首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Inflammatory conditions characterized by excessive peripheral immune responses are associated with diverse alterations in brain function, and brain-derived neural pathways regulate peripheral inflammation. Important aspects of this bidirectional peripheral immune–brain communication, including the impact of peripheral inflammation on brain region–specific cytokine responses, and brain cholinergic signaling (which plays a role in controlling peripheral cytokine levels), remain unclear. To provide insight, we studied gene expression of cytokines, immune cell markers and brain cholinergic system components in the cortex, cerebellum, brainstem, hippocampus, hypothalamus, striatum and thalamus in mice after an intraperitoneal lipopolysaccharide injection. Endotoxemia was accompanied by elevated serum levels of interleukin (IL)-1β, IL-6 and other cytokines and brain region–specific increases in Il1b (the highest increase, relative to basal level, was in cortex; the lowest increase was in cerebellum) and Il6 (highest increase in cerebellum; lowest increase in striatum) mRNA expression. Gene expression of brain Gfap (astrocyte marker) was also differentially increased. However, Iba1 (microglia marker) mRNA expression was decreased in the cortex, hippocampus and other brain regions in parallel with morphological changes, indicating microglia activation. Brain choline acetyltransferase (Chat ) mRNA expression was decreased in the striatum, acetylcholinesterase (Ache) mRNA expression was decreased in the cortex and increased in the hippocampus, and M1 muscarinic acetylcholine receptor (Chrm1) mRNA expression was decreased in the cortex and the brainstem. These results reveal a previously unrecognized regional specificity in brain immunoregulatory and cholinergic system gene expression in the context of peripheral inflammation and are of interest for designing future antiinflammatory approaches.  相似文献   

2.
Several studies have shown that repeated stressful experiences during childhood increases the likelihood of developing depression- and anxiety-related disorders in adulthood; however, the underlying mechanisms are not well understood. We subjected drd3-EGFP and drd3-null mice to daily, two hour restraint stress episodes over a five day period during preadolescence (postnatal day 35 to 39), followed by social isolation. When these mice reached adulthood (post-natal day > 90), we assessed locomotor behavior in a novel environment, and assessed depression-related behavior in the Porsolt Forced Swim test. We also measured the expression and function of dopamine D3 receptor in limbic brain areas such as hippocampus, nucleus accumbens and amygdala in control and stressed drd3-EGFP mice in adulthood. Adult male mice subjected to restraint stress during preadolescence exhibited both anxiety- and depression-related behaviors; however, adult female mice subjected to preadolescent restraint stress exhibited only depression-related behaviors. The development of preadolescent stress-derived psychiatric disorders was blocked by D3 receptor selective antagonist, SB 277011-A, and absent in D3 receptor null mice. Adult male mice that experienced stress during preadolescence exhibited a loss of D3 receptor expression and function in the amygdala but not in hippocampus or nucleus accumbens. In contrast, adult female mice that experienced preadolescent stress exhibited increased D3 receptor expression in the nucleus accumbens but not in amygdala or hippocampus. Our results suggest that the dopamine D3 receptor is centrally involved in the etiology of adult anxiety- and depression-related behaviors that arise from repeated stressful experiences during childhood.  相似文献   

3.
Studies of social stress in adult mice have revealed two distinct defeat-responsive behavioral phenotypes; “susceptible” and “resistant,” characterized by social avoidance and social interaction, respectively. Typically, these phenotypes are observed at least 1 day after the last defeat in adults, but may extend up to 30 days later. The current study examined the impact of peripubertal social defeat on immediate (1 day) and adult (30 day) social stress phenotypes and neuroendocrine function in male C57BL/6 mice. Initially, peripubertal (P32) mice were resistant to social defeat. When the same mice were tested for social interaction again as adults (P62), two phenotypes emerged; a group of mice were characterized as susceptible evidenced by significantly lower social interaction, whereas the remaining mice exhibited normal social interaction, characteristic of resistance. A repeated analysis of corticosterone revealed that the adult (P62) resistant mice had elevated corticosterone following the social interaction test as juveniles. This was when all mice, regardless of adult phenotype, displayed equivalent levels of social interaction. Peripubertal corticosterone was positively correlated with adult social interaction levels in defeated mice, suggesting early life stress responsiveness impacts adult social behavior. In addition, adult corticotropin-releasing factor (CRF) mRNA in the paraventricular nucleus of the hypothalamus (PVN) was elevated in all defeated mice, but there were no differences in CRF mRNA expression between the phenotypes. Thus, there is a delayed appearance of social stress-responsive phenotypes suggesting that early life stress exposure, combined with the resultant physiological responses, may interact with pubertal development to influence adult social behavior.  相似文献   

