首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel cytochrome ba complex was isolated from aerobically grown cells of the thermoacidophilic archaeon Acidianus ambivalens. The complex was purified with two subunits, which are encoded by the cbsA and soxN genes. These genes are part of the pentacistronic cbsAB-soxLN-odsN locus. The spectroscopic characterization revealed the presence of three low-spin hemes, two of the b and one of the as-type with reduction potentials of + 200, + 400 and + 160 mV, respectively. The SoxN protein is proposed to harbor the heme b of lower reduction potential and the heme as, and CbsA the other heme b. The soxL gene encodes a Rieske protein, which was expressed in E. coli; its reduction potential was determined to be + 320 mV. Topology predictions showed that SoxN, CbsB and CbsA should contain 12, 9 and one transmembrane α-helices, respectively, with SoxN having a predicted fold very similar to those of the cytochromes b in bc1 complexes. The presence of two quinol binding motifs was also predicted in SoxN. Based on these findings, we propose that the A. ambivalens cytochrome ba complex is analogous to the bc1 complexes of bacteria and mitochondria, however with distinct subunits and heme types.  相似文献   

2.
The three-dimensional structure of a Salmonella enterica hypothetical protein YihS is significantly similar to that of N-acyl-d-glucosamine 2-epimerase (AGE) with respect to a common scaffold, an α66-barrel, although the function of YihS remains to be clarified. To identify the function of YihS, Escherichia coli and S. enterica YihS proteins were overexpressed in E. coli, purified, and characterized. Both proteins were found to show no AGE activity but showed cofactor-independent aldose-ketose isomerase activity involved in the interconversion of monosaccharides, mannose, fructose, and glucose, or lyxose and xylulose. In order to clarify the structure/function relationship of YihS, we determined the crystal structure of S. enterica YihS mutant (H248A) in complex with a substrate (d-mannose) at 1.6 Å resolution. This enzyme-substrate complex structure is the first demonstration in the AGE structural family, and it enables us to identify active-site residues and postulate a reaction mechanism for YihS. The substrate, β-d-mannose, fits well in the active site and is specifically recognized by the enzyme. The substrate-binding site of YihS for the mannose C1 and O5 atoms is architecturally similar to those of mutarotases, suggesting that YihS adopts the pyranose ring-opening process by His383 and acidifies the C2 position, forming an aldehyde at the C1 position. In the isomerization step, His248 functions as a base catalyst responsible for transferring the proton from the C2 to C1 positions through a cis-enediol intermediate. On the other hand, in AGE, His248 is thought to abstract and re-adduct the proton at the C2 position of the substrate. These findings provide not only molecular insights into the YihS reaction mechanism but also useful information for the molecular design of novel carbohydrate-active enzymes with the common scaffold, α66-barrel.  相似文献   

3.
Pseudomonas cichoriiid-tagatose 3-epimerase (P. cichoriid-TE) can efficiently catalyze the epimerization of not only d-tagatose to d-sorbose, but also d-fructose to d-psicose, and is used for the production of d-psicose from d-fructose. The crystal structures of P. cichoriid-TE alone and in complexes with d-tagatose and d-fructose were determined at resolutions of 1.79, 2.28, and 2.06 Å, respectively. A subunit of P. cichoriid-TE adopts a (β/α)8 barrel structure, and a metal ion (Mn2+) found in the active site is coordinated by Glu152, Asp185, His211, and Glu246 at the end of the β-barrel. P. cichoriid-TE forms a stable dimer to give a favorable accessible surface for substrate binding on the front side of the dimer. The simulated omit map indicates that O2 and O3 of d-tagatose and/or d-fructose coordinate Mn2+, and that C3-O3 is located between carboxyl groups of Glu152 and Glu246, supporting the previously proposed mechanism of deprotonation/protonation at C3 by two Glu residues. Although the electron density is poor at the 4-, 5-, and 6-positions of the substrates, substrate-enzyme interactions can be deduced from the significant electron density at O6. The O6 possibly interacts with Cys66 via hydrogen bonding, whereas O4 and O5 in d-tagatose and O4 in d-fructose do not undergo hydrogen bonding to the enzyme and are in a hydrophobic environment created by Phe7, Trp15, Trp113, and Phe248. Due to the lack of specific interactions between the enzyme and its substrates at the 4- and 5-positions, P. cichoriid-TE loosely recognizes substrates in this region, allowing it to efficiently catalyze the epimerization of d-tagatose and d-fructose (C4 epimer of d-tagatose) as well. Furthermore, a C3-O3 proton-exchange mechanism for P. cichoriid-TE is suggested by X-ray structural analysis, providing a clear explanation for the regulation of the ionization state of Glu152 and Glu246.  相似文献   

