首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular cloning of cDNAs encoding alpha-subunits of guanine nucleotide-binding regulatory proteins (G-proteins) has revealed the existence of nine species of alpha-subunits. We have identified two additional G-protein alpha-subunits, which we refer to as GL1 alpha and GL2 alpha, by isolating bovine liver cDNA clones that cross-hybridized at reduced stringency with bovine Gi1 alpha-subunit cDNA. The deduced amino acid sequences of GL1 alpha and GL2 alpha share 83% identity with each other and show 45-55% identity with those of other known G-protein alpha-subunits. Both GL1 alpha and GL2 alpha lack a consensus site for ADP-ribosylation by pertussis toxin. Messenger RNA corresponding to GL2 alpha was detected in all tissues examined, but GL1 alpha mRNA was detected only in liver, lung, and kidney. Antiserum prepared against a synthetic pentadecapeptide corresponding to the deduced carboxyl terminus of GL2 alpha specifically reacted with a 40-kDa protein in mouse liver, brain, lung, heart, kidney, and spleen. The amount of the 40-kDa protein was highest in brain and lung. We suggest that GL1 alpha and GL2 alpha are new members of a subfamily of pertussis toxin-insensitive G-proteins.  相似文献   

2.
In rat myometrial membranes, two 3H-Bradykinin binding sites with KD values of 16 pM and 1.0 nM were identified. Employed at pM concentrations, bradykinin stimulated high affinity GTPases. This effect was abolished by the bradykinin antagonist, [D-Arg(Hyp3-Thi5,8, D-Phe7)]bradykinin (10 microM), and by treatment of membranes with pertussis toxin. Myometrial membranes contained two pertussis toxin substrates of 40 and 41 kDa, which corresponded immunologically to alpha-subunits of Gi-type G-proteins. The faster migrating substrate was tentatively identified as Gi2 alpha-subunit. The electrophoretic mobility of the slower migrating Gi alpha-subunit was very similar to that of the Gi3 alpha-subunit. Go alpha-subunits were not detected. Thus, in uterine smooth muscle, G-proteins of the Gi-family (Gi2, Gi3) couple high-affinity bradykinin receptors to their effector enzymes.  相似文献   

3.
In membranes of neuroblastoma x glioma (NG108-15) hybrid cells, the photoreactive GTP analog, [alpha-32P] GTP azidoanilide, was incorporated into 39-41-kDa proteins comigrating in urea-containing sodium dodecyl sulfate-polyacrylamide gels with immunologically identified G-protein alpha-subunits, i.e. a 39-kDa Go alpha-subunit, a 40-kDa Gi2 alpha-subunit, and a 41-kDa Gi alpha-subunit of an unknown subtype. The synthetic opioid, D-Ala2,D-Leu5-enkephalin (DADLE), stimulated photolabeling of the 39-41-kDa proteins. In the presence of GDP, which increased the ratio of agonist-stimulated to basal photolabeling, DADLE at a maximally effective concentration stimulated photolabeling of the 39- and the 40-kDa protein 2-3-fold. Somatostatin, adrenaline, and bradykinin were less potent than DADLE and, to varying degrees, stimulated photolabeling of the 40-kDa protein more than that of the 39-kDa protein. Prostaglandin E1 was inactive. The present data represent direct evidence for an activation of endogenous Go and Gi2 via opioid receptors and other receptors in the native membrane milieu.  相似文献   