4.
The N-acyl chain length of ceramides is determined by the specificity of different ceramide synthases (CerS). The CerS family in mammals consists of six members with different substrate specificities and expression patterns. We have generated and characterized a mouse line harboring an enzymatically inactive ceramide synthase 6 (CerS6KO) gene and lacz reporter cDNA coding for β-galactosidase directed by the CerS6 promoter. These mice display a decrease in C16:0 containing sphingolipids. Relative to wild type tissues the amount of C16:0 containing sphingomyelin in kidney is ∼35%, whereas we find a reduction of C16:0 ceramide content in the small intestine to about 25%. The CerS6KO mice show behavioral abnormalities including a clasping abnormality of their hind limbs and a habituation deficit. LacZ reporter expression in the brain reveals CerS6 expression in hippocampus, cortex, and the Purkinje cell layer of the cerebellum. Using newly developed antibodies that specifically recognize the CerS6 protein we show that the endogenous CerS6 protein is N-glycosylated and expressed in several tissues of mice, mainly kidney, small and large intestine, and brain.  相似文献   

5.
We have recently demonstrated that the outcome of repeated social defeat (SD) on behavior, physiology and immunology is more negative when applied during the dark/active phase as compared with the light/inactive phase of male C57BL/6 mice. Here, we investigated the effects of the same stress paradigm, which combines a psychosocial and novelty stressor, on the circadian clock in transgenic PERIOD2::LUCIFERASE (PER2::LUC) and wildtype (WT) mice by subjecting them to repeated SD, either in the early light phase (social defeat light?=?SDL) or in the early dark phase (social defeat dark?=?SDD) across 19 days. The PER2::LUC rhythms and clock gene mRNA expression were analyzed in the suprachiasmatic nucleus (SCN) and the adrenal gland, and PER2 protein expression in the SCN was assessed. SDD mice showed increased PER2::LUC rhythm amplitude in the SCN, reduced Per2 and Cryptochrome1 mRNA expression in the adrenal gland, and increased PER2 protein expression in the posterior part of the SCN compared with single-housed control (SHC) and SDL mice. In contrast, PER2::LUC rhythms in the SCN of SDL mice were not affected. However, SDL mice exhibited a 2-hour phase advance of the PER2::LUC rhythm in the adrenal gland compared to SHC mice. Furthermore, plasma levels of brain-derived neurotrophic factor (BDNF) and BDNF mRNA in the SCN were elevated in SDL mice. Taken together, these results show that the SCN molecular rhythmicity is affected by repeated SDD, but not SDL, while the adrenal peripheral clock is influenced mainly by SDL. The observed increase in BDNF in the SDL group may act to protect against the negative consequences of repeated psychosocial stress.  相似文献   

