivity and persistence of coastal and marine ecosystems. Without this knowledge, management actions, including coastal restoration, may prove unnecessary and be unsuccessful.  相似文献   

7.
Understanding how multiple environmental stressors interact to affect seagrass health (measured as morphological and physiological responses) is important for responding to global declines in seagrass populations. We investigated the interactive effects of temperature stress (24, 27, 30 and 32°C) and shading stress (75, 50, 25 and 0% shade treatments) on the seagrass Zostera muelleri over a 3-month period in laboratory mesocosms. Z. muelleri is widely distributed throughout the temperate and tropical waters of south and east coasts of Australia, and is regarded as a regionally significant species. Optimal growth was observed at 27°C, whereas rapid loss of living shoots and leaf mass occurred at 32°C. We found no difference in the concentration of photosynthetic pigments among temperature treatments by the end of the experiment; however, up-regulation of photoprotective pigments was observed at 30°C. Greater levels of shade resulting in high photochemical efficiencies, while elevated irradiance suppressed effective quantum yield (ΔF/FM’). Chlorophyll fluorescence fast induction curves (FIC) revealed that the J step amplitude was significantly higher in the 0% shade treatment after 8 weeks, indicating a closure of PSII reaction centres, which likely contributed to the decline in ΔF/FM’ and photoinhibition under higher irradiance. Effective quantum yield of PSII (ΔF/FM’) declined steadily in 32°C treatments, indicating thermal damage. Higher temperatures (30°C) resulted in reduced above-ground biomass ratio and smaller leaves, while reduced light led to a reduction in leaf and shoot density, above-ground biomass ratio, shoot biomass and an increase in leaf senescence. Surprisingly, light and temperature had few interactive effects on seagrass health, even though these two stressors had strong effects on seagrass health when tested in isolation. In summary, these results demonstrate that populations of Z. muelleri in south-eastern Australia are sensitive to small chronic temperature increases and light decreases that are predicted under future climate change scenarios.  相似文献   

8.
The geographical distribution of sexual and related asexual species has been suggested to correlate with habitat stability; sexual species tend to be in stable habitats (K‐selection), whereas related asexual taxa tend to be in unstable habitats (r‐selection). We test whether this broad‐scale pattern can be re‐created at a microevolutionary scale by experimentally evolving populations of facultatively sexual rotifers under different ecological conditions. Consistent with the pattern in nature, we find that the rate of sex evolves to lower levels in the r‐selected than in K‐selection environments. We consider several different explanations for these results.  相似文献   

9.
Two hypotheses for the decline of native species are the superior exploitation of disturbance by exotic species and the competitive displacement of native species by their exotic counterparts. Theory predicts that functional similarity will increase the intensity of competition between native and invasive species. Ecologically important “foundation” species, Zostera marina and other seagrasses have globally declined during the past century. This study used transplant and vegetation removal experiments to test the hypotheses that disturbance and competitive interactions with an invasive congener (Z. japonica) are contributing to the decline of native Z. marina in the northeastern Pacific. Interspecific competition reduced Z. marina and Z. japonica above-ground biomass by 44 and 96%, respectively, relative to intraspecific competition. Disturbance substantially enhanced Z. japonica productivity and fitness, and concomitantly decreased Z. marina performance, effects that persisted two years following substratum disturbance. These results demonstrate that disturbance and competitive interactions with Z. japonica reduce Z. marina performance, and suggest that Z. japonica’s success as an invasive species stems dually from its ability to persist in competition with Z. marina and its positive response to disturbance. These results highlight the importance of understanding the interconnected roles of species interactions and disturbance in the decline of seagrass habitats, and provide a rationale for amending conservation policy in Washington State. In the interest of conserving native eelgrass populations, the current policy of protecting both native and invasive Zostera spp. should be refined to differentiate between native and invader, and to rescind the protection of invasive eelgrass.  相似文献   

