首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We used an integrative approach to probe the significance of the interaction between the relay loop and converter domain of the myosin molecular motor from Drosophila melanogaster indirect flight muscle. During the myosin mechanochemical cycle, ATP-induced twisting of the relay loop is hypothesized to reposition the converter, resulting in cocking of the contiguous lever arm into the pre-power stroke configuration. The subsequent movement of the lever arm through its power stroke generates muscle contraction by causing myosin heads to pull on actin filaments. We generated a transgenic line expressing myosin with a mutation in the converter domain (R759E) at a site of relay loop interaction. Molecular modeling suggests that the interface between the relay loop and converter domain of R759E myosin would be significantly disrupted during the mechanochemical cycle. The mutation depressed calcium as well as basal and actin-activated MgATPase (Vmax) by ∼ 60% compared to wild-type myosin, but there is no change in apparent actin affinity (Km). While ATP or AMP-PNP (adenylyl-imidodiphosphate) binding to wild-type myosin subfragment-1 enhanced tryptophan fluorescence by ∼ 15% or ∼ 8%, respectively, enhancement does not occur in the mutant. This suggests that the mutation reduces lever arm movement. The mutation decreases in vitro motility of actin filaments by ∼ 35%. Mutant pupal indirect flight muscles display normal myofibril assembly, myofibril shape, and double-hexagonal arrangement of thick and thin filaments. Two-day-old fibers have occasional “cracking” of the crystal-like array of myofilaments. Fibers from 1-week-old adults show more severe cracking and frayed myofibrils with some disruption of the myofilament lattice. Flight ability is reduced in 2-day-old flies compared to wild-type controls, with no upward mobility but some horizontal flight. In 1-week-old adults, flight capability is lost. Thus, altered myosin function permits myofibril assembly, but results in a progressive disruption of the myofilament lattice and flight ability. We conclude that R759 in the myosin converter domain is essential for normal ATPase activity, in vitro motility and locomotion. Our results provide the first mutational evidence that intramolecular signaling between the relay loop and converter domain is critical for myosin function both in vitro and in muscle.  相似文献   

2.
Subfragment 2 (S2), the segment that links the two myosin heads to the thick filament backbone, may serve as a swing-out adapter allowing crossbridge access to actin, as the elastic component of crossbridges and as part of a phosphorylation-regulated on-off switch for crossbridges in smooth muscle. Low-salt expansion increases interfilament spacing (from 52 nm to 67 nm) of rigor insect flight muscle fibers and exposes a tethering segment of S2 in many crossbridges. Docking an actoS1 atomic model into EM tomograms of swollen rigor fibers identifies in situ for the first time the location, length and angle assignable to a segment of S2. Correspondence analysis of 1831 38.7 nm crossbridge repeats grouped self-similar forms from which class averages could be computed. The full range of the variability in angles and lengths of exposed S2 was displayed by using class averages for atomic fittings of acto-S1, while S2 was modeled by fitting a length of coiled-coil to unaveraged individual repeats. This hybrid modeling shows that the average length of S2 tethers along the thick filament (except near the tapered ends) is approximately 10 nm, or 16% of S2's total length, with an angular range encompassing 90 degrees axially and 120 degrees azimuthally. The large range of S2 angles indicates that some rigor bridges produce positive force that must be balanced by others producing drag force. The short tethering segment clarifies constraints on the function of S2 in accommodating variable myosin head access to actin. We suggest that the short length of S2 may also favor intermolecular head-head interactions in IFM relaxed thick filaments.  相似文献   

3.
We investigated the biochemical and biophysical properties of one of the four alternative regions within the Drosophila myosin catalytic domain: the relay domain encoded by exon 9. This domain of the myosin head transmits conformational changes in the nucleotide-binding pocket to the converter domain, which is crucial to coupling catalytic activity with mechanical movement of the lever arm. To study the function of this region, we used chimeric myosins (IFI-9b and EMB-9a), which were generated by exchange of the exon 9-encoded domains between the native embryonic body wall (EMB) and indirect flight muscle isoforms (IFI). Kinetic measurements show that exchange of the exon 9-encoded region alters the kinetic properties of the myosin S1 head. This is reflected in reduced values for ATP-induced actomyosin dissociation rate constant (K1k+2) and ADP affinity (KAD), measured for the chimeric constructs IFI-9b and EMB-9a, compared to wild-type IFI and EMB values. Homology models indicate that, in addition to affecting the communication pathway between the nucleotide-binding pocket and the converter domain, exchange of the relay domains between IFI and EMB affects the communication pathway between the nucleotide-binding pocket and the actin-binding site in the lower 50-kDa domain (loop 2). These results suggest an important role of the relay domain in the regulation of actomyosin cross-bridge kinetics.  相似文献   

