首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aim To explore rates of rain forest expansion and associated ecological correlates in Eucalyptus‐dominated woodland savanna vegetation in north‐eastern Australia, over the period 1943–91. Location Iron Range National Park and environs, north‐east Queensland, Australia. This remote region supports probably the largest extent of lowland (< 300 m) rain forest extant in Australia. Rainfall (c. 1700 mm p.a.) occurs mostly between November and June, with some rain typically occurring even in the driest months July–October. Methods Interpretation of change in lowland rain forest vegetation cover was undertaken for a 140 km2 area comprising complex vegetation, geology and physiography using available air photos (1943, 1970 and 1991). A GIS database was assembled comprising rain forest extent for the three time periods, geology, elevation, slope, aspect, proximity to streams and roads. Using standard GIS procedures, a sample of 6996 10 × 10 m cells (0.5% of study area) was selected randomly and attributed for vegetation structure (rain forest and non‐rain forest), and landscape features. Associations of rain forest expansion with landscape features were examined with logistic regression using the subset of cells that had changed from other vegetation types to rain forest, and remained rain forest over the assessment period, and comparing them with cells that showed no change from their original, non‐rain forest condition. Results Rain forest in the air photo study area increased from 45 km2 in 1943 to 78.1 km2 by 1970, and to 82.6 km2 by 1991. Rainfall (and atmospheric CO2 concentration) was markedly lower in the first assessment period (1943–70). Modelled rates of rain forest invasion differed predominantly with respect to substrate type, occurring faster on substrates possessing better moisture retention properties, and across all elevation classes. Greatest expansion, at least in the first assessment period, occurred on the most inherently infertile substrates. Expansion was little constrained by slope, aspect and proximity to streams and roads. On schist substrates, probability of invasion remained high (> 60%) over distances up to 1500 m from mature rain forest margins; on less favourable substrates (diorite, granites), probability of expansion was negligible at sites more than 400 m from mature margins. Main conclusions (i) Rain forest expansion was associated primarily with release from burning pressure from c. the 1920s, following major disruption of customary Aboriginal lifestyles including hunting and burning practices. (ii) Decadal‐scale expansion of rain forest at Iron Range supports extensive observations from the palaeoecological literature concerning rapid rain forest invasion under conducive environmental conditions. (iii) The generality of these substrate‐mediated observations requires further testing, especially given that landscape‐scale rain forest invasion of sclerophyll‐dominated communities is reported from other regions of north‐eastern Australia.  相似文献   

2.
天山林区土壤总氮矿化过程对季节性冻融的响应   总被引:1,自引:0,他引:1  
陈磊  常顺利  张毓涛  张云云 《生态学报》2020,40(12):3968-3978
森林土壤总氮矿化对冻融过程的响应机制尚不明确,氮矿化速率和转化情况尚缺乏定量刻画。通过土壤原位法与室内培养分析相结合,利用~(15)N同位素稀释技术,研究冻融期间天山林区乔木林地、灌丛、草地3种群落类型土壤总氮矿化及转化累积量的动态,分析土壤总氮矿化速率与土壤温度、含水率及微生物量氮(MBN)的相互关系。结果表明:(1)冻融过程及群落类型对总氮矿化速率和MBN含量有极显著的影响(P0.01),秋、春季冻融期的总氮矿化速率相比冻结期更高;(2)季节性冻融期间,乔木林地土壤总氨化累积量在3种群落类型中最高(163.9 kg N hm~(-2) a~(-1)),秋、春冻融期占整个时期的比值约为66%;而总硝化累积量在3种群落类型中相差较小,秋、春冻融期占比均约为77.4%;(3)土壤温度和含水率显著影响总氮矿化速率、净氮矿化速率和MBN速率,随土壤温度增加,总氨化速率(林地和灌丛)显著升高(P0.05);随土壤含水率增加,净氨化速率(灌丛)和净硝化速率(灌丛)显著降低(P0.05)。通过揭示天山林区土壤总氮矿化速率(总氨化速率和总硝化速率)及转化累积量对冻融过程的响应情况,本研究为天山森林土壤中氮的生物地球化学过程提供了有价值的基础数据。  相似文献   