4.
On separation of rat pancreatic plasma membrane proteins by two-dimensional gel electrophoresis, 15 GTP-binding protein (G-protein) alpha-subunits could be detected immunochemically using an alpha common antibody. These consisted of five 48 kDa proteins (pI 5.70, 5.80, 5.90, 6.10 and 6.25) and five 45 kDa proteins (pI 5.90, 6.05, 6.25, 6.30 and 6.70), presumably corresponding to low- and high-molecular mass forms of the Gs-protein, as well as three 40/41 kDa proteins (pI 5.50, 5.70 and 6.00) and two 39 kDa proteins (pI 5.50 and 6.00). All of these proteins except for the more acidic 39 kDa protein were ADP-ribosylated by cholera toxin (CT). In addition, the three 40/41 kDa proteins and the more alkaline 39 kDa protein were also ADP-ribosylated by pertussis toxin (PT). CT- and PT-induced ADP-ribosylation changed the pI values of G-protein alpha-subunits by 0.2 pI units to more acidic values. Preincubation of isolated pancreatic membranes with cholecystokinin octapeptide (CCK-OP), which stimulates phospholipase C in acinar cells, decreased CT-induced as well as PT-induced ADP-ribosylation of the three 40/41 kDa proteins, whereas CT-induced ADP-ribosylation of one 45 kDa (pI 5.80) and all 48 kDa proteins was enhanced in the presence of CCK. Carbachol, another stimulant of phospholipase C, had no effect. The three 40/41 kDa proteins and one 48 kDa protein could be labelled with the GTP analogue [alpha-32P]GTP-gamma-azidoanilide. CCK, but not carbachol, stimulated incorporation of the GTP analogue into all of these four proteins. Using different anti-peptide antisera specific for alpha-subunits of G-proteins we identified the three 40/41 kDa Gi-proteins as Gi1 (pI 6.00), Gi2 (pI 5.50) and Gi3 (pI 5.70). The Gi3-protein was found to be the major Gi-protein of pancreatic plasma membranes. One of the 39 kDa proteins (pI 6.0) was identified as Go. These results indicate that CCK receptors functionally interact with six Gs-proteins and with Gi1, Gi2 and Gi3-proteins. Since evidence suggests that a 40/41 kDa CT substrate is involved in the stimulation of phospholipase C in pancreatic acinar cells, it is likely that one, two or all three 40/41 kDa Gi-proteins are involved in the coupling of CCK receptors with phospholipase C.  相似文献   

5.
Pertussis toxin abolishes hormonal inhibition of adenylate cyclase, hormonal stimulation of inositol 1,4,5-trisphosphate accumulation in rat fat-cells, and catalyses the ADP-ribosylation of two peptides, of Mr 39,000 and 41,000 [Malbon, Rapiejko & Mangano (1985) J. Biol. Chem. 260, 2558-2564]. The 41,000-Mr peptide is the alpha-subunit of the G-protein, referred to as Gi, that is believed to mediate inhibitory control of adenylate cyclase by hormones. The nature of the 39,000-Mr substrate for pertussis toxin was investigated. The fat-cell 39,000-Mr peptide was compared structurally and immunologically with the alpha-subunits of two other G-proteins, Gt isolated from the rod outer segments of bovine retina and Go isolated from bovine brain. After radiolabelling in the presence of pertussis toxin and [32P]NAD+, the electrophoretic mobilities of the fat-cell 39,000-Mr peptide and the alpha-subunits of Go and Gt were nearly identical. Partial proteolysis of these ADP-ribosylated proteins generates peptide patterns that suggest the existence of a high degree of homology between the fat-cell 39,000-Mr peptide and the alpha-subunit of Go. Antisera raised against purified G-proteins and their subunits were used to probe immunoblots of purified Gt, Gi, Go, and fat-cell membrane proteins. Although recognizing the 36,000-Mr beta-subunit band of Gt, Gi, Go and a 36,000-Mr fat-cell peptide, antisera raised against Gt failed to recognize either the 39,000- or the 41,000-Mr peptides of fat-cells or the alpha-subunits of Go and Gi. Antisera raised against the alpha-subunit of Go, in contrast, recognized the 39,000-Mr peptide of rat fat-cells, but not the alpha-subunit of either Gi or Gt. These data establish the identity of Go, in addition to Gi, in fat-cell membranes and suggest the possibility that either Go or Gi alone, or both, may mediate hormonal regulation of adenylate cyclase and phospholipase C.  相似文献   

