首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The goal of this project was to regenerate Artemisia abrotanum L., Southern wormwood, by means of organogenesis from leaves. In vitro plant propagation may greatly support the molecular characterization of the medicinal qualities of A. abrotanum. Young, intact leaves were excised from mature plants and surface sterilized. Abundant callus growth, as well as shoot formation, was produced on an MS medium supplemented with 4.44 μM BA and 0.54 μM or 0.81 μM NAA. Shoots, with some residual callus, rooted equally well in MS media with 0.49 μM IBA, 0.54 μM NAA, or without hormones. Rooted plants were best acclimated in potting soil.  相似文献   

2.
Cytokinins (CKs) are often used during the in vitro cultivation of plant species. However, it is not clear how CKs, such as 6-benzylaminopurine (BAP), affect photosystem PS) II functionality and leaf anatomy over a long period of in vitro plant propagation. The aim of this study was to analyze the residual effects of BAP on the photosynthetic performance and leaf anatomy of Aechmea blanchetiana after 120 d without exposure to CKs. Aechmea blanchetiana plants previously grown in vitro were transferred to Murashige and Skoog (MS) culture media containing 0, 5, 10, 15, or 20 μM BAP. After 60 d on the MS medium with BAP, explants were subcultivated twice on the MS medium without growth regulators, first in a stationary liquid medium for 60 d and then in a solidified medium with 6 g dm-3 agar for 60 d. Leaf anatomy, pigment content, and chlorophyll a fluorescence were assessed for plants from each treatment after 120 d on the CK-free medium. Stomatal density presented a negative linear correlation with BAP concentration. Pigment content decreased in plants subjected to previous BAP exposure. An increase in absorbed energy flux per reaction center (ABS/RC) and a sharp decrease in energy transport flux (ETo/RC) followed by an increase in energy dissipation flux (DIo/RC) also occurred. Furthermore, maximum quantum yield (FV/FM) decreased as a function of BAP concentration. Thus, the use of BAP during in vitro propagation of A. blanchetiana induced long-term physiological defects.  相似文献   

3.
In vitro propagation protocols were established for endangered species of cacti Mammillaria hernandezii, M. dixanthocentron, and M. lanata. In vitro-germinated seedlings were used as the explant source. Three explant types were evaluated as apical, basal, and lateral stem sections. Shoot multiplication was achieved using Murashige and Skoog (MS) medium supplemented with benzyladenine, kinetin, meta-topolin, and thidiazuron in equimolar concentrations (0.0, 0.4, 1.1, 2.2, 4.4, and 8.9 μM). Shoot regeneration was obtained primarily in the lateral stem section explants. In M. hernandezii, an average of 7.4 shoots was regenerated in MS medium with 2.2 μM meta-topolin. M. dixanthocentron and M. lanata averaged 16.7 and 17.9 shoots/explant, respectively, in MS medium supplemented with 1.1 μM meta-topolin. Rooting occurred in MS medium without growth regulators. Three in vitro culture cycles were performed to validate the propagation protocols and to verify genetic stability. Shoots were collected in each cycle and genomic DNA was extracted. Amplified microsatellites were used to compare each genotype with its respective donor plant. Polymorphic information content analysis showed low levels of intra-clonal polymorphisms—M. hernandezii 0.04 and M. dixanthocentron and M. lanata both 0.12. More than 95% of the plants were successfully acclimatized in the greenhouse. After 12 months, plants of M. hernandezii reached the flowering stage; M. dixanthocentron and M. lanata flowered at 24 mo.  相似文献   