4.
We show that negative-stain electron microscopy and image processing of nucleotide-free (apo) striated muscle myosin-2 subfragment-1 (S1), possessing one light chain or both light chains, is capable of resolving significant amounts of structural detail. The overall appearance of the motor and the lever is similar in rabbit, scallop and chicken S1. Projection matching of class averages of the different S1 types to projection views of two different crystal structures of apo S1 shows that all types most commonly closely resemble the appearance of the scallop S1 structure rather than the methylated chicken S1 structure. Methylation of chicken S1 has no effect on the structure of the molecule at this resolution: it too resembles the scallop S1 crystal structure. The lever is found to vary in its angle of attachment to the motor domain, with a hinge point located in the so-called pliant region between the converter and the essential light chain. The chicken S1 crystal structure lies near one end of the range of flexion observed. The Gaussian spread of angles of flexion suggests that flexibility is driven thermally, from which a torsional spring constant of ~ 23 pN·nm/rad2 is estimated on average for all S1 types, similar to myosin-5. This translates to apparent cantilever-type stiffness at the tip of the lever of 0.37 pN/nm. Because this stiffness is lower than recent estimates from myosin-2 heads attached to actin, we suggest that binding to actin leads to an allosteric stiffening of the motor–lever junction.  相似文献   

5.
Myosin crystal structures have given rise to the swinging lever arm hypothesis, which predicts a large axial tilt of the lever arm domain during the actin-attached working stroke. Previous work imaging the working stroke in actively contracting, fast-frozen Lethocerus muscle confirmed the axial tilt; but strongly bound myosin heads also showed an unexpected azimuthal slew of the lever arm around the thin filament axis, which was not predicted from known crystal structures. We hypothesized that an azimuthal reorientation of the myosin motor domain on actin during the weak-binding to strong-binding transition could explain the lever arm slew provided that myosin’s α-helical coiled-coil subfragment 2 (S2) domain emerged from the thick filament backbone at a particular location. However, previous studies did not adequately resolve the S2 domain. Here we used electron tomography of rigor muscle swollen by low ionic strength to pull S2 clear of the thick filament backbone, thereby revealing the azimuth of its point of origin. The results show that the azimuth of S2 origins of those rigor myosin heads, bound to the actin target zone of actively contracting muscle, originate from a restricted region of the thick filament. This requires an azimuthal reorientation of the motor domain on actin during the weak to strong transition.  相似文献   

6.
As a first step toward freeze-trapping and 3-D modeling of the very rapid load-induced structural responses of active myosin heads, we explored the conformational range of longer lasting force-dependent changes in rigor crossbridges of insect flight muscle (IFM). Rigor IFM fibers were slam-frozen after ramp stretch (1000 ms) of 1-2% and freeze-substituted. Tomograms were calculated from tilt series of 30 nm longitudinal sections of Araldite-embedded fibers. Modified procedures of alignment and correspondence analysis grouped self-similar crossbridge forms into 16 class averages with 4.5 nm resolution, revealing actin protomers and myosin S2 segments of some crossbridges for the first time in muscle thin sections. Acto-S1 atomic models manually fitted to crossbridge density required a range of lever arm adjustments to match variably distorted rigor crossbridges. Some lever arms were unchanged compared with low tension rigor, while others were bent and displaced M-ward by up to 4.5 nm. The average displacement was 1.6 +/- 1.0 nm. "Map back" images that replaced each unaveraged 39 nm crossbridge motif by its class average showed an ordered mix of distorted and unaltered crossbridges distributed along the 116 nm repeat that reflects differences in rigor myosin head loading even before stretch.  相似文献   