3.
Aim This paper documents reconstructions of the vegetation patterns in Australia, Southeast Asia and the Pacific (SEAPAC region) in the mid‐Holocene and at the last glacial maximum (LGM). Methods Vegetation patterns were reconstructed from pollen data using an objective biomization scheme based on plant functional types. The biomization scheme was first tested using 535 modern pollen samples from 377 sites, and then applied unchanged to fossil pollen samples dating to 6000 ± 500 or 18,000 ± 1000 14C yr bp . Results 1. Tests using surface pollen sample sites showed that the biomization scheme is capable of reproducing the modern broad‐scale patterns of vegetation distribution. The north–south gradient in temperature, reflected in transitions from cool evergreen needleleaf forest in the extreme south through temperate rain forest or wet sclerophyll forest (WSFW) and into tropical forests, is well reconstructed. The transitions from xerophytic through sclerophyll woodlands and open forests to closed‐canopy forests, which reflect the gradient in plant available moisture from the continental interior towards the coast, are reconstructed with less geographical precision but nevertheless the broad‐scale pattern emerges. 2. Differences between the modern and mid‐Holocene vegetation patterns in mainland Australia are comparatively small and reflect changes in moisture availability rather than temperature. In south‐eastern Australia some sites show a shift towards more moisture‐stressed vegetation in the mid‐Holocene with xerophytic woods/scrub and temperate sclerophyll woodland and shrubland at sites characterized today by WSFW or warm‐temperate rain forest (WTRF). However, sites in the Snowy Mountains, on the Southern Tablelands and east of the Great Dividing Range have more moisture‐demanding vegetation in the mid‐Holocene than today. South‐western Australia was slightly drier than today. The single site in north‐western Australia also shows conditions drier than today in the mid‐Holocene. Changes in the tropics are also comparatively small, but the presence of WTRF and tropical deciduous broadleaf forest and woodland in the mid‐Holocene, in sites occupied today by cool‐temperate rain forest, indicate warmer conditions. 3. Expansion of xerophytic vegetation in the south and tropical deciduous broadleaf forest and woodland in the north indicate drier conditions across mainland Australia at the LGM. None of these changes are informative about the degree of cooling. However the evidence from the tropics, showing lowering of the treeline and forest belts, indicates that conditions were between 1 and 9 °C (depending on elevation) colder. The encroachment of tropical deciduous broadleaf forest and woodland into lowland evergreen broadleaf forest implies greater aridity. Main conclusions This study provides the first continental‐scale reconstruction of mid‐Holocene and LGM vegetation patterns from Australia, Southeast Asia and the Pacific (SEAPAC region) using an objective biomization scheme. These data will provide a benchmark for evaluation of palaeoclimate simulations within the framework of the Palaeoclimate Modelling Intercomparison Project.  相似文献   