6.
目的:探索二氢杨梅素(DHM)对慢性社会挫败应激小鼠认知与情感障碍的作用及其可能机制。方法:将C57BL/6J小鼠随机分成对照组(Control)、慢性社会挫败应激组(CSDS)和慢性社会挫败应激+DHM组(CSDS+DHM),每组14只,每天将两个应激组小鼠放入ICR攻击鼠的饲养笼中10 min,之后取出放于ICR攻击鼠饲养笼的旁边笼中,连续应激10 d,在应激5 d后,每天按10 ml/kg的量分别腹腔注射一次2%的DMSO或20 mg/kg的DHM(分散于2% DMSO中),连续注射5 d,之后每组取10只小鼠进行新颖物体识别测试、Y迷宫测试、社会交互和旷场测试、行为学测试,剩余4只小鼠于实验结束后24 h内断头取脑,采用Western blot法检测海马组织SIRT1水平。结果:与Control组比较,CSDS组小鼠的学习记忆显著降低,焦虑水平显著升高,在悬尾测试(TST)和强迫游泳测试(FST)中的不动时间显著升高,海马SIRT1蛋白水平显著降低(P均<0.05或P<0.01);与CSDS组比较,CSDS+DHM组小鼠学习记忆显著提高,小鼠焦虑水平显著降低,在TST和FST中不动时间显著降低,海马SIRT1蛋白水平显著升高(P均<0.05或P<0.01)。结论:DHM可改善CSDS诱导小鼠的认知障碍、焦虑样行为和抑郁样行为,并提高海马SIRT1蛋白的表达水平。  相似文献   

7.
8.
目的:比较青年小鼠和老年小鼠不同脑区糖原及其代谢的差异,为后续相关研究奠定基础。方法:分别取雄性C57BL/6J青年小鼠(8周龄)和老年小鼠(18月龄)皮层、海马、纹状体三个脑区脑组织,通过糖原定量试剂盒检测糖原含量,通过Western Blot检测糖原代谢相关酶(包括糖原合成、糖原分解、葡萄糖转运、乳酸转运相关酶类)的表达水平。结果:与青年小鼠相比,老年小鼠皮层、纹状体糖原含量明显上升,但海马的糖原含量无明显变化。在糖原合成代谢的关键酶中,糖原合成酶在老年小鼠皮层、纹状体的表达水平明显升高,而海马区则无明显差异;糖原分支酶在老年小鼠皮层的表达水平有所下降,在海马和纹状体则无明显变化。在糖原分解代谢的关键酶中,老年小鼠的糖原磷酸化酶在皮层、海马和纹状体均明显升高,而糖原脱支酶在上述脑区则无明显变化。葡萄糖转运体1的表达水平在老年小鼠与青年小鼠各脑区无显著差异。在单羧酸转运体中,老年小鼠单羧酸转运体1在各脑区均明显上升,单羧酸转运体4在皮层明显升高,其余脑区则无明显差异。结论:老年小鼠脑内糖原含量总体上较青年小鼠高,老年小鼠脑糖原代谢通路相关酶的表达与青年小鼠存在明显差异,且不同脑区之间存在异质性。  相似文献   

9.
ABSTRACT

Depressive disorders are partly caused by chronic inflammation through the kynurenine (KYN) pathway. Preventive intervention using anti-inflammatory reagents may be beneficial for alleviating the risk of depression. In this study, we focused on the Japanese local citrus plant, Citrus tumida hort. ex Tanaka (C. tumida; CT), which contains flavonoids such as hesperidin that have anti-inflammatory actions. The dietary intake of 5% immature peels of CT fruits slightly increased stress resilience in a subchronic and mild social defeat (sCSDS) model in mice. Moreover, the dietary intake of 0.1% hesperidin significantly increased stress resilience and suppressed KYN levels in the hippocampus and prefrontal cortex in these mice. In addition, KYN levels in the hippocampus and prefrontal cortex were significantly correlated with the susceptibility to stress. In conclusion, these results suggest that dietary hesperidin increases stress resilience by suppressing the augmentation of KYN signaling under sCSDS.  相似文献   