4.
Lactose permease in Escherichia coli (LacY) transports both anomeric states of disaccharides but has greater affinity for α-sugars. Molecular dynamics (MD) simulations are used to probe the protein-sugar interactions, binding structures, and global protein motions in response to sugar binding by investigating LacY (the experimental mutant and wild-type) embedded in a fully hydrated lipid bilayer. A total of 12 MD simulations of 20-25 ns each with β(α)-d-galactopyranosyl-(1,1)-β-d-galactopyranoside (ββ-(Galp)2) and αβ-(Galp)2 result in binding conformational families that depend on the anomeric state of the sugar. Both sugars strongly interact with Glu126 and αβ-(Galp)2 has a greater affinity to this residue. Binding conformations are also seen that involve protein residues not observed in the crystal structure, as well as those involved in the proton translocation (Phe118, Asn119, Asn240, His322, Glu325, and Tyr350). Common to nearly all protein-sugar structures, water acts as a hydrogen bond bridge between the disaccharide and protein. The average binding energy is more attractive for αβ-(Galp)2 than ββ-(Galp)2, i.e. −10.7(±0.7) and −3.1(±1.0) kcal/mol, respectively. Of the 12 helices in LacY, helix-IV is the least stable with ββ-(Galp)2 binding resulting in larger distortion than αβ-(Galp)2.  相似文献   

5.
The reaction conditions of galactose oxidase-catalyzed, targeted C-6 oxidation of galactose derivatives were optimized for aldehyde production and to minimize the formation of secondary products. Galactose oxidase, produced in transgenic Pichia pastoris carrying the galactose oxidase gene from Fusarium spp., was used as catalyst, methyl α-d-galactopyranoside as substrate, and reaction medium, temperature, concentration, and combinations of galactose oxidase, catalase, and horseradish peroxidase were used as variables. The reactions were followed by 1H NMR spectroscopy and the main products isolated, characterized, and identified. An optimal combination of all the three enzymes gave aldehyde (methyl α-d-galacto-hexodialdo-1,5-pyranoside) in approximately 90% yield with a substrate concentration of 70 mM in water at 4 °C using air as oxygen source. Oxygen flushing of the reaction mixture was not necessary. The aldehyde existed as a hydrate in water. The main secondary products, a uronic acid (methyl α-d-galactopyranosiduronic acid) and an α,β-unsaturated aldehyde (methyl 4-deoxy-α-d-threo-hex-4-enodialdo-1,5-pyranoside), were observed for the first time to form in parallel. Formation of uronic acid seemed to be the result of impurities in the galactose oxidase preparation. 1H and 13C NMR data of the products are reported for the α,β-unsaturated aldehyde for the first time, and chemical shifts in DMSO-d6 for all the products for the first time. Oxidation of d-raffinose (α-d-galactopyranosyl-(1-6)-α-d-glucopyranosyl-(1-2)-β-d-fructofuranoside) in the same optimum conditions also proceeded well, resulting in approximately 90% yield of the corresponding aldehyde.  相似文献   

6.
A new β-glucosidase gene (bglSp) was cloned from the ginsenoside converting Sphingomonas sp. strain 2F2 isolated from the ginseng cultivating filed. The bglSp consisted of 1344 bp (447 amino acid residues) with a predicted molecular mass of 49,399 Da. A BLAST search using the bglSp sequence revealed significant homology to that of glycoside hydrolase superfamily 1. This enzyme was overexpressed in Escherichia coli BL21 (DE3) using a pET21-MBP (TEV) vector system. Overexpressed recombinant enzymes which could convert the ginsenosides Rb1, Rb2, Rc and Rd to the more pharmacological active rare ginsenosides gypenoside XVII, ginsenoside C-O, ginsenoside C-Mc1 and ginsenoside F2, respectively, were purified by two steps with Amylose-affinity and DEAE-Cellulose chromatography and characterized. The kinetic parameters for β-glucosidase showed the apparent Km and Vmax values of 2.9 ± 0.3 mM and 515.4 ± 38.3 μmol min−1 mg of protein−1 against p-nitrophenyl-β-d-glucopyranoside. The enzyme could hydrolyze the outer C3 glucose moieties of ginsenosides Rb1, Rb2, Rc and Rd into the rare ginsenosides Gyp XVII, C-O, C-Mc1 and F2 quickly at optimal conditions of pH 5.0 and 37 °C. A little ginsenoside F2 production from ginsenosides Gyp XVII, C-O, and C-Mc1 was observed for the lengthy enzyme reaction caused by the side ability of the enzyme.  相似文献   