6.
The sequence of the mRNAs which encode the alpha-subunits of the signal-transducing G-proteins Gs, Go and two forms of Gi (termed Gi1 and Gi2) have recently been reported. Based on rat sequences we prepared oligodeoxynucleotide probes for measurement of these mRNAs in rat brain and peripheral tissues. The relative abundance of these mRNA species in brain was Gs greater than Go approximately Gi2 greater than Gi1. The Gs and Gi2 mRNAs had somewhat lower levels in heart, kidney and liver than in brain, and Go and Gi1 mRNAs were not detected in the peripheral tissues. Using in situ hybridization we localized each of these mRNAs within slices of the rat brain. The patterns of distribution of Gs and Gi2 mRNA were very similar, but very different from that of Go and Gi1 mRNA. These data illustrate that receptor-effector coupling G-proteins are regionally specialized in their expression. This regional specialization may reflect a selective coupling of individual G-proteins with the various neurotransmitter receptors and effector pathways.  相似文献   

7.
In the rat pituitary cell line GH3, carbachol inhibits PRL secretion in a pertussis toxin-sensitive manner. For elucidation of the underlying mechanisms, we studied the effect of carbachol on voltage-dependent Ca2+ currents. Under voltage-clamp conditions, carbachol inhibited whole-cell Ca2+ currents by about 25%. This inhibitory action of carbachol was not observed in cells treated with pertussis toxin, indicating the involvement of a pertussis toxin-sensitive G-protein. In membranes of GH3 cells, carbachol stimulated a pertussis toxin-sensitive high-affinity GTPase. In immunoblot experiments with peptide antisera, we identified two forms of the Gi alpha-subunit (41 and 40 kDa) and two forms of the Go alpha-subunit (40 and 39 kDa). The 40-kDa Gi alpha-subunit was recognized by an antibody specific for the Gi2 alpha-subunit, and the 39-kDa Go alpha-subunit was detected by an antibody specific for the Go2 alpha-subunit. Incubation of membranes with the photoreactive GTP analog [alpha-32P]GTP azidoanilide resulted in photo-labelling of 40- and 39-kDa pertussis toxin substrates comigrating with G-protein alpha-subunits of the corresponding molecular masses. Carbachol dose-dependently stimulated incorporation of the photoreactive GTP analog into the 39-kDa pertussis toxin substrate and, to a lesser extent, into 40-kDa pertussis toxin substrates. The data indicate that muscarinic receptors of GH3 cells couple preferentially to Go, which is likely to be involved in the inhibition of secretion, possibly by conferring an inhibitory effect to voltage-dependent Ca2+ channels.  相似文献   

8.
Identification of the GTP-binding protein encoded by Gi3 complementary DNA   总被引:11,自引:0,他引:11  
Three closely related, but distinct, GTP-binding proteins (G-proteins) are encoded by cDNAs arbitrarily designated Gi1, Gi2, and Gi3. The in vitro translated products of mRNAs prepared from Gi1, Gi2, and Gi3 cDNAs migrate as 41-, 40-, and 41-kDa proteins, respectively, on sodium dodecyl sulfate-polyacrylamide gels. Antisera were raised against synthetic decapeptides corresponding to a divergent sequence (residues 159-168 for Gi1 and Gi3; 160-169 for Gi2) of the three cDNAs and tested on immunoblots for reactivity with three purified G-proteins, G41 and G40 from brain and G41 from HL-60 cells. LD antisera (Gi1 peptide) react only with brain G41. LE antisera (Gi2 peptide) react only with brain G40, and SQ antisera (Gi3 peptide) react exclusively with HL-60 G41. The results indicate that the 41-kDa G-protein purified from HL-60 cells differs from the purified brain 41-kDa protein and suggest that the HL-60 cell protein corresponds to that encoded by Gi3 cDNA.  相似文献   

9.
The guanine nucleotide-binding proteins (G proteins) are heterotrimers composed of alpha-, beta-, and gamma-subunits, and each of the constituent subunits has been reported to exhibit a molecular heterogeneity. The beta- and gamma-subunits form a functional unit that does not separate under physiological conditions and interact with various alpha-subunits that appear to mainly regulate specific effectors. We thus purified the beta gamma-complex of G proteins from bovine brain membranes and found that there were chromatographically multiple forms of beta gamma-subunits which could be reassociated with various alpha-subunits. The major findings observed with the purified proteins were summarized as follows. (a) The constituent beta gamma-subunits in the brain membrane G proteins appeared to be divided into two groups in their elution profiles from a hydrophobic column. (b) Each of the two groups contained at least five different components of beta gamma-subunits upon analyzing by a high-resolution, anion-exchange column. (c) Distribution of the heterogeneous beta gamma-subunits was not identical among various trimeric G proteins such as Gi, G0, and Gs. (d) The heterogeneous beta gamma-components were able to interact with a specific alpha-subunit resulting in the alpha beta gamma-trimer that served as the substrate of pertussis toxin-catalyzed ADP-ribosylation. (e) However, the apparent abilities of some beta gamma-subunits to support the toxin-induced modification were significantly different in a special comparison between the two beta gamma-groups that were eluted from the hydrophobic column. These results indicated that there were multiple forms of beta gamma-subunits associating with the specific alpha-subunit of a trimeric G protein and that some of those had different affinities for various alpha-subunits in terms of their tight associations. A possible role of the heterogeneity in beta gamma-subunits is also discussed in terms of G protein-mediated signal transductions.  相似文献   

