首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Tn5397 is a novel conjugative transposon, originally isolated from Clostridium difficile. This element can transfer between C. difficile strains and to and from Bacillus subtilis. It encodes a conjugation system that is very similar to that of Tn916. However, insertion and excision of Tn5397 appears to be dependent on the product of the element encoded gene tndX, a member of the large resolvase family of site-specific recombinases. To test the role of tndX, the gene was cloned and the protein was expressed in Escherichia coli. The ability of TndX to catalyze the insertion and excision of derivatives (minitransposons) of Tn5397 representing the putative circular and integrated forms, respectively, was investigated. TndX was required for both insertion and excision. Mutagenesis studies showed that some of the highly conserved amino acids at the N-terminal resolvase domain and the C-terminal nonconserved region of TndX are essential for activity. Analysis of the target site choices showed that the cloned Tn5397 targets from C. difficile and B. subtilis were still hot spots for the minitransposon insertion in E. coli.  相似文献   

2.
Tn5397 is a conjugative transposon, originally isolated from Clostridium difficile. The Tn5397 transposase TndX is related to the phage-encoded serine integrases and the Clostridium perfringens Tn4451 transposase TnpX. TndX is required for the insertion and excision of the transposon. Tn5397 inserts at one locus, attB(Cd), in C. difficile but at multiple sites in Bacillus subtilis. Apart from a conserved 5' GA dinucleotide at the recombination site, there appears to be little sequence conservation between the known target sites. To test the target site preference of Tn5397, attB(Cd) was introduced into the B. subtilis genome. When Tn5397 was transferred into this strain, 100% of the 50 independent transconjugants tested had Tn5397 inserted into attB(Cd). This experiment was repeated using a 50-bp attB(Cd) with no loss of target preference. The mutation of the 5' GA to 5' TC in the attB(Cd) target site caused a switch in the polarity of insertion of Tn5397, which is consistent with this dinucleotide being at the crossover site and in keeping with the mechanism of other serine recombinases. Tn5397 could also transpose into 50-bp sequences encoding the end joints attL and attR but, surprisingly, could not recombine into the circular joint of Tn5397, attTn. Purified TndX was shown to bind specifically to 50-bp attB(Cd), attL, attR, attTn, and attB(Bs)(3) with relative binding affinities attTn approximately attR > attL > attB(Cd) > attB(Bs3). We conclude that TndX has a strong preference for attB(Cd) over other potential recombination sites in the B. subtilis genome and therefore behaves as a site-specific recombinase.  相似文献   

3.
Previous work has identified the conjugative transposon Tn5397 from Clostridium difficile. This element was shown to contain a group II intron. Tn5397 can be conjugatively transferred from C. difficile to Bacillus subtilis. In this work we show that the intron is spliced in both these hosts and that nonspliced RNA is also present. We constructed a mutation in the open reading frame within the intron, and this prevented splicing but did not prevent the formation of the circular form of the conjugative transposon (the likely transposition intermediate) or decrease the frequency of intergeneric transfer of Tn5397. Therefore, the intron is spliced, but splicing is not required for conjugation of Tn5397.  相似文献   

4.
Tn4451 is a 6.3-kb chloramphenicol resistance transposon from Clostridium perfringens and is found on the conjugative plasmid pIP401. The element undergoes spontaneous excision from multicopy plasmids in Escherichia coli and C. perfringens and conjugative excision from pIP401 in C. perfringens. Tn4451 is excised as a circular molecule which is probably the transposition intermediate. Excision of Tn4451 is dependent upon the site-specific recombinase TnpX, which contains potential motifs associated with both the resolvase/invertase and integrase families of recombinases. Site-directed mutagenesis of conserved amino acid residues within these domains was used to show that the resolvase/invertase domain was essential for TnpX-mediated excision of Tn4451 from multicopy plasmids in E. coli. An analysis of Tn4451 target sites revealed that the transposition process showed target site specificity. The Tn4451 target sequence resembled the junction of the circular form, and insertion occurred at a GA dinucleotide. Tn4451 insertions were flanked by directly repeated GA dinucleotides, and there was also a GA at the junction of the circular form, where the left and right termini of Tn4451 were fused. We propose a model for Tn4451 excision and insertion in which the resolvase/invertase domain of TnpX introduces 2-bp staggered cuts at these GA dinucleotides. Analysis of Tn4451 derivatives with altered GA dinucleotides provided experimental evidence to support the model.  相似文献   