4.
Trichosanthes kirilowii Maxim. is a climbing herb with considerable medicinal value. In this study, efficient protocols for callus-mediated regeneration and in vitro tuberization of this plant were developed. Sterilized stem and leaf tissues were cultured on Murashige and Skoog (MS) medium with plant growth regulators (PGRs), and additives that promoted callus induction and regeneration. Both stem and leaf tissues showed the best response (100%) for callus initiation on MS medium supplemented with 4.5-μM 2,4-dichlorophenoxyacetic acid (2,4-D). Efficient shoot organogenesis was obtained by exposing the callus tissue to 4.6-μM kinetin, 2.2-μM 6-benzylaminopurine, and 2.7-μM 1-naphthylacetic acid (NAA) along with 12.6-μM copper sulfate, which yielded a shoot regeneration rate of 85.5% and 28 shoots derived from each callus. In vitro shoots were best rooted on half-strength (1/2) MS medium with 2.7-μM NAA. Tuberous roots were efficiently induced on rooting medium with 5% (w/v) sucrose under short illumination conditions (8 h photoperiod). Rooted plantlets were successfully acclimatized in pots with a >?90% survival rate. This protocol provides an effective method for callus-mediated regeneration and in vitro root tuberization.  相似文献   

5.
Soil organic phosphorus (Po) such as phytate, which comprises up to 80 % of total Po, must be hydrolyzed by specific enzymes called phytases to be used by plants. In contrast to plants, bacteria, such as Bacillus subtilis, have the ability to use phytate as the sole source of P due to the excretion of a beta-propeller phytase (BPP). In order to assess whether the B. subtilis BPP could make P available from phytate for the benefit of a nodulated legume, the P-sensitive recombinant inbred line RIL147 of Phaseolus vulgaris was grown under hydroaeroponic conditions with either 12.5 μM phytate (C6H18O24P6) or 75 μmol Pi (K2HPO4), and inoculated with Rhizobium tropici CIAT899 alone, or co-inoculated with both B. subtilis DSM 10 and CIAT899. The in situ RT-PCR of BPP genes displayed the most intense fluorescent BPP signal on root tips. Some BPP signal was found inside the root cortex and the endorhizosphere of the root tip, suggesting endophytic bacteria expressing BPP. However, the co-inoculation with B. subtilis was associated with a decrease in plant P content, nodulation and the subsequent plant growth. Such a competitive effect of B. subtilis on P acquisition from phytate in symbiotic nitrogen fixation might be circumvented if the rate of inoculation were reasoned in order to avoid the inhibition of nodulation by excess B. subtilis proliferation. It is concluded that B. subtilis BPP gene is expressed in P. vulgaris rhizosphere.  相似文献   

6.
7.
The gene encoding the xlnR xylanolytic activator of the heterologous fungus Aspergillus niger was incorporated into the Penicillium canescens genome. Integration of the xlnR gene resulted in the increase in a number of activities, i.e. endoxylanase, β-xylosidase, α-L-arabinofuranosidase, α-galactosidase, and feruloyl esterase, compared to the host P. canescens PCA 10 strain, while β-galactosidase, β-glucosidase, endoglucanase, and CMCase activities remained constant. Two different expression constructs were developed. The first consisted of the nucleotide sequence containing the mature P. canescens phytase gene under control of the axhA promoter region gene encoding A. niger (1,4)-β-D-arabinoxylan-arabinofuranohydrolase. The second construct combined the P. canescens phytase gene and the bgaS promoter region encoding homologous β-galactosidase. Both expression cassettes were transformed into P. canescens host strain containing xlnR. Phytase synthesis was observed only for strains with the bgaS promoter on arabinose-containing culture media. In conclusion, the bgaS and axhA promoters were regulated by different inducers and activators in the P. canescens strain containing a structural tandem of the axhA promoter and the gene of the xlnR xylanolytic activator.  相似文献   

8.
Cytisus aeolicus Guss. ex Lindl. (Fabaceae family, subfamily Faboideae) is an endangered endemic species of the Aeolian Islands, Sicily. In vitro multiplication of C. aeolicus shoots was described in this work and cell cultures were established from cotyledons and hypocotyls to investigate their potential production of isoflavones. Aseptically germinated seeds, cultivated on LS modified basal medium, gave the initial explants used both to induce axillary propagation and callus cultures. The LS (Linsmaier and Skoog) basal medium, supplemented with 0.1 mg L?1 of 6-benzylaminopurine were used to induce axillary propagation. The callus induction was performed using the basal medium added with 5 mg L?1 2,4-dichlorophenoxy acetic acid and 5 mg L?1 kinetin (control medium). Basal medium was also added with 2000 mg L?1 casein hydrolysate (CH) or 900 mg L?1myo-inositol (MI). C. aeolicus callus cultures on CH and MI media produced an unique compound, the isoflavone genistein 7-O-ß-D-glucopyranoside (genistin), which has not previously been isolated from wild plants. Callus cultures grown on the medium containing myo-inositol produced the greatest amount of genistin. C. aeolicus tissue culture procedures could provide suitable plant material both for germplasm preservation (by micropropagation) and for biotechnological selective isoflavone production (by callus culture).  相似文献   