10.
A cDNA encoding a previously unknown G protein alpha-subunit lacking the site for pertussis toxin-catalyzed ADP-ribosylation was recently cloned and its putative protein product named Gz (Fong, H. K. W., Yoshimoto, K. K., Eversole-Cire, P., and Simon, M. I. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 3066-3070) or Gx (Matsuoka, M., Itoh, H. Kozasa, T., and Kaziro, Y. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 5384-5388). A synthetic peptide corresponding to the deduced carboxyl-terminal decapeptide of this putative protein (alpha z) has been synthesized and used to prepare a polyclonal rabbit antiserum directed against the protein. The specificity and cross-reactivity of this antiserum was assessed using bacterially expressed recombinant G protein alpha-subunit fusion proteins (r alpha). The crude antiserum strongly recognizes r alpha z in immunoblots. Pretreatment of antiserum with antigen peptide greatly reduces the interaction of the antiserum with r alpha z. Affinity purified antiserum strongly recognizes expressed r alpha z, does not recognize r alpha s1, r alpha s1, r alpha o, or r alpha i3, and very weakly interacts with r alpha i1 and r alpha i2. In contrast, the alpha-subunits of purified bovine brain Gi1 and human erythrocyte Gi2 and Gi3 did not react with the alpha z-antiserum. Partially purified mixtures of human erythrocyte G proteins contain a 41-kDa protein that reacts specifically in immunoblots with both crude and affinity purified alpha z-specific antiserum. Quantitative immunoblotting using r alpha z as a standard indicates that there is 60-100 ng of alpha z/micrograms of 40/41-kDa alpha-subunit protein in partially purified human erythrocyte G protein preparations. We conclude that we have identified the alpha z gene product as a 41-kDa trace protein in human erythrocytes.  相似文献   

11.
The complexion of the adenylate cyclase system and in particular, the regulation of G-proteins was examined in 3T3-L1 cells during differentiation from a fibroblast-like to an adipocyte-like phenotype. Gs alpha (the identified regulatory component of hormone-sensitive adenylate cyclase that mediates stimulation), measured by cholera toxin-catalyzed ADP-ribosylation, increased by approximately 6-fold from day 0 to day 8. Gs alpha, measured by functional reconstitution, increased in specific activity by approximately 3-fold from day 0 to day 8. Both Gi alpha (the G-protein with alpha-subunit Mr 40,000-41,000 whose function is in part the mediation of inhibition of adenylate cyclase) and Go alpha (the highly abundant G-protein first isolated from bovine brain whose effector system remains to be established) measured by pertussis toxin-catalyzed ADP-ribosylation increased by approximately 4-fold over this same period. 3T3-L1 cells possess beta-subunits of G-proteins displaying Mr = 36,000 (beta 36) and Mr = 35,000 (beta 35). The increase in the beta 35 as well as beta 36 subunits was approximately 2-fold. Using quantitative immunoblotting techniques and specific antisera, the total amount of beta-subunits was determined to be 150 as compared to 70 pmol/mg of membrane protein, while the amount of Go alpha was 40 and 10 pmol/mg of membrane protein in adipocytes and fibroblasts, respectively. Since Go alpha is the most abundant G-protein alpha-subunit observed to date in both phenotypes, the overall ratio of beta- to alpha-subunits of G-proteins appears to decrease from approximately 4.7 in fibroblasts to 2.5 in adipocytes. These data suggest that in differentiation not only is the complexion of G-proteins altered but more importantly, the relative amounts of alpha- to beta-subunits are regulated.  相似文献   