10.
Diabetes is associated with cognitive impairment and brain aging, with alterations in hippocampal neurogenesis and synaptic plasticity implicated in these changes. As the prevalence of diabetes continues to rise, readily implemented strategies are increasingly needed in order to protect the brain’s cognitive functions. One possibility is resveratrol (RES) (3,5,4- trihydroxystilbene), a polyphenol of the phytoalexin family that has been shown to be protective in a number of neuropathology paradigms. In the present study, we sought to determine whether dietary supplementation with RES has potential for the protection of cognitive functions in diabetes. Diabetes was induced using streptozotocin, and once stable, animals received AIN93G rodent diet supplemented with RES for 6 weeks. Genome-wide expression analysis was conducted on the hippocampus and genes of interest were confirmed by quantitative, real-time polymerase chain reaction. Genome-wide gene expression analysis of the hippocampus revealed that RES supplementation of the diabetic group resulted in 481differentially expressed genes compared to non-supplemented diabetic mice. Intriguingly, gene expression that was previously found significantly altered in the hippocampus of diabetic mice, and that is implicated in neurogenesis and synaptic plasticity (Hdac4, Hat1, Wnt7a, ApoE), was normalized following RES supplementation. In addition, pathway analysis revealed Jak-Stat signaling was the most significantly enriched pathway. The Jak-Stat pathway induces a pro-inflammatory signaling cascade, and we found most genes involved in this cascade (e.g. Il15, Il22, Socs2, Socs5) had significantly lower expression following RES supplementation. These data indicate RES could be neuroprotective and beneficial for the maintenance of cognitive function in diabetes.  相似文献   

11.
12.
Agmatine, an endogenous amine derived from decarboxylation of l-arginine catalyzed by arginine decarboxylase, has been proposed as a neurotransmitter or neuromodulator in the brain. In the present study, we examined whether agmatine has neuroprotective effects against repeated immobilization-induced morphological changes in brain tissues and possible effects of immobilization stress on endogenous agmatine levels and arginine decarboxylase expression in rat brains. Sprague–Dawley rats were subjected to 2 h immobilization stress daily for 7 days. This paradigm significantly increased plasma corticosterone levels, and the glutamate efflux in the hippocampus as measured by in vivo microdialysis. Immunohistochemical staining with β-tubulin III showed that repeated immobilization caused marked morphological alterations in the hippocampus and medial prefrontal cortex that were prevented by simultaneous treatment with agmatine (50 mg/kg/day), i.p.). Likewise, endogenous agmatine levels measured by high-performance liquid chromatography in the prefrontal cortex, hippocampus, striatum and hypothalamus were significantly increased by immobilization, as compared to controls. The increased endogenous agmatine levels, ranging from 92 to 265% of controls, were accompanied by a significant increase of arginine decarboxylase protein levels in the same regions. These results demonstrate that the administration of exogenous agmatine protects the hippocampus and medial prefrontal cortex against neuronal insults caused by repeated immobilization. The parallel increase in endogenous brain agmatine and arginine decarboxylase protein levels triggered by repeated immobilization indicates that the endogenous agmatine system may play an important role in adaptation to stress as a potential neuronal self-protection mechanism.  相似文献   

13.
The cytokines IL-1α and IL-1β exert powerful pro-inflammatory actions throughout the body, mediated primarily by the intracellular signaling capacity of the interleukin-1 receptor (IL-1R1). Although Il1r1 knockout mice have been informative with respect to a requirement for IL-1R1 signaling in inflammatory events, the constitutive nature of gene elimination has limited their utility in the assessment of temporal and spatial patterns of cytokine action. To pursue such questions, we have generated C57Bl/6J mice containing a floxed Il1r1 gene (Il1r1loxP/loxP), with loxP sites positioned to flank exons 3 and 4 and thereby the ability to spatially and temporally eliminate Il1r1 expression and signaling. We found that Il1r1loxP/loxP mice breed normally and exhibit no gross physical or behavioral phenotypes. Moreover, Il1r1loxP/loxP mice exhibit normal IL-1R1 receptor expression in brain and spleen, as well as normal IL-1R1-dependent increases in serum IL-6 following IL-1α injections. Breeding of Il1r1loxP/loxP mice to animals expressing a cytomegalovirus (CMV)-driven Cre recombinase afforded efficient excision at the Il1r1 locus. The Il1r1loxP/loxP line should be a valuable tool for the assessment of contributions made by IL-1R1 signaling in diverse cell types across development.  相似文献   