9.
Auxins are one of the main regulators of in vitro plant growth and development. However, the mechanisms, by which auxins, such as 1-naphthaleneacetic acid (NAA), affect in vitro root and leaf anatomy and photosystem function, remain unclear. Accordingly, the aim of the present study was to analyze the effect of different NAA concentrations on the anatomy and photosynthetic performance of in vitro-propagated Aechmea blanchetiana and to determine whether such a treatment affects micropropagated plants after acclimatization. In vitro-established A. blanchetiana plants were transferred to culture media that contained 0, 2, 4, or 6 μM NAA, and after 50 d, they were transplanted into plastic seedling trays with a commercial substrate and cultivated for 60 d in a greenhouse. The plants were evaluated after a 50-d in vitro NAA exposure (growth traits, chlorophyll α fluorescence, and root and leaf anatomy) and after 60 d of acclimatization in the greenhouse (root and leaf growth). Changes induced by NAA in root anatomy might improve uptake of minerals and sugars from the medium, thereby increasing the in vitro growth. In the leaves, the lowest chlorenchyma thickness and sclerenchyma area were observed in plants grown without NAA, and NAA exposure also improved photosystem II activity. The highest ex vitro growth rate was observed for plants that were propagated with 4 μM NAA. Therefore, the use of NAA during in vitro propagation can improve the anatomical and physiological quality of A. blanchetiana plants, as well as to improve ex vitro transfer.  相似文献   

10.
Arachis glabrata Benth (perennial peanut) is a rhizomatous legume with high forage value and great potential for soil conservation as well as it displays valuable plant genetic resources for the cultivated edible peanut improvement. In this study, we developed for the first time successful protocols for micropropagation and cryopreservation of A. glabrata. First fully expanded leaflets from greenhouse-growing plants were efficiently established in vitro (93%) and displayed high frequency of bud induction (58%) on MS medium with 6 mg L?1 1-fenil-3-(1,2,3-tiadiazol-5-il)urea [TDZ]. Whole plant regeneration was achieved via direct organogenesis by transferring the induced buds to MS media. Immature unexpanded leaves from micropropagated plants were effectively cryopreserved by using the droplet-vitrification technique. Maximum survival (~ 70%) and further regeneration (60–67%) were obtained by preconditioning immature leaves on semisolid MS with 0.3 M sucrose (1 d), exposing to loading solution consisting of 0.4 M sucrose plus 2 M glycerol (30 min) followed by glycerol-sucrose plant vitrification solution PVS3 (150 min in ice), and direct plunging into liquid nitrogen in droplets of PVS3 deposited on cryoplates. Tissues were rewarmed by plunging the aluminum foils directly in liquid MS enriched with 1.2 M sucrose (15 min) at room temperature. Growth recovery and plant regeneration were efficiently achieved via shoot organogenesis, and somatic embryogenesis by culturing cryostored explants on MS added with 6 mg L?1 TDZ. Genetic stability of plants derived from cryopreserved leaves was confirmed by random amplified polymorphic DNA markers. The protocols established in this study have great potential for rapid multiplication and conservation of selected A. glabrata genotypes.  相似文献   

11.

Objectives

To characterize the genes responsible for ethanol utilization in Pichia pastoris.

Results

ADH3 (XM_002491337) and ADH (FN392323) genes were disrupted in P. pastoris. The ADH3 mutant strain, MK115 (Δadh3), lost its ability to grow on minimal ethanol media but produced ethanol in minimal glucose medium. ADH3p was responsible for 92 % of total Adh enzyme activity in glucose media. The double knockout strain MK117 (Δadh3Δadh) also produced ethanol. The Adh activities of X33 and MK116 (Δadh) strains were not different. Thus, the ADH gene does not play a role in ethanol metabolism.