10.
11.
12.
The use of Zostera marina (eelgrass) seeds for seagrass restoration is increasingly recognized as an alternative to transplanting shoots as losses of seagrass habitat generate interest in large‐scale restoration. We explored new techniques for efficient large‐scale restoration of Z. marina using seeds by addressing the factors limiting seed collection, processing, survival, and distribution. We tested an existing mechanical harvesting system for expanding the scale of seed collections, and developed and evaluated two new experimental systems. A seeding technique using buoys holding reproductive shoots at restoration sites to eliminate seed storage was tested along with new techniques for reducing seed‐processing labor. A series of experiments evaluated storage conditions that maintain viability of seeds during summer storage for fall planting. Finally, a new mechanical seed‐planting technique appropriate for large scales was developed and tested. Mechanical harvesting was an effective approach for collecting seeds, and impacts on donor beds were low. Deploying seed‐bearing shoots in buoys produced fewer seedlings and required more effort than isolating, storing, and hand‐broadcasting seeds in the fall. We show that viable seeds can be separated from grass wrack based on seed fall velocity and that seed survival during storage can be high (92–95% survival over 3 months). Mechanical seed‐planting did not enhance seedling establishment at our sites, but may be a useful tool for evaluating restoration sites. Our work demonstrates the potential for expanding the scale of seed‐based Z. marina restoration but the limiting factor remains the low rate of initial seedling establishment from broadcast seeds.  相似文献   

13.
Seagrass ecosystems fulfill ecologically and economically valuable functions in coastal marine environments. Unfortunately, seagrass beds are susceptible to natural and human disturbances, and their distrubution is declining worldwide. Although intentional disturbance of seagrass beds must be mitigated pursuant to U.S. law, to date mitigation of seagrass beds has not prevented a net loss of habitat. Transplantation of vegetative material from small areas of nearby beds is the primary method of seagrass mitigation. Restoration research on seagrasses has focused primarily on establishment of the plants and secondarily on the functional equivalency of the habitats. We questioned whether transplanted seagrass beds were comparable to “natural” beds in terms of genetic diversity and structure. We sampled Zostera marina L. (eel-grass) from 12 sites in the highly urbanized area of San Diego County and from pristine sites in Baja California. Using allozyme electrophoresis, we determined that genetic diversity (percentage of polymorphic loci, allele richness, expected and observed heterozygosities, and proportion of genetically unique individuals) was significantly reduced in transplanted eelgrass beds. Eelgrass from Baja California exhibited the highest genetic diversity. Based on Wright's F statistics, most of the genetic variation was distributed within rather than among sites (FST= 0.139), and the degree of genetic structure was only moderate at the greatest geographical scale (San Diego—Baja). Using a spatial statistical analysis (second-order analysis), we found virtually no evidence for nonrandom distribution of alleles or genotypes at scales of 3–50 m within beds. We discuss several hypotheses for reduced genetic diversity in transplanted eelgrass beds, including transplantation protocol, small size of transplantations, and reduced or failed sexual reproduction.  相似文献   

14.
The coast of the Yellow Sea in China, like many other temperate coastal zones, has been experiencing a dramatic decline in the abundance of seagrass. Intensive efforts have been made to restore seagrass communities along the coast to restore the function of the coastal ecosystem. Transplanting adult Zostera marina shoots is labor‐intensive, time‐consuming, expensive, and detrimental to donor beds; thus, restoring seagrass communities through the use of seeds is highly valued in current, large‐scale restoration trials. In this study, an effective method for collecting, processing, and storing Z. marina seeds was developed. From 2009 to 2013, respectively, 122,000, 421,000, 364,000, 1,041,000, and 1,091,000 seeds were successfully collected. Two‐way analysis of variance (ANOVA) showed the interaction between salinity and temperature significantly affected the cumulative germination rate (CGR) (p < 0.01) during the storage period and the viability (p < 0.01) of seeds after storage. The germination rate after storage was significantly affected by salinity and temperature (p < 0.01). The highest viability (89.8 ± 1.0%) and germination rate (75.6 ± 4.5%) were found among seeds stored at 4°C and a salinity of 44.5 psu for 7 months. The cost for planting 1 ha of sea bottom with Z. marina seeds ranged from $2,613 to $80,900 depending on the seeding density and seed loss during storage. The average cost per Z. marina seed in this study was $0.00586.  相似文献   