7.
Muscles have evolved to power a wide variety of movements. A protein component critical to varying power generation is the myosin isoform present in the muscle. However, how functional variation in muscle arises from myosin structure is not well understood. We studied the influence of the converter, a myosin structural region at the junction of the lever arm and catalytic domain, using Drosophila because its single myosin heavy chain gene expresses five alternative converter versions (11a–e). We created five transgenic fly lines, each forced to express one of the converter versions in their indirect flight muscle (IFM) fibers. Electron microscopy showed that the converter exchanges did not alter muscle ultrastructure. The four lines expressing converter versions (11b–e) other than the native IFM 11a converter displayed decreased flight ability. IFM fibers expressing converters normally found in the adult stage muscles generated up to 2.8-fold more power and displayed up to 2.2-fold faster muscle kinetics than fibers with converters found in the embryonic and larval stage muscles. Small changes to stretch-activated force generation only played a minor role in altering power output of IFM. Muscle apparent rate constants, derived from sinusoidal analysis of the chimeric converter fibers, showed a strong positive correlation between optimal muscle oscillation frequency and myosin attachment kinetics to actin, and an inverse correlation with detachment related cross-bridge kinetics. This suggests the myosin converter alters at least two rate constants of the cross-bridge cycle with changes to attachment and power stroke related kinetics having the most influence on setting muscle oscillatory power kinetics.  相似文献   

8.
We are investigating the influence of the converter and relay domains on elementary rate constants of the actomyosin cross-bridge cycle. The converter and relay domains vary between Drosophila myosin heavy chain isoforms due to alternative mRNA splicing. Previously, we found that separate insertions of embryonic myosin isoform (EMB) versions of these domains into the indirect flight muscle (IFM) myosin isoform (IFI) both decreased Drosophila IFM power and slowed muscle kinetics. To determine cross-bridge mechanisms behind the changes, we employed sinusoidal analysis while varying phosphate and MgATP concentrations in skinned Drosophila IFM fibers. Based on a six-state cross-bridge model, the EMB converter decreased myosin rate constants associated with actin attachment and work production, k4, but increased rates related to cross-bridge detachment and work absorption, k2. In contrast, the EMB relay domain had little influence on kinetics, because only k4 decreased. The main alteration was mechanical, in that work production amplitude decreased. That both domains decreased k4 supports the hypothesis that these domains are critical to lever-arm-mediated force generation. Neither domain significantly influenced MgATP affinity. Our modeling suggests the converter domain is responsible for the difference in rate-limiting cross-bridge steps between EMB and IFI myosin—i.e., a myosin isomerization associated with MgADP release for EMB and Pi release for IFI.  相似文献   