14.
The gene encoding the neural cell adhesion molecule Contactin-6 (Cntn6 a.k.a. NB-3) has been implicated as an autism risk gene, suggesting that its mutation is deleterious to brain development. Due to its GPI-anchor at Cntn6 may exert cell adhesion/receptor functions in complex with other membrane proteins, or serve as a ligand. We aimed to uncover novel phenotypes related to Cntn6 functions during development in the cerebral cortex of adult Cntn6?/? mice. We first determined Cntn6 protein and mRNA expression in the cortex, thalamic nuclei and the hippocampus at P14, which decreased specifically in the cortex at adult stages. Neuroanatomical analysis demonstrated a significant decrease of Cux1+ projection neurons in layers II-IV and an increase of FoxP2+ projection neurons in layer VI in the visual cortex of adult Cntn6?/? mice compared to wild-type controls. Furthermore, the number of parvalbumin+ (PV) interneurons was decreased in Cntn6?/? mice, while the amount of NPY+ interneurons remained unchanged. In the hippocampus the delineation and outgrowth of mossy fibers remained largely unchanged, except for the observation of a larger suprapyramidal bundle. The observed abnormalities in the cerebral cortex and hippocampus of Cntn6?/? mice suggests that Cntn6 serves developmental functions involving cell survival, migration and fasciculation. Furthermore, these data suggest that Cntn6 engages in both trans- and cis-interactions and may be involved in larger protein interaction networks.  相似文献   

15.
The myristoylated alanine-rich C kinase substrate (MARCKS) is a major protein kinase C (PKC) substrate in brain that binds the inner surface of the plasma membrane, calmodulin, and cross-links filamentous actin, all in a PKC phosphorylation-reversible manner. MARCKS has been implicated in hippocampal-dependent learning and long-term potentiation (LTP). Previous studies have shown DBA/2 mice to exhibit poor spatial/contextual learning, impaired hippocampal LTP, and hippocampal mossy fiber hypoplasia, as well as reduced hippocampal PKC activity and expression relative to C57BL/6 mice. In the present study, we assessed the expression (mRNA and protein) and subcellular distribution (membrane and cytolsol) of MARCKS in the hippocampus and frontal cortex of C57BL/6 and DBA/2 mice using quantitative western blotting. In the hippocampus, total MARCKS mRNA and protein levels in C57BL/6J mice were significantly lower ( approximately 45%) compared with DBA/2J mice, and MARCKS protein was observed predominantly in the cytosolic fraction. MARCKS expression in frontal cortex did not differ significantly between strains. To examine the dynamic regulation of MARCKS subcellular distribution, mice from each strain were subjected to 60 min restraint stress and MARCKS subcellular distribution was determined 24 h later. Restraint stress resulted in a significant reduction in membrane MARCKS expression in C57BL/6J hippocampus but not in the DBA/2J hippocampus despite similar stress-induced increases in serum corticosterone. Restraint stress did not affect cytosolic or total MARCKS levels in either strain. Similarly, restraint stress (30 min) in rats also induced a significant reduction in membrane MARCKS, but not total or cytosolic MARCKS, in the hippocampus but not in frontal cortex. In rats, chronic lithium treatment prior to stress exposure reduced hippocampal MARCKS expression but did not affect the stress-induced reduction in membrane MARCKS. Collectively these data demonstrate higher resting levels of MARCKS in the hippocampus of DBA/2J mice compared to C57BL/6J mice, and that acute stress leads to a long-term reduction in membrane MARCKS expression in C57BL/6J mice and rats but not in DBA/2J mice. These strain differences in hippocampal MARCKS expression and subcellular translocation following stress may contribute to the differences in behaviors requiring hippocampal plasticity observed between these strains.  相似文献   