12.
Adipocyte plasma membranes contain two Gi subtypes but are devoid of Go   总被引:5,自引:0,他引:5  
Antisera generated against synthetic peptides were used to identify G-protein alpha-subunits in plasma membranes from rat adipocytes. Applying the immunoblot technique, we detected two Gs alpha-subunits of 42 and 43 kDa, corresponding to the two cholera toxin substrates, and two Gi alpha-subunits of 40 and 41 kDa, corresponding to the two pertussis toxin substrates present in these membranes. The 40 kDa protein was tentatively identified as the Gi2 alpha-subunit. A serum specific for the Go alpha-subunit failed to detect any immunoreactive protein. Thus plasma membranes of adipocytes possess two forms of Gi but not Go.  相似文献   

13.
We have studied the influence of thyroid hormone status in vivo on expression of the genes encoding guanine nucleotide-binding regulatory protein (G protein) alpha-subunits Gs alpha, Gi alpha(2), Gi alpha(3), and both the 36-kDa form (beta 1) and the 35-kDa form (beta 2) of the beta-subunit in rat ventricle. The relative amounts of immunoactive Gi alpha(2) and Gi alpha(3) were greater in ventricular membranes from hypothyroid animals than from euthyroid animals (1.9- and 2.6-fold, respectively). A corresponding 2.3-fold increase in Gi alpha(2) mRNA was observed as well as a 1.5-fold increase in Gi alpha(3) mRNA. The relative amounts of immunoactive beta 1 and beta 2 polypeptides were also increased (2.8- and 1.8-fold, respectively) in the hypothyroid state and corresponded with comparable increases in the relative levels of beta 1 and beta 2 mRNAs. No difference was seen between the amounts of Gi alpha(2), Gi alpha(3), beta 1, and beta 2 in the euthyroid state and the hyperthyroid state. In contrast to these effects of thyroid hormone status on Gi alpha and beta, the steady-state amounts of Gs alpha protein and mRNA were not altered by thyroid hormone status. Thyroid hormone status did not alter sensitivity of adenylyl cyclase to stimulation by sodium fluoride or guanyl-5'-yl imidodiphosphate (GppNHp), nor did it influence GppNHp-induced inhibition of forskolin-stimulated enzyme activity. These results demonstrate that thyroid hormone status in vivo can regulate expression of specific G protein subunits in rat myocardium. However, the physiological consequences of these changes remain unclear.  相似文献   

14.
D J Carty  R Iyengar 《FEBS letters》1990,262(1):101-103
Purified preparations of human erythrocyte G-proteins contain a 43 kDa pertussis toxin substrate which appears to be the alpha-subunit of a heterotrimeric GTP-binding protein. The 43 kDa protein is recognized by antisera that are sequence-specific for peptides encoding a sequence common to all 39-53 kDa G-protein alpha-subunits. G alpha o-specific antiserum did not recognize 43 or 40-41 kDa alpha-subunits. AS/6, which recognizes the alpha i proteins, recognized 43 kDa as well as 40-41 kDa proteins. Of the three antisera specific for individual members of the alpha i family, only the Gi3-specific antiserum recognized the 43 kDa erythrocyte G-protein. However, 40-41 kDa forms of all three alpha is are present. These observations indicate that human erythrocytes contain a novel 43 kDa form of Gi3.  相似文献   

15.
In locust skeletal muscle, FMRFamide-like peptides decrease a K+ conductance. Functional data suggest the involvement of G-proteins. For identification of G-protein alpha-subunits, membranes of locust skeletal muscle were probed with ADP-ribosylating bacterial toxins, the photoreactive GTP analog, [alpha-32P]GTP azidoanilide, and with antibodies against mammalian alpha-subunits. Multiple guanine nucleotide-binding proteins of approximately 24-95 kDa were detected. Pertussis toxin catalyzed the ADP-ribosylation of two proteins comigrating with the ADP-ribosylated alpha-subunits of the mammalian G-proteins Go and Gi. Cholera toxin promoted ADP-ribosylation of a protein comigrating with mammalian cholera toxin substrates (i.e., Gs alpha-subunits). An antibody against mammalian Go alpha-subunits detected a 54-kDa protein. Thus proteins with properties of mammalian G-protein subunits are present in insect muscle.  相似文献   