9.
Rigor insect flight muscle (IFM) can be relaxed without ATP by increasing ethylene glycol concentration in the presence of adenosine 5′-[β′γ- imido]triphosphate (AMPPNP). Fibers poised at a critical glycol concentration retain rigor stiffness but support no sustained tension (“glycol-stiff state”). This suggests that many crossbridges are weakly attached to actin, possibly at the beginning of the power stroke. Unaveraged three-dimensional tomograms of “glycol-stiff” sarcomeres show crossbridges large enough to contain only a single myosin head, originating from dense collars every 14.5 nm. Crossbridges with an average 90° axial angle contact actin midway between troponin subunits, which identifies the actin azimuth in each 38.7-nm period, in the same region as the actin target zone of the 45° angled rigor lead bridges. These 90° “target zone” bridges originate from the thick filament and approach actin at azimuthal angles similar to rigor lead bridges. Another class of glycol-PNP crossbridge binds outside the rigor actin target zone. These “nontarget zone” bridges display irregular forms and vary widely in axial and azimuthal attachment angles. Fitting the acto-myosin subfragment 1 atomic structure into the tomogram reveals that 90° target zone bridges share with rigor a similar contact interface with actin, while nontarget crossbridges have variable contact interfaces. This suggests that target zone bridges interact specifically with actin, while nontarget zone bridges may not. Target zone bridges constitute only ∼25% of the myosin heads, implying that both specific and nonspecific attachments contribute to the high stiffness. The 90° target zone bridges may represent a preforce attachment that produces force by rotation of the motor domain over actin, possibly independent of the regulatory domain movements. Force production by myosin heads during muscle contraction has long been modeled as a transition of attached crossbridges from a 90° to a 45° axial angle. Efforts to image crossbridge forms and angles intermediate between 90° heads in ATP-relaxed insect flight muscle (IFM)1 and the 45° angled bridges in rigor have used nucleotide analogs such as adenosine 5′-[β′γ-imido] triphosphate (AMPPNP) in stable equilibrium states to drive the crossbridges backwards from the 45° angle in rigor to an attached 90° preforce form, otherwise similar to myosin heads in ATP-relaxed fibers (Reedy et al., 1988; Tregear et al., 1990). However, AMPPNP alone will not fully relax IFM, and crossbridges binding AMPPNP retain many rigor-like features (Schmitz et al., 1996; Winkler et al., 1996). On the other hand, AMPPNP in combination with ethylene glycol will relax IFM. When poised at a critical glycol concentration, muscle stiffness is as high as rigor, suggesting crossbridge attachment, but fibers will not bear sustained tension (Clarke et al., 1984; Tregear et al., 1984). Two-dimensional (2-D) analysis of electron micrographs showed that this stiff glycol-PNP state resembled ATP-relaxed fibers in having dense collars every 14.5 nm along the thick filament and thin crossbridges originating from these collars at various axial angles around 90°. However, unlike relaxed muscle, stiff glycol-PNP fibers showed both 90° angled bridges that were regularly spaced every 38.7 nm and more intensity on the 19.3-nm layer line in optical and x-ray diffraction patterns (Reedy et al., 1988; Tregear et al., 1990). Crossbridges in this partially relaxed, glycol-PNP state are important because they may represent the form of the initial attachment of myosin with bound nucleotide preceding force generation (Marston and Tregear, 1984; Tregear et al., 1984; Reedy et al., 1988). This putative preforce 90° crossbridge could not be characterized in 3-D because its variable form and lattice arrangement precluded imaging by averaging methods of 3-D reconstruction. Recently, nonaveraging tomographic methods have been developed and successfully applied to rigor and aqueous-PNP, facilitating characterization of variable crossbridge forms that occur in situ (Taylor and Winkler, 1995, 1996; Schmitz et al., 1996; Winkler and Taylor, 1996). IFM is superb for structural study because the symmetry and spatial arrangement of filaments results in paired crossbridges on opposite sides of the actin filament. This in turn has given rise to a unique shorthand terminology. The individual crossbridge forms are not unique to IFM, only their symmetrical placement about the thin filament. The filament arrangement also facilitates the microtomy of a type of thin section with coplanar filaments that provide views of the entire crossbridge. The best of these, the myac layer, is a 25-nm-thick longitudinal section containing alternating myosin and actin filaments. In rigor, the maximum number of myosin heads attach to actin, forming doublet pairs every 38.7 nm, the “double chevrons” (Reedy, 1968). “Lead bridges,” which form the pair proximal to the M-band, consist of both heads of a myosin molecule and show an overall axial angle of 45° (Taylor et al., 1984). “Rear bridges,” which form the pair proximal to the Z-disk, consist of a single myosin head angled closer to 90°. Crossbridges originate from the thick filament along helical tracks so the azimuths of their origins follow a regular pattern. Relative to the thin filament in the myac layer, the lead bridges originate from the left-front and back-right of the adjacent thick filaments, while rear bridges originate from the left-back and right-front. At their actin ends, the crossbridge attachments follow the changing rotation of the actin protomers along the actin helix. The combination of the azimuth of the origin and the azimuth of the crossbridge contact to actin define the azimuthal angle of the crossbridge.Target zone is the name given to the region of the thin filament where crossbridges bind (Reedy, 1968); by implication this is the region of the thin filament where actin monomers are most favorably placed for actomyosin interaction. In our previous 3-D reconstructions of rigor and aqueous-PNP (Schmitz et al., 1996; Winkler et al., 1996), it was recognized that troponin maintained a constant position with respect to the most regularly positioned crossbridges, the lead bridges, and could thus be used as a landmark to determine the actin dyad orientation in the lead bridge target zone. The most sterically favorable actin position for crossbridge binding in the IFM lattice is midway between troponin densities, where lead bridges bind. The strained structure of the rigor rear bridges suggests that they bind at the very edge of the target zone (Schmitz et al., 1996; Winkler et al., 1996). The target zone defined by lead bridges alone is narrower than target zones previously considered for rigor muscle (Reedy, 1968) because it does not include rear bridge targets. When aqueous AMPPNP was added to rigor IFM, the tension dropped by two thirds, but the stiffness remained as high as rigor. This initially suggested a reversal of the power stroke, but 3-D reconstructions revealed that the lead bridges remained attached, midway between troponin densities, at axial and azimuthal angles close to rigor. The drop in tension without a large change in axial angle seemed to contradict the lever arm hypothesis for motion producing force. However, a cause for the loss of tension was found in tomograms, which showed that rear bridges detached and were replaced by nonrigor bridges bound to actins outside of the rigor target zone, to sites not selected by crossbridges even under the high-affinity conditions of rigor. These nontarget bridges in aqueous-PNP had variable axial and azimuthal angles and appeared to bind actin with variable contact interfaces. This suggested that they were nonspecifically bound to actin. Moreover, their variable structure did not suggest how a simple axial angle change could convert them to a familiar form, such as an angled rigor bridge. However, an intriguing doublet crossbridge group with a consistent structure was recognized in aqueous-PNP. Immediately M-ward of the “lead” rigor-like bridge was a “nonrigor” bridge bound at a 90° or antirigor angle. In this doublet, called a mask motif, both lead and M-ward nonrigor bridge pairs had similar azimuths and contact interfaces with actin and bound within the lead bridge target zone. A simple angle change could convert the M-ward, nonrigor bridge in a mask motif to a single headed lead bridge. Thus, in the mask motif, the lead bridge could be at the end of the power stroke, with the M-ward, nonrigor bridge near the beginning. The pairing of rigor and antirigor angled crossbridges bound to the same target zone suggests that crossbridges might act as a relay during muscle contraction (Schmitz et al., 1996). The affinity of myosin for actin in aqueous-PNP is high compared with weak binding intermediates thought to represent the beginning of the power stroke (Green and Eisenberg, 1980; Biosca et al., 1990). Therefore, the M-ward crossbridge in the mask motif may not represent the best candidate for a preforce crossbridge. Thus, it is important to characterize crossbridge structure in a state with lower actomyosin affinity, such as the stiff glycol-PNP state, where earlier 2-D analysis indicated that weakly attached 90° bridges are prevalent (Reedy et al., 1988). In this work, we have used two spatially invariant features, troponin position and lead crossbridge origins, to identify distinct classes of crossbridges. The invariant position of troponin recognized in 3-D reconstructions allows us to identify the lead bridge target zone and the actin dyad orientation relative to the bound crossbridges. In addition, the “front-back” rule for the azimuth of the origins of the lead target zone bridges distinguishes crossbridges that bind actin with the correct azimuth for specific binding from those that bind nonspecifically. By fitting the myosin subfragment 1 (S1) atomic structure to the in situ bridges, we can compare the positions of the motor and regulatory domains. Previous results and models have introduced the idea that during a power stroke, the crossbridge rotates over the actin binding site while acting as a long, relatively rigid lever arm (Huxley and Simmons, 1971), while others propose that the motor domain position remains constant and light chain domain movements provide a shorter lever arm (Rayment et al., 1993b ; Whittaker et al., 1995). Our previous results (Reedy et al., 1987, 1988; Schmitz et al., 1996; Winkler et al., 1996) and the present work show (a) that regulatory domain position can vary significantly while motor domain position remains constant and (b) that the motor domain can bind actin with varying orientations. This work supports the possibility that both rotation of the motor domain on actin and movements of the regulatory domain could contribute to the power stroke.  相似文献   