4.
Aim To explore successional processes associated with rain forest expansion in Eucalyptus‐dominated woodland savanna vegetation in north‐eastern Australia. Location Iron Range National Park and environs, northeast Queensland, Australia. This remote region supports probably the largest extent of lowland (< 300 m) rainforest remnant in Australia. Rainfall (c. 1700 mm p.a.) occurs mostly between November and June, with some rain typically occurring even in the driest months July–October. Methods (1) Sampling of rain forest seedling distributions, and other vegetation structural attributes, in fifteen 10 × 10 m quadrats distributed equi‐distantly between mature rain forest margins (range: 70–840 m), at each of 10 sites which were open‐canopied vegetation in 1943. (2) Assessment of relationships between rain forest seedling densities and structural characteristics, including distance‐to‐rain forest‐margin, canopy height, stem density. (3) Assessment of lifeform and dispersal spectra for defined vegetation structural types. Results Rates of rain forest invasion were found to be substrate‐mediated. Transects established on hematite schist, diorite, riverine alluvium, and granite developed closed canopies (termed phase III sites) by 1991. The remainder (four transects on poorly drained colluvial/alluvial sediments; one on dune sands) continued to occur either as grassy woodland (phase I), or with developing rain forest understoreys (phase II). Rain forest seedlings were observed at maximum sampled distances from mature rain forest margins at all sites. Lifeform and dispersal spectra data illustrated that: (1) the proportions of woodland trees, shrubs and graminoids declined with successional phase, with concomitant increases in rain forest primary trees and all other lifeform categories save rain forest trees; (2) the proportions of major dispersal syndromes did not vary between successional phases, neither for rain forest nor woodland taxa. Main conclusions Rain forest seedling distribution data for phases I and II sites illustrate three successional processes: margin extension – seedling density significantly negatively correlated with distance from mature rain forest margins at two sites; nucleation – seedling densities significantly positively correlated with tall trees at two sites; and irruption – seedling densities at two sites neither correlated with distance from mature rain forest margins, nor with measured vegetation structural features. The observation of irruptive rain forest regeneration at these sites, combined with decadal‐scale rain forest canopy development at the five remaining sites, illustrates that under conditions conducive to growth (moisture, substrate), low fire disturbance, and maintenance of diverse dispersal processes (high frugivore richness), rain forest can rapidly invade regional landscapes.  相似文献   

5.
Distributions of 29 vegetation types in China as a function of climatic humidity or aridity were analysed using Thornthwaite's system, by employing meteorological records from 671 stations in China. The annual potential evapotranspiration and the humidity/aridity indices were calculated for every station, and distribution maps of water deficiency, water surplus and moisture index (Im) were constructed. The Im map showed that arid areas (Im<0) occupied about 56% of the country. The effect of the difference in soil water storage capacity on Thornthwaite's indices was examined, and Im values were found to differ little, although some differences were observed in actual annual evapotranspiration, water deficiency and water surplus values. Correlations between Im values and distributions of 29 vegetation types, identified from a vegetation map with a scale of 1/4000000, were investigated. The distributions of desert, steppe, woodland, deciduous forest and evergreen forest corresponded to Im values of below −40, −40–−20, −20-0, 0–60 and over 60, respectively. In addition, climatic factors delimiting the northern distribution of evergreen broadleaf forest were investigated, and it was clarified that the northern limit was restricted by combined hydrothermal conditions, and not by the low temperature in winter.  相似文献   

6.
Aim To understand drivers of vegetation type distribution and sensitivity to climate change. Location Interior Alaska. Methods A logistic regression model was developed that predicts the potential equilibrium distribution of four major vegetation types: tundra, deciduous forest, black spruce forest and white spruce forest based on elevation, aspect, slope, drainage type, fire interval, average growing season temperature and total growing season precipitation. The model was run in three consecutive steps. The hierarchical logistic regression model was used to evaluate how scenarios of changes in temperature, precipitation and fire interval may influence the distribution of the four major vegetation types found in this region. Results At the first step, tundra was distinguished from forest, which was mostly driven by elevation, precipitation and south to north aspect. At the second step, forest was separated into deciduous and spruce forest, a distinction that was primarily driven by fire interval and elevation. At the third step, the identification of black vs. white spruce was driven mainly by fire interval and elevation. The model was verified for Interior Alaska, the region used to develop the model, where it predicted vegetation distribution among the steps with an accuracy of 60–83%. When the model was independently validated for north‐west Canada, it predicted vegetation distribution among the steps with an accuracy of 53–85%. Black spruce remains the dominant vegetation type under all scenarios, potentially expanding most under warming coupled with increasing fire interval. White spruce is clearly limited by moisture once average growing season temperatures exceeded a critical limit (+2 °C). Deciduous forests expand their range the most when any two of the following scenarios are combined: decreasing fire interval, warming and increasing precipitation. Tundra can be replaced by forest under warming but expands under precipitation increase. Main conclusion The model analyses agree with current knowledge of the responses of vegetation types to climate change and provide further insight into drivers of vegetation change.  相似文献   