Conclusion

The PpADH3 is the only gene responsible for consumption of ethanol in P. pastoris.
  相似文献   

12.
Brachystelma glabrum Hook.f. is an endemic plant species of Eastern Ghats, India. In this study, efficient protocols for in vitro micropropagation, flowering, and tuberization of this plant were developed. Sterilized shoot tip and nodal explants were cultured on Murashige and Skoog (MS) medium supplemented with different plant growth regulators (PGRs) and additives for shoot induction and multiplication. Both shoot tip and nodal explants showed the best response (90 and 100%, respectively) on MS medium supplemented with thidiazuron (TDZ) at 1.0 mg L?1. The microshoots multiplied best on MS + TDZ (1.0 mg L?1) in combination with α-naphthaleneacetic acid (NAA) at 0.5 mg L?1 and coconut water (CW) at 25%. The highest number of in vitro flowers (4.0 flowers per microshoot) was observed on MS medium supplemented with a combination of N6-benzyladenine (BA) and indole-3-butyric acid (IBA), each at 1.5 mg L?1. In vitro-derived shoots produced aerial tubers on MS + TDZ (2.0 mg L?1) + IBA (0.5 mg L?1) and basal tubers on MS + TDZ at 2.0 mg L?1. In vitro shoots were best rooted on half-strength (½) MS + NAA at 0.5 mg L?1. The rooted plantlets were successfully acclimatized in pots with 70% survival after a hardening period of 1 mo. This protocol provides an effective method for the conservation of this endemic plant species.  相似文献   

13.
The proposed work describes a protocol for high-frequency in vitro regeneration through nodal segments and shoot tips in Decalepsis arayalpathra, a critically endangered medicinal liana of the Western Ghats. Nodal segments were more responsive than shoot tips in terms of shoot proliferation. Murashige and Skoog’s (MS) basal medium supplemented with 5.0 μM 6-benzyladenine (BA) was optimum for shoot initiation through both the explants. Among different combinations of plant growth regulators and growth additive screened, MS medium added with 5.0 μM BA + 0.5 μM indole-3-acetic acid + 20.0 μM adenine sulphate effectuated the highest response: 11.8 shoots per nodal segment and 5.5 shoots per shoot tip with mean shoot length of 9.2 and 4.8 cm, respectively. Half-strength MS medium with 2.5 μM α-naphthalene acetic acid was optimum for in vitro root induction. The plantlets with the well developed shoot and root were acclimatized in Soilrite? with 92 % survival rate in the field conditions. During acclimatization, chlorophyll content, net photosynthetic rate, stomatal conductance, and transpiration rate were gradually changed in dependence of formation of new leaves. Further, the changes in activities of antioxidant enzymes, i.e., superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) as well as activity of carbonic anhydrase were also observed: a continuous rise in SOD activity, but a rise and fall in the activities of CAT, APX, and GR were also noticed. Maximum fresh mass (3.1 g plant-1), dry mass (0.35 g plant-1) of roots and 2-hydroxy-4-methoxybenzaldehyde content of 9.22 μg cm-3(root extract) were recorded after 8 weeks of acclimatization.  相似文献   

14.
Phelipanche and Orobanche spp. (broomrapes) are economically important parasitic weeds, causing severe damage to many agricultural crops. However, conventional methods to control these parasitic weeds are often not effective. Targeting molecular and biochemical processes involved in the establishment of the connection between the parasite and the host may offer a new perspective for control. However, progress in the understanding of these processes is hampered by the fact that genetic transformation and regeneration of these parasites is difficult if not impossible due to their specific lifecycle. Phelipanche and Orobanche spp. are holoparasites that need to attach to the roots of a host plant to get their assimilates, nutrients and water to develop and reproduce. The present study describes a highly efficient genetic transformation and regeneration protocol for the root holoparasitic Phelipanche ramosa. We present a new transformation system for P. ramosa using Agrobacterium rhizogenes MSU440 carrying a non-destructive selection marker gene coding for a red fluorescent protein (DsRed1). Using this protocol up to 90% transformation efficiency was obtained. We transformed 4 weeks old P. ramosa calli and transgenic calli expressing DsRed1 were then cultured on host plants. For the first time, we present shoot and flower development of the transgenic parasitic plant P. ramosa after successful connection of transgenic calli with the host plant roots. Moreover, we also present, for the first time, growth and development of P. ramosa shoots and flowers in vitro in the absence of a host plant.  相似文献   