7.
Previous N-ethylmaleimide-labeling studies show that ligand binding increases the reactivity of single-Cys mutants located predominantly on the periplasmic side of LacY and decreases reactivity of mutants located for the most part of the cytoplasmic side. Thus, sugar binding appears to induce opening of a periplasmic pathway with closing of the cytoplasmic cavity resulting in alternative access of the sugar-binding site to either side of the membrane. Here we describe the use of a fluorescent alkylating reagent that reproduces the previous observations with respect to sugar binding. We then show that generation of an H+ electrochemical gradient (Δμ¯H+, interior negative) increases the reactivity of single-Cys mutants on the periplasmic side of the sugar-binding site and in the putative hydrophilic pathway. The results suggest that Δμ¯H+, like sugar, acts to increase the probability of opening on the periplasmic side of LacY.  相似文献   

8.
Feeding tobacco BY-2 cells with [2-13C,4-2H]deoxyxylulose revealed from the 13C labeling that the plastid isoprenoids, synthesized via the MEP pathway, are essentially derived from the labeled precursor. The ca. 15% 2H retention observed in all isoprene units corresponds to the isopentenyl diphosphate (IPP)/dimethylallyl diphosphate (DMAPP) ratio (85:15) directly produced by the hydroxymethylbutenyl diphosphate reductase, the last enzyme of the MEP pathway. 2H retention characterizes the isoprene units derived from the DMAPP branch, whereas 2H loss represents the signature of the IPP branch. Taking into account the enantioselectivity of the reactions catalyzed by the (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase, the IPP isomerase and the trans-prenyl transferase, a single biogenetic scheme allows to interpret all labeling patterns observed in bacteria or plants upon incubation with 2H labeled deoxyxylulose.  相似文献   

9.
Pseudomonas stutzeril-rhamnose isomerase (P. stutzeri L-RhI) can efficiently catalyze the isomerization between various aldoses and ketoses, showing a broad substrate specificity compared to L-RhI from Escherichia coli (E. coli L-RhI). To understand the relationship between structure and substrate specificity, the crystal structures of P. stutzeri L-RhI alone and in complexes with l-rhamnose and d-allose which has different configurations of C4 and C5 from l-rhamnose, were determined at a resolution of 2.0 Å, 1.97 Å, and 1.97 Å, respectively. P. stutzeri L-RhI has a large domain with a (β/α)8 barrel fold and an additional small domain composed of seven α-helices, forming a homo tetramer, as found in E. coli L-RhI and d-xylose isomerases (D-XIs) from various microorganisms. The β1-α1 loop (Gly60-Arg76) of P. stutzeri L-RhI is involved in the substrate binding of a neighbouring molecule, as found in D-XIs, while in E. coli L-RhI, the corresponding β1-α1 loop is extended (Asp52-Arg78) and covers the substrate-binding site of the same molecule. The complex structures of P. stutzeri L-RhI with l-rhamnose and d-allose show that both substrates are nicely fitted to the substrate -binding site. The part of the substrate-binding site interacting with the substrate at the 1, 2, and 3 positions is equivalent to E. coli L-RhI, and the other part interacting with the 4, 5, and 6 positions is similar to D-XI. In E. coli L-RhI, the β1-α1 loop creates an unique hydrophobic pocket at the the 4, 5, and 6 positions, leading to the strictly recognition of l-rhamnose as the most suitable substrate, while in P. stutzeri L-RhI, there is no corresponding hydrophobic pocket where Phe66 from a neighbouring molecule merely forms hydrophobic interactions with the substrate, leading to the loose substrate recognition at the 4, 5, and 6 positions.  相似文献   

10.
The cysteine protease brucipain is an important drug target in the protozoan Trypanosoma brucei, the causative agent of both Human African trypanosomiasis and Animal African trypanosomiasis. Brucipain is closely related to mammalian cathepsin L and currently used as a framework for the development of inhibitors that display anti-parasitic activity. We show that recombinant brucipain lacking the C-terminal extension undergoes inhibition by the substrate benzyloxycarbonyl-FR-7-amino-4-methylcoumarin at concentrations above the Km, but not by benzyloxycarbonyl-VLR-7-amino-4-methylcoumarin. The allosteric modulation exerted by the substrate is controlled by temperature, being apparent at 25 °C but concealed at 37 °C. The behavior of the enzyme in vitro can be explained by discrete conformational changes caused by the shifts in temperature that render it less susceptible to substrate inhibition. Enzyme inhibition by the di-peptydyl substrate impaired the degradation of human fibrinogen at 25 °C, but not at 37 °C. We also found that heparan sulfate acts as a natural allosteric modulator of the enzyme through interactions that prevent substrate inhibition. We propose that brucipain shifts between an active and an inactive form as a result of temperature-dependent allosteric regulation.  相似文献   