5.
The conjugative transposon Tn916 and a derivative Tn916 delta E was transferred from Bacillus subtilis into Clostridium difficile CD37 by filter mating. All the C. difficile transconjugants appeared to contain one copy of the transposon integrated into the same position in the genome. Transposition from the original site of integration was not observed. Like Tn916 the transferable tetracycline resistance determinant (Tc-CD) of C. difficile has a preferred site of integration in C. difficile and is homologous with Tn916 along the whole length of Tn916. However comparisons of the distribution of TaqI and Sau3AI sites in the homologous regions of the two elements did not demonstrate any hybridizing fragments in common.  相似文献   

6.
A tetracycline resistance (Tcr) determinant from Clostridium difficile strain 630 was cloned into the Escherichia coli plasmid vector pUC13. The resulting plasmid pPPM20, containing an insert of 3.4 kbp, was mapped and a 1.1 kbp SacI-HindIII fragment wholly within the Tcr gene was identified. Dot-blot hybridization studies with the 1.1 kbp fragment showed that the Tcr gene belonged to hybridization class M. Tcr could be transferred between C. difficile strains and to Bacillus subtilis at a frequency of 10(-7) per donor cell. The element could be returned from B. subtilis to C. difficile at a frequency of 10(-8) per donor cell. This is the first demonstration of C. difficile acting as a recipient in intergeneric crosses. DNA from C. difficile transconjugants digested with EcoRV always has two hybridizing fragments of 9.5 and 11.0 kbp when probed with pPPM20. DNA from B. subtilis transconjugants digested with EcoRV produced one hybridizing band of variable size when probed with pPPM20. The behaviour of the element was reminiscent of the conjugative transposons. Therefore we compared the element to the conjugative transposon Tn916. The HincII restriction maps of the two elements differed and no hybridization was detected to oligonucleotides directed to the ends of Tn916. However, the elements do have some sequence homology, detected by hybridization analysis.  相似文献   

7.
《Gene》1996,174(1):145-150
We have been studying the conjugative transposon Tn5397, originally isolated from the Gram-positive pathogen Clostridium difficile. Physical analysis of this transposon demonstrated that it contained a group II intron. This is the first report of an intron in a conjugative transposon and the first report of a group II intron in Gram-positive bacteria. The intron interrupted a gene in Tn5397 that is almost identical to orf14 from Tn916. DNA hybridisation analysis showed that elements related to Tn5397, containing the group II intron, were present in five other C. difficile strains from different geographical locations suggesting that the element is likely to be widely distributed.  相似文献   

8.
The conjugative transposon Tn916 encodes a protein called INT(Tn916) which, based on DNA sequence comparisons, is a member of the integrase family of site-specific recombinases. Integrase proteins such as INT(lambda), FLP, and XERC/D that promote site-specific recombination use characteristic, conserved amino acid residues to catalyze the cleavage and ligation of DNA substrates during recombination. The reaction proceeds by a two-step transesterification reaction requiring the formation of a covalent protein-DNA intermediate. Different requirements for homology between recombining DNA sites during integrase-mediated site-specific recombination and Tn916 transposition suggest that INT(Tn916) may use a reaction mechanism different from that used by other integrase recombinases. We show that purified INT(Tn916) mediates specific cleavage of duplex DNA substrates containing the Tn916 transposon ends and adjacent bacterial sequences. Staggered cleavages occur at both ends of the transposon, resulting in 5' hydroxyl protruding ends containing coupling sequences. These are sequences that are transferred with the transposon from donor to recipient during conjugative transposition. The nature of the cleavage products suggests that a covalent protein-DNA linkage occurs via a residue of INT(Tn916) and the 3'-phosphate group of the DNA. INT(Tn916) alone is capable of executing the strand cleavage step required for recombination during Tn916 transposition, and this reaction probably occurs by a mechanism similar to that of other integrase family site-specific recombinases.  相似文献   

9.
Integrated self-transmissible elements called conjugative transposons have been found in many different bacteria, but little is known about how they excise from the chromosome to form the circular intermediate, which is then transferred by conjugation. We have now identified a gene, exc, which is required for the excision of the Bacteroides conjugative transposon, CTnDOT. The int gene of CTnDOT is a member of the lambda integrase family of recombinases, a family that also contains the integrase of the Gram-positive conjugative transposon Tn916. The exc gene was located 15 kbp from the int gene, which is located at one end of the 65 kbp element. The exc gene, together with the regulatory genes, rteA, rteB and rteC, were necessary to excise a miniature form of CTnDOT that contained only the ends of the element and the int gene. Another open reading frame (ORF) in the same operon and upstream of exc, orf3, was not essential for excision and had no significant amino acid sequence similarity to any proteins in the databases. The deduced amino acid sequence of the CTnDOT Exc protein has significant similarity to topoisomerases. A small ORF (orf2) that could encode a small, basic protein comparable with lambda and Tn916 excision proteins (Xis) was located immediately downstream of the CTnDOT int gene. Although Xis proteins are required for excision of lambda and Tn916, orf2 had no effect on excision of the element. Excision of the CTnDOT mini-element was not affected by the site in which it was integrated, another difference from Tn916. Our results demonstrate that the Bacteroides CTnDOT excision system is tightly regulated and appears to be different from that of any other known integrated transmissible element, including those of some Bacteroides mobilizable transposons that are mobilized by CTnDOT.  相似文献   