7.
广东季雨林的几个问题   总被引:7,自引:2,他引:5       下载免费PDF全文
 季雨林是分布在具有明显干湿季节变化热带地区,在干季或多或少,甚至全部落叶的森林植被;是介于热带雨林向热带稀疏林过渡的居间类型,而不是由热带雨林向亚热带常绿阔叶林过渡的植被类型。应归属于经向地带性植被,而非纬度地带性植被。并且,在广东南部沿海地区的气候条件下,也不会有季雨林发育。广东南部沿海地区的榕树+香蒲桃+野苹婆(Ficus microcarpa+Syzygium odoratum+Sterculia lanceolata)群落等类型不是季雨林,而是热带季节雨林,属广义的热带雨林范畴。  相似文献   

8.
This paper analyses the relationship between the distribution of tropical floodplain vegetation and environmental factors such as the soil types, their physical‐chemical properties and inundation dynamics in the northern Pantanal of Mato Grosso, Brazil. Fifty‐four soil profiles of the four principal geomorphologic units of the lowland were classified into twenty‐one units of the FAO‐UNESCO system and related to eight vegetation formations. Under the deciduous and semideciduous woodland and forest formations on flood free riverbanks and relict dunes Arenosols, Solonetz and Alisols dominate. Inundation forests grow on a large variety of soil groupings such as Alisols, Solonetz, Fluvisols, Gleysols and Cambisols, mainly on fluvial deposits. Under the grassland formations of periodically flooded spreadings and depressions Planosols, Acrisols, Alisols, Fluvisols, Arenosols and Cambisols were cored, while Gleysols are common on swamps bearing Thalia geniculata or Cyperus giganteus. Canonical Correspondence Analysis was applied to study the influence of monitored environmental factors on spatial distribution of vegetation formations. Water regime and soil texture were found to define the grassland‐forest boundaries as well as the transition between different grassland formations and between seasonal as well as evergreen forests.  相似文献   

9.
Question: What role does air humidity play as an environmental factor for the abundance and distribution of temperate woodland herbs? Location: Beech forests on calcareous soils in southern lower Saxony, central Germany. Methods: The abundance of woodland herb species and total herb cover were investigated in 60 plots with contrasting exposure, slope angle and relief type. On all plots, air humidity, air temperature, soil moisture, photosynthetically active radiation, pH (H2O) and concentration of salt‐exchangeable Ca, Mg and K were measured. Species‐environment relationships were analysed with multiple regression analysis and CCA. Results: Air humidity (RH), soil moisture and the concentration of exchangeable Ca and K, but not light, C/N ratio and the concentration of exchangeable Mg were identified as the most important abiotic factors influencing the cover of the most abundant plant species and total herb cover. RH varied substantially across the different forest floor site types and influenced species abundance independent of soil moisture. In several species (including Mercurialis perennis and Impatiens noli‐tangere), RH was found to be a key environmental factor. Other species such as Aegopodium podagraria and Lamiastrum galeobdolon depended more on elevated soil moisture, while RH was less important. Conclusions: This study showed that the distribution of widespread temperate woodland herb species depends on high air humidity, and that certain sensitive species do not occur at sites with reduced air humidity even though soil moisture is high. Thus, high air humidity and ample soil moisture are key abiotic factors in beech forests on calcareous soils. Shade level (PAR) was found to be of secondary importance.  相似文献   