11.
Plesiomonas shigelloides O17 LPS contains the same O-antigenic polysaccharide chain as a causative agent of dysentery, Shigella sonnei. This polysaccharide can be used as a component of a vaccine against dysentery. Core part of the P. shigelloides O17 LPS was studied using NMR and mass spectrometry and the following structure was proposed: Significant similarity of the P. shigelloides O17 LPS core with the structure of the P. shigelloides O54 core was observed.  相似文献   

12.
Patrícia N. Refojo 《BBA》2010,1797(8):1477-2181
An alternative complex III (ACIII) is a respiratory complex with quinol:electron acceptor oxidoreductase activity. It is the only example of an enzyme performing complex III function that does not belong to bc1 complex family. ACIII from Rhodothermus (R.) marinus was the first enzyme of this type to be isolated and characterized, and in this work we deepen its characterization. We addressed its interaction with quinol substrate and with the caa3 oxygen reductase, whose coding gene cluster follows that of the ACIII. There is at least, one quinone binding site present in R. marinus ACIII as observed by fluorescence quenching titration of HQNO, a quinone analogue inhibitor. Furthermore, electrophoretic and spectroscopic evidences, taken together with mass spectrometry revealed a structural association between ACIII and caa3 oxygen reductase. The association was also shown to be functional, since quinol:oxygen oxidoreductase activity was observed when the two isolated complexes were put together. This work is thus a step forward in the recognition of the structural and functional diversities of prokaryotic respiratory chains.  相似文献   

13.
The reactivity of N-(2-aminophenyl)-d-glycero-d-gulo-heptonamide (adgha), with the group 12 cations, Zn(II), Cd(II), and Hg(II), was studied in DMSO-d6 solution. The studied system showed a selective coordination to Hg(II), and the products formed were characterized by 1H and 13C NMR in DMSO-d6 solution and fast atom bombardment (FAB+) mass spectra. The expected coordination compounds, [Hg(adgha)](NO3)2 and [Hg(adgha)2](NO3)2, were observed as unstable intermediates that decompose to bis-[2-(d-glycero-d-gulo-hexahydroxyhexyl)-benzimidazole-κN]mercury(II) dinitrate, [Hg(ghbz)2](NO3)2. The chemical transformation of the complexes was followed by NMR experiments, and the nature of the species formed is sustained by a theoretical study done using DFT methodology. From this study, we propose the structure of the complexes formed in solution, the relative stability of the species formed, and the possible role of the solvent in the observed transformations.  相似文献   

14.
A panel of six complementary monodeoxy and mono-O-methyl congeners of methyl β-d-mannopyranosyl-(1→2)-β-d-mannopyranoside (1) were synthesized by stereoselective glycosylation of monodeoxy and mono-O-methyl monosaccharide acceptors with a 2-O-acetyl-glucosyl trichloroacetimidate donor, followed by a two-step oxidation-reduction sequence at C-2′. The β-manno configurations of the final deprotected congeners 2-7 were confirmed by measurement of 1JC1,H1 heteronuclear and 3J1′,2′ homonuclear coupling constants. These disaccharide derivatives will be used to map the protective epitope recognized by a protective anti-Candida albicans monoclonal antibody C3.1 (IgG3) and to determine its key polar contacts with the binding site.  相似文献   

15.
A new stereoselective preparation of N-aceyl-d-galactosamine (1b) starting from the known p-methoxyphenyl 3,4-O-isopropylidene-6-O-(1-methoxy-1-methylethyl)-β-d-galactopyranoside (10) is described using a simple strategy based on (a) epimerization at C-2 of 10 via oxidation-reduction to give the talo derivative 11, (b) amination with configurational inversion at C-2 of 11 via a SN2-type reaction on its 2-imidazylate, (c) anomeric deprotection of the p-methoxyphenyl β-d-galactosamine glycoside 14, (d) complete deprotection. Applying the same protocol to 2,3:5,6:3′,4′-tri-O-isopropylidene-6′-O-(1-methoxy-1-methylethyl)-lactose dimethyl acetal (4), directly obtained through acetonation of lactose, the disaccharide β-d-GalNAcp-(1→4)-d-Glcp (1a) was obtained with complete stereoselectivity in good (40%) overall yield from lactose.  相似文献   