10.
Skeletal muscle myosin light chain kinase (skMLCK) is a dedicated Ca2+/calmodulin-dependent serine–threonine protein kinase that phosphorylates the regulatory light chain (RLC) of sarcomeric myosin. It is expressed from the MYLK2 gene specifically in skeletal muscle fibers with most abundance in fast contracting muscles. Biochemically, activation occurs with Ca2+ binding to calmodulin forming a (Ca2+)4•calmodulin complex sufficient for activation with a diffusion limited, stoichiometric binding and displacement of a regulatory segment from skMLCK catalytic core. The N-terminal sequence of RLC then extends through the exposed catalytic cleft for Ser15 phosphorylation. Removal of Ca2+ results in the slow dissociation of calmodulin and inactivation of skMLCK. Combined biochemical properties provide unique features for the physiological responsiveness of RLC phosphorylation, including (1) rapid activation of MLCK by Ca2+/calmodulin, (2) limiting kinase activity so phosphorylation is slower than contraction, (3) slow MLCK inactivation after relaxation and (4) much greater kinase activity relative to myosin light chain phosphatase (MLCP). SkMLCK phosphorylation of myosin RLC modulates mechanical aspects of vertebrate skeletal muscle function. In permeabilized skeletal muscle fibers, phosphorylation-mediated alterations in myosin structure increase the rate of force-generation by myosin cross bridges to increase Ca2+-sensitivity of the contractile apparatus. Stimulation-induced increases in RLC phosphorylation in intact muscle produces isometric and concentric force potentiation to enhance dynamic aspects of muscle work and power in unfatigued or fatigued muscle. Moreover, RLC phosphorylation-mediated enhancements may interact with neural strategies for human skeletal muscle activation to ameliorate either central or peripheral aspects of fatigue.  相似文献   