16.
We have reported previously that prolonged incubation of adipocytes with (-)-N6-phenylisopropyl adenosine (PIA) (an A1 adenosine receptor agonist) down-regulates A1 adenosine receptors. There was a concomitant decrease in pertussis toxin catalyzed ADP-ribosylation of a 41-kDa peptide thought to be the alpha-subunit of Gi. To determine whether this represents true down-regulation of the G-protein, and if so which of the three known forms of Gi are down-regulated, we have used antipeptide antisera specific for Gi alpha-subunits. Serum SG1 recognizes alpha i1 and -2, I1C recognizes only alpha i1, and I3B recognizes alpha i3. Rat adipocytes were maintained in primary culture for up to 7 days with 0-1000 nM PIA. Crude membrane preparations were analyzed by Western blots. There was almost complete loss of alpha i1 and -3, and about 50% loss of alpha i2 from PIA-treated cells. The loss of each alpha i was detectable after 24 h with 300 nM PIA and maximal by 4 days. After 4 days, down-regulation was detectable with 3 nM and maximal with 100 nM PIA. Antiserum BN2 demonstrated approximately 50% loss of G-protein beta-subunits in cells treated with 300 nM PIA for 4 days. When cells were incubated for 4 days with 300 nM PIA and then washed to remove PIA, alpha i1, -2, and -3 and beta-subunits returned to control levels within 5 days. Antiserum CS1 detected normal amounts of both the 43- and 47-kDa forms of Gs alpha in PIA-treated cells. We conclude that Gi alpha-subunits are down-regulated along with the adenosine receptor in rat adipocytes.  相似文献   

17.
The ADP-ribosyl moiety of NAD was transferred to a 40-kDa protein when rat liver nuclei were incubated with pertussis toxin. The 40-kDa substrate in the nuclei displayed unique properties as follows, some of which were apparently distinct from those observed with the toxin-substrate GTP-binding protein (Gi) in the liver plasma membranes. 1) The nuclear 40-kDa protein was recognized with antibodies reacting with the alpha-subunits (alpha i-1 and alpha i-2) of Gi, but not with anti-Go-alpha-subunit antibody. 2) The nuclear protein had a higher mobility than alpha-subunit of the plasma membrane-bound Gi upon electrophoresis with a urea/sodium dodecyl sulfate-containing polyacrylamide gel. 3) The nuclear protein was not extracted from the nuclei with 1% Triton X-100, whereas Gi was easily solubilized from the plasma membranes. 4) There was a beta gamma-subunit-like activity in the nuclei, which was assayed by an ability to support pertussis toxin-catalyzed ADP-ribosylation of a purified alpha-subunit of Gi. Moreover, a 36-kDa protein in the nuclei was recognized with antibody raised against purified beta-subunits of Gi. 5) Pertussis toxin-induced ADP-ribosylation of the nuclear protein was selectively inhibited by the addition of a nonhydrolyzable GTP analogue, and its inhibitory action was competitively blocked by the simultaneous addition of GDP or its analogues, as had been observed with plasma membrane-bound Gi. It thus appeared that a novel form of alpha beta gamma-trimeric GTP-binding protein serving as the substrate of pertussis toxin was present in rat liver nuclei. In order to examine a possible role of the nuclear GTP-binding protein, rats were injected with carbon tetrachloride, a necrosis inducer of hepatocytes. There was a marked increase in the nuclear substrate activity from 3-6 days after the injection, without a significant change in the activity of Gi in the plasma membranes. The time course of the increase corresponded with a recovering stage from the hepatocyte necrosis. These results suggested that the nuclear GTP-binding protein found in the present study might be involved at some stages in the hepatocyte growth.  相似文献   