16.
A panel of six complementary monodeoxy and mono-O-methyl congeners of methyl β-d-mannopyranosyl-(1→2)-β-d-mannopyranoside (1) were synthesized by stereoselective glycosylation of monodeoxy and mono-O-methyl monosaccharide acceptors with a 2-O-acetyl-glucosyl trichloroacetimidate donor, followed by a two-step oxidation-reduction sequence at C-2′. The β-manno configuration of the final deprotected congeners 2-7 was confirmed by measurement of 1JC1,H1 heteronuclear and 3J1′,2′ homonuclear coupling constants. These disaccharide derivatives will be used to map the epitope recognized by a protective anti-Candida albicans monoclonal antibody C3.1 (IgG3) and to determine its key polar contacts with the binding site.  相似文献   

17.
In this study, interactions of selected monosaccharides with the Pseudomonas aeruginosa Lectin II (PA-IIL) are analyzed in detail. An interesting feature of the PA-IIL binding is that the monosaccharide is interacting via two calcium ions and the binding is unusually strong for protein-saccharide interaction. We have used Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA) and normal mode analysis to calculate the free energy of binding. The impact of intramolecular hydrogen bond network for the lectin/monosaccharide interaction is also analyzed.  相似文献   

18.
Isoprenoid precursor biosynthesis occurs through the mevalonate or the methylerythritol phosphate (MEP) pathway, used i.e., by humans and by many human pathogens, respectively. In the MEP pathway, 2-C-methyl-d-erythritol-2,4-cyclo-diphosphate (MEcPP) is converted to (E)-1-hydroxy-2-methyl-but-2-enyl-4-diphosphate (HMBPP) by the iron-sulfur cluster enzyme HMBPP synthase (GcpE). The presented X-ray structure of the GcpE-MEcPP complex from Thermus thermophilus at 1.55 Å resolution provides valuable information about the catalytic mechanism and for rational inhibitor design. MEcPP binding inside the TIM-barrel funnel induces a 60° rotation of the [4Fe-4S] cluster containing domain onto the TIM-barrel entrance. The apical iron of the [4Fe-4S] cluster ligates with the C3 oxygen atom of MEcPP.  相似文献   

19.
Trichoderma asperellum produces two extracellular 1,3-β-d-glucanase upon induction with cell walls from Rhizoctonia solani. A minor 1,3-β-d-glucanase was purified to homogeneity by ion exchange chromatography on Q-Sepharose and gel filtration on Sephacryl S-100. A typical procedure provided 13.8-fold purification with 70% yield. SDS-PAGE of the purified enzyme showed a single protein band of molecular weight 27 kDa. The enzyme exhibited optimum catalytic activity at pH 3.6 and 45 °C. It was thermostable at 40 °C, and retained 75% activity after 60 min at 45 °C. The Km and Vmax values for 1,3-β-d-glucanase, using laminarin as substrate, were 0.323 mg ml−1 and 0.315 U min−1, respectively. The enzyme was strongly inhibited by Hg2+ and SDS. The enzyme was only active toward glucans containing β-1,3-linkages. Peptide sequences showed similarity with two endo-1,3(4)-β-d-glucanases from Aspergillus fumigatus Af293when compared against GenBank non-redundant database.  相似文献   

20.
The glycosaminoglycan chondroitin sulfate is essential in human health and disease but exactly how sulfation dictates its 3D-strucutre at the atomic level is unclear. To address this, we have purified homogenous oligosaccharides of unsulfated chondroitin (with and without 15N-enrichment) and analysed them by high-field NMR to make a comparison published chondroitin sulfate and hyaluronan 3D-structures. The result is the first full assignment of the tetrasaccharide and an experimental 3D-model of the hexasaccharide (PDB code 2KQO). In common with hyaluronan, we confirm that the amide proton is not involved in strong, persistent inter-residue hydrogen bonds. However, in contrast to hyaluronan, a hydrogen bond is not inferred between the hexosamine OH-4 and the glucuronic acid O5 atoms across the β(1→3) glycosidic linkage. The unsulfated chondroitin bond geometry differs slightly from hyaluronan by rotation about the β(1→3) ψ dihedral (as previously predicted by simulation), while the β(1→4) linkage is unaffected. Furthermore, comparison shows that this glycosidic linkage geometry is similar in chondroitin-4-sulfate. We therefore hypothesise that both hexosamine OH-4 and OH-6 atoms are solvent exposed in chondroitin, explaining why it is amenable to sulfation and hyaluronan is not, and also that 4-sulfation has little effect on backbone conformation. Our conclusions exemplify the value of the 3D-model presented here and progress our understanding of glycosaminoglycan molecular properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号