10.
蔡春轶  黄建辉 《生态学报》2006,26(8):2540-2548
通过对四川都江堰地区桢楠(Phoebe zhennan)林、杉木(Cunninghamia lanceolata(Lamb.))林以及常绿阔叶林为期1a的研究,比较不同森林群落类型中N库各组分的大小以及季节动态,同时研究不同群落类型中N库各组分之间的关系,探讨植被、土壤特性以及微生物对N转化的影响。结果表明:①3种群落类型中土壤NH4^+-N含量有明显的季节变化,均在冬季(12月份)达到最大。随着植物的生长,NH4^+-N含量逐渐下降;②3种类型的群落土壤中NO3^--N含量的平均值差别很大,同一个森林群落类型在不同季节NO3^--N含量有明显的季节变化,但并不是所有的季节之间都存在显著差异;③3种森林群落类型在采样期内的土壤平均全N含量存在显著差别,在不同季节,土壤全N含量变化并不大;④微生物量N在采样期内的波动很大,就每个样地来说也具有一定的规律。得出的结论认为:不同的森林群落类型中的N循环同该群落内的土壤和植被类型有密切的联系,土壤微生物量N同环境因素(土壤温度和湿度)的关系存在时空变化。  相似文献   

11.
Making generalizations about the impact of commercial selective logging on biodiversity has so far remained elusive. Species responses to logging depend on a number of factors, many of which have not been studied in detail. These factors may include the natural forest conditions (forest types) under which logging impacts are investigated; but this question has so far remained unexamined. In a large‐scale replicate study we aimed at clarifying the relationship between logging and forest types on leaf litter frogs. We contrast three distinct and naturally occurring forest types, including wet evergreen, moist evergreen and semi‐deciduous forests. Selectively logged sites were compared with primary forest sites for each forest type. We found that the response of frog communities to logging varies in different forest types. In the wet evergreen forest, richness was higher in logged forest than primary forest, while diversity measures were not different between logged and primary forest habitats. In the moist evergreen, richness and diversity were higher in selectively logged areas compared with primary forest habitats. In the semi‐deciduous, logged forests were characterized by drastic loss of forest specialists, reduced richness, and diversity. These results indicate that the net effect of logging varies with respect to forest type. Forest types that are characterized by adverse climatic conditions (i.e., low rainfall and protracted dry seasons) are more likely to produce negative effects on leaf litter anuran communities. For comparisons of the impact of logging on species to be effective, future research must endeavor to include details of forest type.  相似文献   

12.
Dombeya kefaensis was first described in 1998 from flowering material collected in a mosaic of humid montane forest, evergreen bushland and deciduous woodland of the Kefa Region, SW. Ethiopia. Fruiting individuals, ripe fruits and seeds have now been observed on an additional gathering made near the type locality in late January. The new observations confirm that D. kefaensis is a distinct taxon closely related to D. buettneri K. Schum., recognised by characters of vegetative parts and inflorescence. This rare species has been observed between 1700 and 2200 m. a.s.l. for a distance of four kilometres in the transition zone between evergreen forest and deciduous woodland. The mountains and river valleys of S. and SW. Ethiopia with their mosaic of moist forests, highly fire-prone wooded grasslands, evergreen bushlands and montane grasslands seem to have the highest diversity of Dombeya -species on the African mainland, but the taxa are closely related.  相似文献   

13.
论季雨林的水平地带性   总被引:6,自引:0,他引:6       下载免费PDF全文
季雨林是受制于湿度因子的经度地带性植被类型,它是随着湿度条件的下降由热带雨林向热带疏林过渡的居间类型,而不是受制于温度因子的纬度地带性植被类型,不是随着温度条件的下降由热带雨林向亚热带常绿阔叶林过渡的居间类型。我国南亚热带的榕树群系、黄桐群系,以及热带北缘的青皮群系均不应是季雨林,前二者是典型的南亚热带低地常绿阔叶林或南亚热带雨林,后者则是热带雨林的一分类群。  相似文献   