15.
This is the first study investigating the plant–herbivore interaction between Sarpa salpa, which has overgrazed seagrass transplants in Portugal, and the seagrasses Cymodocea nodosa, Zostera marina and Zostera noltii, which have been considered for restoration. When offered the choice between the three seagrasses in outdoor tanks, adult S. salpa clearly preferred Z. noltii. Testing the seagrasses separately, mean ± s.d. feeding rates ranged from 21 ± 11 g seagrass fresh mass kg?1 fish mass day?1 for Z. marina to 32 ± 9 g seagrass fresh mass kg?1 fish mass day?1 for C. nodosa and 40 ± 11 g seagrass fresh mass kg?1 fish mass day?1 for Z. noltii (temperature = 16° C). Food‐processing rate in S. salpa did not differ between seagrasses, and there was no evidence of a regulation of processing rate according to food intake. Seagrasses differed substantially in nitrogen content and C:N, with C. nodosa containing the highest nitrogen content and lowest C:N (2·5 ± 0·1% and 14·0 ± 1·0), followed by Z. noltii (2·1 ± 0·1% and 17·0 ± 1·0) and Z. marina (1·4 ± 0·1% and 26·0 ± 2·0). Food‐processing rate in S. salpa and the nutritional value of the seagrasses were not correlated with the observed feeding preference and rate. The study suggests that C. nodosa and Z. marina are less at risk of overgrazing by S. salpa and might thus be preferable to Z. noltii for seagrass restoration in areas with noticeable abundances of this fish.  相似文献   

16.
Myora Springs is one of many groundwater discharge sites on North Stradbroke Island (Queensland, Australia). Here spring waters emerge from wetland forests to join Moreton Bay, mixing with seawater over seagrass meadows dominated by eelgrass, Zostera muelleri. We sought to determine how low pH / high CO2 conditions near the spring affect these plants and their interactions with the black rabbitfish (Siganus fuscescens), a co-occurring grazer. In paired-choice feeding trials S. fuscescens preferentially consumed Z. muelleri shoots collected nearest to Myora Springs. Proximity to the spring did not significantly alter the carbon and nitrogen contents of seagrass tissues but did result in the extraordinary loss of soluble phenolics, including Folin-reactive phenolics, condensed tannins, and phenolic acids by ≥87%. Conversely, seagrass lignin contents were, in this and related experiments, unaffected or increased, suggesting a shift in secondary metabolism away from the production of soluble, but not insoluble, (poly)phenolics. We suggest that groundwater discharge sites such as Myora Springs, and other sites characterized by low pH, are likely to be popular feeding grounds for seagrass grazers seeking to reduce their exposure to soluble phenolics.  相似文献   

17.
The continuous generation of genetic variation has been proposed as one of the main factors explaining the maintenance of sexual reproduction in nature. However, populations of asexual individuals may attain high levels of genetic diversity through within‐lineage diversification, replicate transitions to asexuality from sexual ancestors and migration. How these mechanisms affect genetic variation in populations of closely related sexual and asexual taxa can therefore provide insights into the role of genetic diversity for the maintenance of sexual reproduction. Here, we evaluate patterns of intra‐ and interpopulation genetic diversity in sexual and asexual populations of Aptinothrips rufus grass thrips. Asexual A. rufus populations are found throughout the world, whereas sexual populations appear to be confined to few locations in the Mediterranean region. We found that asexual A. rufus populations are characterized by extremely high levels of genetic diversity, both in comparison with their sexual relatives and in comparison with other asexual species. Migration is extensive among asexual populations over large geographic distances, whereas close sexual populations are strongly isolated from each other. The combination of extensive migration with replicate evolution of asexual lineages, and a past demographic expansion in at least one of them, generated high local clone diversities in A. rufus. These high clone diversities in asexual populations may mimic certain benefits conferred by sex via genetic diversity and could help explain the extreme success of asexual A. rufus populations.  相似文献   