10.
Chloramphenicol resistance in Clostridium perfringens and Clostridium difficile is often encoded by catP genes located within the 6.3 kb integrative mobilizable elements Tn4451 and Tn4453 respectively. This family of transposons is capable of being mobilized into a recipient cell in the presence of another conjugative element. Transposition is mediated by the large resolvase TnpX, which excises the element to produce a circular molecule that is the integrative intermediate. In this study, in vivo deletion analysis of the transposon-encoded tnpV and tnpY genes showed that they are not essential for excision or integration of this group of elements. Similar studies on tnpW suggested either that this gene is not essential for these functions or that TnpW does not function when provided in trans. Development and use of an in vivo insertion assay showed that TnpX is the only transposon-encoded protein required for the integration reaction. Subsequently, a TnpXLEH6 protein was purified and shown to catalyse excision in vitro in the absence of any other protein and preferentially to excise a supercoiled DNA substrate. In summary, these studies have shown that TnpX is the only transposon protein required in vivo and in vitro for the excision process and that, like excision, integration also occurs by a serine recombinase-mediated site-specific recombination mechanism.  相似文献   

11.
Conjugative transposition of transposon Tn916 has been shown to proceed by excision of the transposon in the donor strain and insertion of this element in the recipient. This process requires the product of the transposon int gene. We report here the surprising finding that the int gene is required only in the donor during conjugative transposition. We find that Tn916 int-1, whose int gene has been inactivated by an insertion mutation, transposes when a complementing wild-type int gene is present only in the donor during mating. When the int+ gene is present in a plasmid and is expressed from the spac promoter, conjugative transposition is very inefficient. However, when the Int+ function is supplied from a coresident distantly linked Tn916 tra-641 mutant, which is defective in a function required for conjugation, efficient conjugative transposition of Tn916 int-1 occurs. This suggests either that Int is not required for integration of Tn916 in gram-positive bacteria or that the protein is transferred from the donor to the transconjugant during the mating event. When the nonconjugative plasmid pAT145 was present in the donor, it was rarely cotransferred with Tn916. This suggests that complete fusion of mating cells is not common during conjugative transposition.  相似文献   

12.
Transposon Tn916 is a 16.4-kb broad-host-range conjugative transposon originally detected in the chromosome of Enterococcus faecalis DS16. Transposition of Tn916 and related transposons involves excision of a free, nonreplicative, covalently closed circular intermediate that is substrate for integration. Excisive recombination requires two transposon-encoded proteins, Xis-Tn and Int-Tn, whereas the latter protein alone is sufficient for integration. Here we report that conjugative transposition of Tn916 requires the presence of a functional integrase in both donor and recipient strains. We have constructed a mutant, designated Tn916-int1, by replacing the gene directing synthesis of Int-Tn by an allele inactivated in vitro. In mating experiments, transfer of Tn916-int1 from Bacillus subtilis to E. faecalis was detected only when the transposon-encoded integrase was supplied by trans-complementation in both the donor and the recipient. These results suggest that conjugative transposition of Tn916 requires circularization of the element in the donor followed by transfer and integration of the nonreplicative intermediate in the recipient.  相似文献   

13.
The insertion sites of the conjugative transposon Tn916 in the anaerobic pathogen Clostridium difficile were determined using Illumina Solexa high-throughput DNA sequencing of Tn916 insertion libraries in two different clinical isolates: 630ΔE, an erythromycin-sensitive derivative of 630 (ribotype 012), and the ribotype 027 isolate R20291, which was responsible for a severe outbreak of C. difficile disease. A consensus 15-bp Tn916 insertion sequence was identified which was similar in both strains, although an extended consensus sequence was observed in R20291. A search of the C. difficile 630 genome showed that the Tn916 insertion motif was present 100,987 times, with approximately 63,000 of these motifs located in genes and 35,000 in intergenic regions. To test the usefulness of Tn916 as a mutagen, a functional screen allowed the isolation of a mutant. This mutant contained Tn916 inserted into a gene involved in flagellar biosynthesis.  相似文献   