14.
Future seasonal dynamics of wood formation in hyperarid environments are still unclear. Although temperature‐driven extension of the growing season and increased forest productivity are expected for boreal and temperate biomes under global warming, a similar trend remains questionable in water‐limited regions. We monitored cambial activity in a montane stand of ponderosa pine (Pinus ponderosa) from the Mojave Desert for 2 consecutive years (2015–2016) showing opposite‐sign anomalies between warm‐ and cold‐season precipitation. After the wet winter/spring of 2016, xylogenesis started 2 months earlier compared to 2015, characterized by abundant monsoonal (July–August) rainfall and hyperarid spring. Tree size did not influence the onset and ending of wood formation, highlighting a predominant climatic control over xylem phenological processes. Moisture conditions in the previous month, in particular soil water content and dew point, were the main drivers of cambial phenology. Latewood formation started roughly at the same time in both years; however, monsoonal precipitation triggered the formation of more false rings and density fluctuations in 2015. Because of uncertainties in future precipitation patterns simulated by global change models for the Southwestern United States, the dependency of Pponderosa on seasonal moisture implies a greater conservation challenge than for species that respond mostly to temperature conditions.  相似文献   

15.
常绿阔叶林是广西分布最广泛、最为复杂多样的植被类型.遵循《中国植被》一书的植被分类原则,并参考宋永昌先生的《中国常绿阔叶林分类试行方案》.根据高级单位以生态外貌、中级单位以优势度类型、低级单位以特征种组的分类原则,将广西常绿阔叶林划分出5个植被亚型、11个群系组和102个群系.在5个植被亚型中,典型常绿阔叶林和季风常绿...  相似文献   

16.
Question: Disturbance effects on dry forest epiphytes are poorly known. How are epiphytic assemblages affected by different degrees of human disturbance, and what are the driving forces? Location: An inter‐Andean dry forest landscape at 2300 m elevation in northern Ecuador. Methods: We sampled epiphytic bryophytes and vascular plants on 100 trees of Acacia macracantha in five habitats: closed‐canopy mixed and pure acacia forest (old secondary), forest edge, young semi‐closed secondary woodland, and isolated trees in grassland. Results: Total species richness in forest edge habitats and on isolated trees was significantly lower than in closed forest types. Species density of vascular epiphytes (species per tree) did not differ significantly between habitat types. Species density of bryophytes, in contrast, was significantly lower in edge habitat and on isolated trees than in closed forest. Forest edge showed greater impoverishment than semi‐closed woodland and similar floristic affinity to isolated trees and to closed forest types. Assemblages were significantly nested; habitat types with major disturbance held only subsets of the closed forest assemblages, indicating a gradual reduction in niche availability. Distance to forest had no effect on species density of epiphytes on isolated trees, but species density was closely correlated with crown closure, a measure of canopy integrity. Main conclusions: Microclimatic changes but not dispersal constraints were key determinants of epiphyte assemblages following disturbance. Epiphytic cryptogams are sensitive indicators of microclimate and human disturbance in montane dry forests. The substantial impoverishment of edge habitat underlines the need for fragmentation studies on epiphytes elsewhere in the Tropics.  相似文献   

17.
Forest patterns along topographical gradients were compared between second- and old-growth forested watersheds in a warm-temperate zone of Mt Kiyosumi, central Japan. Three community types were distinguished depending on the topographical habitat type in each watershed, for example, conifer forest was dominated byAbies firma andTsuga sieboldii on ridge sites, evergreen broad-leaved forest was dominated byQuercus acuta, Q. salicina andCastanopsis cuspidata var.sieboldii on slope sites, and deciduous forest was dominated byEuptelea polyandra andCornus controversa in valley sites. Beta diversity and distinctiveness of each topographical community type increased with progression of secondary succession. Conifers and evergreen broad-leaved trees, which were intermingled with each other on ridges and slopes of the second-growth watershed, were in turn restricted to the ridge and slope habitat type, respectively, in the old-growth watershed. The process of this differentiation can be explained by the continuous regeneration of conifers on ridge sites, and its absence on slope sites due to different light conditions caused by progressive canopy closure of evergreen trees on the slope sites toward the old-growth watershed. In the valley type habitat, frequent soil disturbance, such as landslides and soil creep, hinder the continuous growth of late successional evergreen trees, and thus seral or pioneer deciduous trees can persist in the habitat.  相似文献   