18.
Plasma membranes from bovine liver contain a phosphatidylinositol 4,5-bisphosphate-specific phospholipase C (PLC) activity that is activated by guanine nucleotides. The G-proteins involved retained their ability to activate bovine brain PLC-beta 1 in a guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S)-dependent manner following extraction from the membranes with cholate and reconstitution with phospholipids. This reconstitution assay was used to purify the G-proteins by chromatography on heparin-Sepharose, DEAE-Sephacel, octyl-Sepharose, hydroxylapatite, Mono Q, and Sephacryl S-300 gel filtration. Gel electrophoresis showed that two alpha-subunits with molecular mass of 42 and 43 kDa were isolated to a high degree of purity, together with a beta-subunit. Neither alpha-subunit was a substrate for pertussis toxin-catalyzed ADP-ribosylation. Gel filtration of the final activity indicated an apparent molecular mass of 95 kDa, suggesting the presence of an alpha beta gamma heterotrimer. Immunological data revealed that the 42- and 43-kDa proteins were related to alpha-subunits of the Gq class recently purified from brain (Pang, I.-H., and Sternweis, P. C. (1990) J. Biol. Chem. 265, 18707-18712) and identified by molecular cloning (Strathmann, M., and Simon, M. I. (1990) Proc. Natl. Acad. Sci. U. S. A. 87, 9113-9117). The activation of PLC-beta 1 by the purified G-protein preparation was specific for nonhydrolyzable guanine nucleotides, the efficacy decreasing in order GTP gamma S greater than guanylimidodiphosphate greater than guanylyl(beta,gamma-methylene)-diphosphonate. Half-maximal activation required 4 microM GTP gamma S suggesting that the affinity of the G-proteins for GTP analogues is low. The GTP gamma S-dependent activation of PLC-beta 1 required millimolar Mg2+ and was inhibited by guanosine 5'-O-(2-thiodiphosphate) and by excess beta gamma-subunits. Aluminum fluoride also activated PLC-beta 1 in the presence of the G-proteins. The G-proteins were inactive toward PLC-gamma 1 or PLC-delta 1. In summary, these findings identify two G-protein activators of PLC-beta 1 that have the properties of heterotrimeric G-proteins and are members of the Gq class.  相似文献   

19.
Mouse neuroblastoma x rat glioma hybrid cells (NG108-15) express an opioid receptor of the delta subclass which both stimulates high-affinity GTPase activity and inhibits adenylate cyclase by interacting with a pertussis-toxin-sensitive guanine-nucleotide-binding protein(s) (G-protein). Four such G-proteins have now been identified without photoreceptor-containing tissues. We have generated anti-peptide antisera against synthetic peptides which correspond to the C-terminal decapeptides of the alpha-subunit of each of these G-proteins and also to the stimulatory G-protein of the adenylate cyclase cascade (Gs). Using these antisera, we demonstrate the expression of three pertussis-toxin-sensitive G-proteins in these cells, which correspond to the products of the Gi2, Gi3 and Go genes, as well as Gs. Gi1, however, is not expressed in detectable amounts. IgG fractions from each of these antisera and from normal rabbit serum were used to attempt to interfere with the interaction of the opioid receptor with the G-protein system by assessing ligand stimulation of high-affinity GTPase activity, inhibition of adenylate cyclase activity and conversion of the receptor to a state which displays reduced affinity for agonists. The IgG fraction from the antiserum (AS7) which specifically identifies Gi2 in these cells attenuated the effects of the opioid receptor. This effect was complete and was not mimicked by any of the other antisera. We conclude that the delta-opioid receptor of these cells interacts directly and specifically with Gi2 to cause inhibition of adenylate cyclase, and that Gi2 represents the true Gi of the adenylate cyclase cascade. The ability to measure alterations in agonist affinity for receptors following the use of specific antisera against a range of G-proteins implies that such techniques should be applicable to investigations of the molecular identity of the G-protein(s) which interacts with any receptor.  相似文献   

20.
The alpha-subunits of Gi and Gs were quantified in adipocyte membranes from young (2-month) and older (18-month) rats by pertussis-toxin and cholera-toxin labelling respectively. Aging was associated with a 3-fold increase in Gi alpha-subunit, but only a 2-fold increase in one of the two Gs alpha-subunit species labelled. The findings may explain the altered sensitivity of adipocytes from aged rats to lipolytic and anti-lipolytic stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号