14.
15.
The conjugative streptococcal transposon Tn916 was found to transfer naturally between a variety of gram-positive and gram-negative eubacteria. Enterococcus faecalis hosting the transposon could serve as a donor for Alcaligenes eutrophus, Citrobacter freundii, and Escherichia coli at frequencies of 10(-6) to 10(-8). No transfer was observed with several phototrophic species. Mating of an E. coli strain carrying Tn916 yielded transconjugants with Bacillus subtilis, Clostridium acetobutylicum, Enterococcus faecalis, and Streptococcus lactis subsp. diacetylactis at frequencies of 10(-4) to 10(-6). Acetobacterium woodii was the only gram-positive organism tested that did not accept the transposon from a gram-negative donor. The results prove the ability of conjugative transposable elements such as Tn916 for natural cross-species gene transfer, thus potentially contributing to bacterial evolution.  相似文献   

16.
A 58.7-kb nonconjugative plasmid (pKQ1) previously reported in a clinical isolate of Enterococcus faecium was found to contain both a tetM and an erythromycin resistance (erm) determinant. The plasmid contained a region homologous to the A, F, H, and G HincII fragments of Tn916. However, the 4.8-kb B fragment of Tn916 which contained the tetM determinant was replaced by a 7.3-kb fragment, and the 3.6-kb HincII C fragment of Tn916 was missing. An element homologous to Tn917 was juxtaposed to the truncated Tn916-like element. The Tn917-like element was similar in size to the erm transposon Tn917 as determined by a ClaI restriction digest which spanned approximately 99% of the transposon. When Bacillus subtilis or Streptococcus sanguis were transformed with pKQ1, no zygotically induced transposition of the tetM element was detected. Similarly no transposition of the Tn917-like element was detected.  相似文献   

17.
Transfer of a conjugative transposon, Tn5397 in a model oral biofilm   总被引:3,自引:0,他引:3  
A tetracycline resistance profile was established from a microcosm dental plaque in a constant depth film fermenter. The fermenter was inoculated with a Bacillus subtilis strain which contained the conjugative transposon, Tn5397, which confers tetracycline resistance upon its host. After 6 hour and 24 hour the tetracycline resistance profile of the biofilm was redetermined and a tetracycline resistant Streptococcus species was isolated. A molecular analysis of this strain confirmed that Tn5397 was present in the genomic DNA of the isolate. These data represent the first report, to our knowledge, of intergeneric transfer of a conjugative transposon in a mixed species biofilm and demonstrates the ability of conjugative transposons to disseminate antibiotic resistance genes in a mixed species environment.  相似文献   

18.
The chloramphenicol-resistance transposon Tn4451 undergoes precise conjugative deletion from its parent plasmid piP401 in Clostridium perfringens and precise spontaneous excision from multicopy plasmids in Escherichia coli. The complete nucleotide sequence of the 6338 bp transposon was determined and it was found to encode six genes. Genetic analysis demonstrated that the largest Tn4451-encoded gene, tnpX, was required for the spontaneous excision of the transposon in both E. coli and C. perfringens, since a Tn4451 derivative that lacked a functional tnpX gene was completely stable in both organisms. Because the ability of this derivative to excise was restored by providing the tnpX gene on a compatible plasmid, it was concluded that this gene encoded a trans-acting site-specific recombinase. Allelic exchange was used to introduce the tnpXΔ allele onto plP401 and it was shown that TnpX was also required for the conjugative excision of Tn4451 in C. perfringens. It was also shown by hybridization and polymerase chain reaction (PCR) studies that TnpX-mediated transposon excision resulted in the formation of a circular form of the transposon. The TnpX recombinase was unique because it potentially contained the motifs of two independent site-specific recombinase families, namely the resolvase/invertase and integrase families. Sequence analysis indicated that the resolvase/invertase domain of TnpX was likely to be involved in the excision process by catalysing the formation of a 2bp staggered nick on either side of the GA dinucleotide located at the ends of the transposon and at the junction of the circular form. The other Tn4451-encoded genes include tnpZ, which appears to encode a second potential site-specific recombinase. This protein has similarity to plasmid-encoded Mob/Pre proteins, which are involved in plasmid mobilization and multimer formation. Located upstream of the tnpZ gene was a region with similarity to the site of interaction of these mobilization proteins.  相似文献   

19.
20.
Purified integrase protein (Int) of the conjugative transposon Tn916 was shown, using nuclease protection experiments, to bind specifically to a site within the origin of conjugal transfer of the transposon, oriT. A sequence similar to the ends of the transposon that are bound by the C-terminal DNA-binding domain of Int was present in the protected region. However, Int binding to oriT required both the N- and C-terminal DNA-binding domains of Int, and the pattern of nuclease protection differed from that observed when Int binds to the transposon ends and flanking DNA. Binding of Int to oriT may be part of a mechanism to prevent premature conjugal transfer of Tn916 prior to excision from the donor DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号