11.
The relay domain of myosin is hypothesized to function as a communication pathway between the nucleotide-binding site, actin-binding site and the converter domain. In Drosophila melanogaster, a single myosin heavy chain gene encodes three alternative relay domains. Exon 9a encodes the indirect flight muscle isoform (IFI) relay domain, whereas exon 9b encodes one of the embryonic body wall isoform (EMB) relay domains. To gain a better understanding of the function of the relay domain and the differences imparted by the IFI and the EMB versions, we constructed two transgenic Drosophila lines expressing chimeric myosin heavy chains in indirect flight muscles lacking endogenous myosin. One expresses the IFI relay domain in the EMB backbone (EMB-9a), while the second expresses the EMB relay domain in the IFI backbone (IFI-9b). Our studies reveal that the EMB relay domain is functionally equivalent to the IFI relay domain when it is substituted into IFI. Essentially no differences in ATPase activity, actin-sliding velocity, flight ability at room temperature or muscle structure are observed in IFI-9b compared to native IFI. However, when the EMB relay domain is replaced with the IFI relay domain, we find a 50% reduction in actin-activated ATPase activity, a significant increase in actin affinity, abolition of actin sliding, defects in myofibril assembly and rapid degeneration of muscle structure compared to EMB. We hypothesize that altered relay domain conformational changes in EMB-9a impair intramolecular communication with the EMB-specific converter domain. This decreases transition rates involving strongly bound actomyosin states, leading to a reduced ATPase rate and loss of actin motility.  相似文献   

12.
To study the orientation and dynamics of myosin, we measured fluorescence polarization of single molecules and ensembles of myosin decorating actin filaments. Engineered chicken gizzard regulatory light chain (RLC), labeled with bisiodoacetamidorhodamine at cysteine residues 100 and 108 or 104 and 115, was exchanged for endogenous RLC in rabbit skeletal muscle HMM or S1. AEDANS-labeled actin, fully decorated with labeled myosin fragment or a ratio of approximately 1:1000 labeled:unlabeled myosin fragment, was adhered to a quartz slide. Eight polarized fluorescence intensities were combined with the actin orientation from the AEDANS fluorescence to determine the axial angle (relative to actin), the azimuthal angle (around actin), and RLC mobility on the <10 ms timescale. Order parameters of the orientation distributions from heavily labeled filaments agree well with comparable measurements in muscle fibers, verifying the technique. Experiments with HMM provide sufficient angular resolution to detect two orientations corresponding to the two heads in rigor. Experiments with S1 show a single orientation intermediate to the two seen for HMM. The angles measured for HMM are consistent with heads bound on adjacent actin monomers of a filament, under strain, similar to predictions based on ensemble measurements made on muscle fibers with electron microscopy and spectroscopic experiments.  相似文献   

13.
Multiple drug resistance protein 1 (MDR1) is composed of two homologous halves separated by an intracellular linker region. The linker has been reported to bind myosin regulatory light chain (RLC), but it is not clear how this can occur in the context of a myosin II complex. We characterized MDR1-RLC interactions and determined that binding occurs via the amino terminal of the RLC, a domain that typically binds myosin heavy chain. MDR1-RLC interactions were sensitive to the phosphorylation state of the light chain in that phosphorylation by myosin light chain kinase (MLCK) resulted in a loss of binding in vitro. We used ML-7, a specific inhibitor of MLCK, to study the functional consequences of disrupting RLC phosphorylation in intact cells. Pretreatment of polarized Madin-Darby canine kidney cells stably expressing MDR1 with ML-7 produced a significant increase in apical to basal permeability and a corresponding decrease in the efflux ratio (threefold; p < 0.01) of [3H]-digoxin, a classic MDR1 substrate. Together these data show that MDR1-mediated transport of [3H]-digoxin can be modulated by pharmacological manipulation of myosin RLC, but direct MDR1-RLC interactions are atypical and not explained by the structure of the myosin II holoenzyme.  相似文献   