18.
Aim We compared vegetation patterns at high elevation on a tropical mountain with edaphic properties and position along climate gradients to examine this landscape’s potential sensitivity to climate change. Location Our study covers the cloud forest, the ecotone at the cloud forest’s upper limit, and the alpine grassland, on the north‐east corner of windward Haleakalā, Hawai‘i. The study area brackets the mean trade wind inversion (TWI), encompasses a perpendicular, east–west precipitation gradient and includes multiple edaphic contexts. Methods We collected vegetation structure and composition data in 134 plots from 1900 to 2400 m elevation, stratified east to west. We used classification trees to compare species assemblage groups with spatial (elevation, easting, aspect) and edaphic (substrate age, texture, degree slope) variables derived from a 10‐m digital elevation model and a digital geological map. Results The forest line was physiognomically sharp, and a Shipley–Keddy test showed that species distributional limits were aggregated there. Forest line elevation was not consistent, but dropped nearly 200 m from east to west. Indicator taxa for positions above or below the forest line varied from east to west. Hierarchical clustering identified species assemblage groups with significantly different composition that were distributed across the TWI and/or along east–west climate gradients. Classification trees showed that edaphic properties were not well associated with species assemblage groups, but position along two perpendicular climate gradients was. Compositional turnover was detected along both elevational and east–west gradients. Turnover of the cloud forest’s epiphytic community was particularly pronounced across east–west gradients. Lichen abundance was significantly higher at the drier end of the east–west moisture gradient, and bryophyte abundance was higher at the wetter end. Main conclusions Modern spatial patterns suggest that this landscape will respond to changes in moisture balance through changes in species assemblage and structure, especially at the ecotone. Furthermore, ecotone response to climate change may vary from east to west because of differences in species‐specific constraints or climatic context.  相似文献   

19.
20.
Aim To evaluate the hypothesis that topographic features of high‐elevation mountain environments govern spatial distribution and climate‐driven dynamics of the forest. Location Upper mountain forest stands (elevation range 1800–2600 m) in the mountains of southern Siberia. Methods Archive maps, satellite and on‐ground data from1960 to 2002 were used. Data were normalized to avoid bias caused by uneven distribution of topographic features (elevation, azimuth and slope steepness) within the analysed area. Spatial distribution of forest stands was analysed with respect to topography based on a digital elevation model (DEM). Results Spatial patterns in mountain forests are anisotropic with respect to azimuth, slope steepness and elevation. At a given elevation, the majority of forests occupied slopes with greater than mean slope values. As the elevation increased, forests shifted to steeper slopes. The orientation of forest azimuth distribution changed clockwise with increase in elevation (the total shift was 120°), indicating a combined effect of wind and water stress on the observed forest patterns. Warming caused changes in the forest distribution patterns during the last four decades. The area of closed forests increased 1.5 times, which was attributed to increased stand density and tree migration. The migration rate was 1.5 ± 0.9 m year–1, causing a mean forest line shift of 63 ± 37 m. Along with upward migration, downward tree migration onto hill slopes was observed. Changes in tree morphology were also noted as widespread transformation of the prostrate forms of Siberian pine and larch into erect forms. Main conclusions The spatial pattern of upper mountain forests as well as the response of forests to warming strongly depends on topographic relief features (elevation, azimuth and slope steepness). With elevation increase (and thus a harsher environment) forests shifted to steep wind‐protected slopes. A considerable increase in the stand area and increased elevation of the upper forest line was observed coincident with the climate warming that was observed. Warming promotes migration of trees to areas that are less protected from winter desiccation and snow abrasion (i.e. areas with lower values of slope steepness). Climate‐induced forest response has significantly modified the spatial patterns of high‐elevation forests in southern Siberia during the last four decades, as well as tree morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号