16.
Engulfment and cell motility (ELMO) proteins bind to Dock180, a guanine nucleotide exchange factor (GEF) of the Rac family, and regulate GEF activity. The resultant ELMO/Dock180/Rac module regulates cytoskeletal reorganization responsible for the engulfment of apoptotic cells, cell migration, and neurite extension. The expression and function of Elmo family proteins in the nervous system, however, are not yet fully understood. Here, we characterize the comparative gene expression profiles of three Elmo family members (Elmo1, Elmo2, and Elmo3) in the brain of C57BL/6J mice, a widely used inbred strain, together with reeler mutant mice to understand gene expression in normal laminated brain areas compared with abnormal areas. Although all three Elmo genes showed widespread mRNA expression over various mouse tissues tested, Elmo1 and Elmo2 were the major types expressed in the brain, and three Elmo genes were up-regulated between the first postnatal week (infant stage) and the third postnatal week (juvenile, weaning stage). In addition, the mRNAs of Elmo genes showed distinct distribution patterns in various brain areas and cell-types; such as neurons including inhibitory interneurons as well as some non-neuronal cells. In the cerebral cortex, the three Elmo genes were widely expressed over many cortical regions, but the predominant areas of Elmo1 and Elmo2 expression tended to be distributed unevenly in the deep (a lower part of the VI) and superficial (II/III) layers, respectively, which also changed depending on the cortical areas and postnatal stages. In the dentate gyrus of the hippocampus, Elmo2 was expressed in dentate granule cells more in the mature stage rather than the immature-differentiating stage. In the thalamus, Elmo1 but not the other members was highly expressed in many nuclei. In the medial habenula, Elmo2 and Elmo3 were expressed at intermediate levels. In the cerebellar cortex, Elmo1 and Elmo2 were expressed in differentiating-mature granule cells and mature granule cells, respectively. In the Purkinje cell layer, Elmo1 and Elmo2 were expressed in Purkinje cells and Bergmann glia, respectively. Disturbed cellular distributions and laminar structures caused by the reeler mutation did not severely change expression in these cell types despite the disturbed cellular distributions and laminar structures, including those of the cerebrum, hippocampus, and cerebellum. Taken together, these results suggested that these three Elmo family members share their functional roles in various brain regions during prenatal-postnatal development.  相似文献   

17.
Several studies have been suggested that long-term exposure to stress has detrimental effects on various brain functions and leads to neurodegenerative changes. However, the precise mechanism by which stress induces brain damage or neurodegenerative change is still a matter of debate. This study investigated the damage of neuronal cells involving in the expression of iNOS, NR1, and GFAP in various brain regions and characterized the change of sphingolipid metabolites as a biomarker of physiological change in serum after 3 weeks of repeated immobilization. In this report, the expression of iNOS, GFAP and NR1 in the brain of rats exposed to chronic immobilization stress was investigated. The expression of iNOS, GFAP and NR1 was elevated in the cortex and hippocampal area after 3 weeks of repeated immobilization. Immunoreactivity for GFAP and vimentin, as a marker of reactive gliosis, was also elevated in the cortex and hippocampus. The level of sphingolipids was measured in order to assess the changes in sphingolipid metabolites in the serum of rats exposed to stress. Interestingly, the level of So-1-P was increased in the plasma of rats subjected to 6-h immobilization stress than repeated immobilization. To further investigate the modulating effect of increased So-1-P in various brain regions, So-1-P was infused into the lateral cerebroventricle at a rate of 100 pmol/10 μl/h for 7 days. The expression of iNOS and NR1 was elevated in the cortex, hippocampus, striatum, and cerebellum after So-1-P infusion into the cerebroventricle, while the level of GFAP was elevated in the hippocampus and striatum. Interestingly, the expression levels of iNOS, GFAP, and NR1 were increased by the direct application of So-1-P to cultured cortical cells. These results suggest that NO production via iNOS expression, the NR1 expression, the activation of astrocytes, and the elevation of So-1-P may cause neurodegenerative changes in rats subjected to chronic immobilization and that the elevation of So-1-P by stress exposure would be one of the stress signal molecules.  相似文献   