14.
Low-resolution three-dimensional structures of acto-myosin subfragment-1 (S1) complexes were retrieved from X-ray fiber diffraction patterns, recorded either in the presence or absence of ADP. The S1 was obtained from various myosin-II isoforms from vertebrates, including rabbit fast-skeletal and cardiac, chicken smooth and human non-muscle IIA and IIB species, and was diffused into an array of overstretched, skinned skeletal muscle fibers. The S1 attached to the exposed actin filaments according to their helical symmetry. Upon addition of ADP, the diffraction patterns from acto-S1 showed an increasing magnitude of response in the order as listed above, with features of a lateral compression of the whole diffraction pattern (indicative of increased radius of the acto-S1 complex) and an enhancement of the fifth layer-line reflection. The structure retrieval indicates that these changes are mainly due to the swing of the light chain (LC) domain in the direction consistent with the cryo-electron microscopic results. In the non-muscle isoforms, the swing is large enough to affect the manner of quasi-crystal packing of the S1-decorated actin filaments and their lattice dimension, with a small change in the twist of actin filaments. Variations also exist in the behavior of the 50K-cleft, which apparently opens upon addition of ADP to the non-muscle isoforms but not to other isoforms. The fast-skeletal S1 remains as the only isoform that does not clearly exhibit either of the structural changes. The results indicate that the "conventional" myosin-II isoforms exhibit a wide variety of structural behavior, possibly depending on their functions and/or the history of molecular evolution.  相似文献   

15.
Phosphorylation and Ca2+-Mg2+ exchange on the regulatory light chains (RLCs) of skeletal myosin modulate muscle contraction. However, the relation between the mechanisms for the effects of phosphorylation and metal ion exchange are not clear. We propose that modulation of skeletal muscle contraction by phosphorylation of the myosin regulatory light chains (RLCs) is mediated by altered electrostatic interactions between myosin heads/necks and the negatively charged thick filament backbone. Our study, using the in vitro motility assay, showed actin motility on hydrophilic negatively charged surfaces only over the HMM with phosphorylated RLCs both in the presence and absence of Ca2+. In contrast, good actin motility was observed on silanized surfaces (low charge density), independent of RLC phosphorylation status but with markedly lower velocity in the presence of Ca2+. The data suggest that Ca2+-binding to, and phosphorylation of, the RLCs affect the actomyosin interaction by independent molecular mechanisms. The phosphorylation effects depend on hydrophobicity and charge density of the underlying surface. Such findings might be exploited for control of actomyosin based transportation of cargoes in lab-on-a chip applications, e.g. local and temporary stopping of actin sliding on hydrophilic areas along a nanosized track.  相似文献   

16.

Background

Isometric muscle contraction, where force is generated without muscle shortening, is a molecular traffic jam in which the number of actin-attached motors is maximized and all states of motor action are trapped with consequently high heterogeneity. This heterogeneity is a major limitation to deciphering myosin conformational changes in situ.

Methodology

We used multivariate data analysis to group repeat segments in electron tomograms of isometrically contracting insect flight muscle, mechanically monitored, rapidly frozen, freeze substituted, and thin sectioned. Improved resolution reveals the helical arrangement of F-actin subunits in the thin filament enabling an atomic model to be built into the thin filament density independent of the myosin. Actin-myosin attachments can now be assigned as weak or strong by their motor domain orientation relative to actin. Myosin attachments were quantified everywhere along the thin filament including troponin. Strong binding myosin attachments are found on only four F-actin subunits, the “target zone”, situated exactly midway between successive troponin complexes. They show an axial lever arm range of 77°/12.9 nm. The lever arm azimuthal range of strong binding attachments has a highly skewed, 127° range compared with X-ray crystallographic structures. Two types of weak actin attachments are described. One type, found exclusively in the target zone, appears to represent pre-working-stroke intermediates. The other, which contacts tropomyosin rather than actin, is positioned M-ward of the target zone, i.e. the position toward which thin filaments slide during shortening.

Conclusion

We present a model for the weak to strong transition in the myosin ATPase cycle that incorporates azimuthal movements of the motor domain on actin. Stress/strain in the S2 domain may explain azimuthal lever arm changes in the strong binding attachments. The results support previous conclusions that the weak attachments preceding force generation are very different from strong binding attachments.  相似文献   