18.
Form–function relationships in plants underlie their ecosystem roles in supporting higher trophic levels through primary production, detrital pathways, and habitat provision. For widespread, phenotypically‐variable plants, productivity may differ not only across abiotic conditions, but also from distinct morphological or demographic traits. A single foundation species, eelgrass Zostera marina, typically dominates north temperate seagrass meadows, which we studied across 14 sites spanning 32–61°N latitude and two ocean basins. Body size varied by nearly two orders of magnitude through this range, and was largest at mid‐latitudes and in the Pacific Ocean. At the global scale, neither latitude, site‐level environmental conditions, nor body size helped predict productivity (relative growth rate 1–2% day‐1 at most sites), suggesting a remarkable capacity of Z. marina to achieve similar productivity in summer. Furthermore, among a suite of stressors applied within sites, only ambient leaf damage reduced productivity; grazer reduction and nutrient addition had no effect on eelgrass size or growth. Scale‐dependence was evident in different allometric relationships within and across sites for productivity and for modules (leaf count) relative to size. Zostera marina provides a range of ecosystem functions related to both body size (habitat provision, water flow) and growth rates (food, carbon dynamics). Our observed decoupling of body size and maximum production suggests that geographic variation in these ecosystem functions may be independent, with a future need to resolve how local adaptation or plasticity of body size might actually enable more consistent peak productivity across disparate environmental conditions.  相似文献   

19.
Halophytes, such as seagrasses, predominantly form habitats in coastal and estuarine areas. These habitats can be seasonally exposed to hypo-salinity events during watershed runoff exposing them to dramatic salinity shifts and osmotic shock. The manifestation of this osmotic shock on seagrass morphology and phenology was tested in three Indo-Pacific seagrass species, Halophila ovalis, Halodule uninervis and Zostera muelleri, to hypo-salinity ranging from 3 to 36 PSU at 3 PSU increments for 10 weeks. All three species had broad salinity tolerance but demonstrated a moderate hypo-salinity stress response – analogous to a stress induced morphometric response (SIMR). Shoot proliferation occurred at salinities <30 PSU, with the largest increases, up to 400% increase in shoot density, occurring at the sub-lethal salinities <15 PSU, with the specific salinity associated with peak shoot density being variable among species. Resources were not diverted away from leaf growth or shoot development to support the new shoot production. However, at sub-lethal salinities where shoots proliferated, flowering was severely reduced for H. ovalis, the only species to flower during this experiment, demonstrating a diversion of resources away from sexual reproduction to support the investment in new shoots. This SIMR response preceded mortality, which occurred at 3 PSU for H. ovalis and 6 PSU for H. uninervis, while complete mortality was not reached for Z. muelleri. This is the first study to identify a SIMR in seagrasses, being detectable due to the fine resolution of salinity treatments tested. The detection of SIMR demonstrates the need for caution in interpreting in-situ changes in shoot density as shoot proliferation could be interpreted as a healthy or positive plant response to environmental conditions, when in fact it could signal pre-mortality stress.  相似文献   

20.
The use of aquaculture systems to grow the seagrass Zostera marina (eelgrass) from seeds for restoration projects was evaluated through laboratory and mesocosm studies. Along the mid‐Atlantic coast of North America Z. marina seeds are shed from late spring through early summer, but seeds typically do not begin to germinate until the late fall. Fall is the optimal season to plant both seeds and shoots in this region. We conducted studies to determine if Z. marina seeds can be induced to germinate in the summer and seedlings grown in mesocosms to a size sufficiently large enough for out‐planting in the fall. Seeds in soil‐less culture germinated in the summer when held at 14°C, with percent germination increasing with lower salinities. Cold storage (4°C) of seeds prior to planting in sediments enhanced germination and seedling survival. Growth rates of seedlings were significantly higher in nutrient enriched estuarine sediments. Results from preliminary studies were used in designing a large‐scale culture project in which 15,000 shoots were grown and out‐planted into the Potomac River estuary in the Chesapeake Bay and compared with an equal number of transplanted shoots. These studies demonstrate that growing Z. marina from seeds is an alternative approach to harvesting plants from donor beds when vegetative shoots are required for restoration projects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号