18.
The glycoprotein gp130 mediates intracellular transduction of signal from receptors of cytokines belonging to the interleukin-6 group. The linkage of the Il6st gene encoding the gp130 protein to heritable predisposition to hypertrophic freezing reaction (catalepsy) has been demonstrated previously in mice. The aim of the present work was to investigate the levels of Il6st mRNA, as well as the distribution of the gp130 protein and the degree of its glycosylation, in five brain regions of mice of the non-cataleptic AKR/J line and the cataleptic lines CBA/LacJ and congenic line AKR.CBA-D13Mit76, which carries the CBA variant of the Il6st gene in the AKR/J genome. These parameters were also studied in mice of the ASC line obtained by backcrossing CBA and AKR mice with the simultaneous selection for the high predisposition to catalepsy. Maximum levels of unglycosylated and glycosylated forms of the gp130 protein were detected in the midbrains of mice from all investigated lines. The highest levels of Il6st mRNA were found in the midbrain, striatum, and hypothalamus of mice of all lines. The level of Il6st mRNA in the striatum of AKR.CBA-D13Mit76 mice was higher than in the striatum of AKR/J mice. Therefore, one can assume that there is a connection between heritable catalepsy and the increased expression of the Il6st gene in the striatum.  相似文献   

19.
Tissue nonspecific alkaline phosphatase (TNAP) has a well established role in bone homeostasis and in hepatic/biliary conditions. In addition, TNAP is expressed in the inflamed intestine and is relevant to T and B lymphocyte function. TNAP KO mice are only viable for a few days, but TNAP+/? haplodeficient mice are viable. Acute pancreatitis was induced by repeated caerulein injection in WT and TNAP+/? mice. TNAP+/? mice presented an increased expression of Cxcl2, Ccl2, Selplg (P-selectin ligand), Il6 and Il1b in the pancreas. Freshly isolated acinar cells showed a dramatic upregulation of Cxcl1, Cxcl2, Ccl2, Il6, Selpg or Bax in both pancreatitis groups. TNAP+/? cells displayed a 2-fold higher expression of Cxcl2, and a smaller increase in Il6. These findings could be partly replicated by in vitro treatment of primary acinar cells with caerulein. Furthermore, the proinflammatory effect on acinar cells could be partially reproduced in wild type cells treated with the TNAP inhibitor levamisole. TNAP mRNA levels were also markedly upregulated by pancreatitis in acinar cells. Neutrophil infiltration (MRP8+ cells) and activation (IL-6 and TNF production in LPS treated primary neutrophils) were increased in TNAP+/? vs WT mice. Neutrophil depletion greatly attenuated inflammation, indicating that this cell type is mainly responsible for the higher inflammatory status of TNAP+/? mice. In conclusion, our results show that altered TNAP expression results in heightened pancreatic inflammation, which may be explained by an augmented response of neutrophils and by a higher sensitivity of acinar cells to caerulein injury.  相似文献   

20.
Diverse factors such as changes in neurotrophins and brain plasticity have been proposed to be involved in the actions of antidepressant drugs (ADs). However, in mouse models of depression based on chronic stress, it is still unclear whether simultaneous changes in behavior and neurotrophin expression occur and whether these changes can be corrected or prevented comparably by chronic administration of ADs or genetic manipulations that produce antidepressant-like effects such as the knockout of the norepinephrine transporter (NET) gene. Here we show that chronic restraint or social defeat stress induce comparable effects on behavior and changes in the expression of neurotrophins in depression-related brain regions. Chronic stress caused down-regulation of BDNF, nerve growth factor, and neurotrophin-3 in hippocampus and cerebral cortex and up-regulation of these targets in striatal regions. In wild-type mice, these effects could be prevented by concomitant chronic administration of five pharmacologically diverse ADs. In contrast, NET knock out (NETKO) mice were resistant to stress-induced depressive-like changes in behavior and brain neurotrophin expression. Thus, the resistance of the NETKO mice to the stress-induced depression-associated behaviors and biochemical changes highlight the importance of noradrenergic pathways in the maintenance of mood. In addition, these mice represent a useful model to study depression-resistant behaviors, and they might help to provide deeper insights into the identification of downstream targets involved in the mechanisms of antidepressants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号