17.
Mutations in the cardiac myosin regulatory light chain (RLC, MYL2 gene) are known to cause inherited cardiomyopathies with variable phenotypes. In this study, we investigated the impact of a mutation in the RLC (K104E) that is associated with hypertrophic cardiomyopathy (HCM). Previously in a mouse model of K104E, older animals were found to develop cardiac hypertrophy, fibrosis, and diastolic dysfunction, suggesting a slow development of HCM. However, variable penetrance of the mutation in human populations suggests that the impact of K104E may be subtle. Therefore, we generated human cardiac myosin subfragment-1 (M2β-S1) and exchanged on either the wild type (WT) or K104E human ventricular RLC in order to assess the impact of the mutation on the mechanochemical properties of cardiac myosin. The maximum actin-activated ATPase activity and actin sliding velocities in the in vitro motility assay were similar in M2β-S1 WT and K104E, as were the detachment kinetic parameters, including the rate of ATP-induced dissociation and the ADP release rate constant. We also examined the mechanical performance of α-cardiac myosin extracted from transgenic (Tg) mice expressing human wild type RLC (Tg WT) or mutant RLC (Tg K104E). We found that α-cardiac myosin from Tg K104E animals demonstrated enhanced actin sliding velocities in the motility assay compared with its Tg WT counterpart. Furthermore, the degree of incorporation of the mutant RLC into α-cardiac myosin in the transgenic animals was significantly reduced compared with wild type. Therefore, we conclude that the impact of the K104E mutation depends on either the length or the isoform of the myosin heavy chain backbone and that the mutation may disrupt RLC interactions with the myosin lever arm domain.  相似文献   

18.
The orientation of the ELC region of myosin in skeletal muscle was determined by polarized fluorescence from ELC mutants in which pairs of introduced cysteines were cross-linked by BSR. The purified ELC-BSRs were exchanged for native ELC in demembranated fibers from rabbit psoas muscle using a trifluoperazine-based protocol that preserved fiber function. In the absence of MgATP (in rigor) the ELC orientation distribution was narrow; in terms of crystallographic structures of the myosin head, the LCD long axis linking heavy-chain residues 707 and 843 makes an angle (β) of 120-125° with the filament axis. This is ∼30° larger than the broader distribution determined previously from RLC probes, suggesting that, relative to crystallographic structures, the LCD is bent between its ELC and RLC regions in rigor muscle. The ELC orientation distribution in relaxed muscle had two broad peaks with β ∼70° and ∼110°, which may correspond to the two head regions of each myosin molecule, in contrast with the single broad distribution of the RLC region in relaxed muscle. During isometric contraction the ELC orientation distribution peaked at β ∼105°, similar to that determined previously for the RLC region.  相似文献   

19.
Smooth muscle myosin has two reactive thiols located near the C-terminal region of its motor domain, the “converter”, which rotates by ∼70° upon the transition from the “nucleotide-free” state to the “pre-power stroke” state. The incorporation rates of a thiol reagent, 5-(((2-iodoacetyl)amino)ethyl)aminonaphthalene-1-sulfonic acid (IAEDANS), into these thiols were greatly altered by adding ATP or changing the myosin conformation. Comparisons of the myosin structures in the pre-power stroke state and the nucleotide-free state explained why the reactivity of both thiols is especially sensitive to a conformational change around the converter, and thus can be used as a sensor of the rotation of the converter. Modeling of the myosin structure in the pre-power stroke state, in which the most reactive thiol, “SH1”, was selectively modified with IAEDANS, revealed that this label becomes an obstacle when the converter completely rotates toward its position in the pre-power stroke state, thus resulting in incomplete rotation of the converter. Therefore, we suggest that the limitation of the converter rotation by modification causes the as-yet unexplained phenomena of SH1-modified myosin, including the inhibition of 10S myosin formation and the losses in phosphorylation-dependent regulation of the basic and actin-activated Mg-ATPase activities of myosin.  相似文献   

20.
In regulated myosin, motor and enzymatic activities are toggled between the on-state and off-state by a switch located on its lever arm domain, here called the regulatory domain (RD). This region consists of a long α-helical “heavy chain” stabilized by a “regulatory” light chain (RLC) and an “essential” light chain (ELC). The on-state is activated by phosphorylation of the RLC of vertebrate smooth muscle RD or by direct binding of Ca2+ to the ELC of molluscan RD. Crystal structures are available only for the molluscan RD. To understand in more detail the pathway between the on-state and the off-state, we have now also determined the crystal structure of a molluscan (scallop) RD in the absence of Ca2+. Our results indicate that loss of Ca2+ abolishes most of the interactions between the light chains and may increase the flexibility of the RD heavy chain. We propose that disruption of critical links with the C-lobe of the RLC is the key event initiating the off-state in both smooth muscle myosins and molluscan myosins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号