15.
Auxin receptors TIR1/AFBs play an essential role in a series of signaling network cascades. These F-box proteins have also been identified to participate in different stress responses via the auxin signaling pathway in Arabidopsis. Cucumber (Cucumis sativus L.) is one of the most important crops worldwide, which is also a model plant for research. In the study herein, two cucumber homologous auxin receptor F-box genes CsTIR and CsAFB were cloned and studied for the first time. The deduced amino acid sequences showed a 78% identity between CsTIR and AtTIR1 and 76% between CsAFB and AtAFB2. All these proteins share similar characteristics of an F-box domain near the N-terminus, and several Leucine-rich repeat regions in the middle. Arabidopsis plants ectopically overexpressing CsTIR or CsAFB were obtained and verified. Shorter primary roots and more lateral roots were found in these transgenic lines with auxin signaling amplified. Results showed that expression of CsTIR/AFB genes in Arabidopsis could lead to higher seeds germination rates and plant survival rates than wild-type under salt stress. The enhanced salt tolerance in transgenic plants is probably caused by maintaining root growth and controlling water loss in seedlings, and by stabilizing life-sustaining substances as well as accumulating endogenous osmoregulation substances. We proposed that CsTIR/AFB-involved auxin signal regulation might trigger auxin mediated stress adaptation response and enhance the plant salt stress resistance by osmoregulation.  相似文献   

16.
Powdery mildew caused by Erysiphe euonymi-japonici (Eej) is an increasingly serious fungal disease on Euonymus japonicus that is an important ornamental plant. However, little is currently known about infection and pathogenesis of Eej on E. japonicus. Here, we report plant infection by Eej at the histological and cytological levels. Eej caused severe disease symptoms with white and snow-like colonies on leaf surfaces of E. japonicus. Microscopic observations were conducted continuously to define infection process of Eej on E. japonicus. Eej conidia germinated to produce appressorial germ tubes on leaf surfaces and formed irregular haustoria in plant epidermal cells at 6 h post-inoculation (hpi) and 12 hpi, respectively. After uptaking nutrients from host cells by haustoria, Eej formed numerous hyphae and extensive colonization on leaf surfaces at 96 hpi and finally produced abundant conidiophores and new conidia on leaf surfaces at 168 hpi. In addition, there was consistently a single nucleus in different Eej infection structures and haustorial development could be divided into three major stages, including formation of penetration peg, formation of haustorial neck and initial haustorium, and maturation of haustorium. These results provide useful information for further determination of Eej pathogenesis and finally controlling the disease.  相似文献   

17.
The grass shrimp Palaemonetes pugio, a species common to Spartina alterniflora-dominated marshes, may be sensitive to the invasion of the common reed Phragmites australis in northeastern US salt marshes. We examined two questions: (1) Do grass shrimp have a preference for the native plant over the non-native plant? (2) Are grass shrimp more effective foragers on P. australis? We tested the first hypothesis by comparing the amount of time shrimp spend in physical contact with the plant types over a 1-h period. Shrimp were observed under different arrangements of vegetation to control for differences in conspicuous structural features. Additionally, the amount of time shrimp spent foraging on S. alterniflora and P. australis shoots was compared to determine if shrimp graze more often on S. alterniflora. Shrimp spent significantly more time in contact with S. alterniflora only when plant types were grouped at opposite ends of aquaria, but did not exhibit a foraging preference for this plant type. To address our second question, we investigated the effects of shrimp foraging on stem epifauna, an assemblage of semi-aquatic invertebrates associated with macrophyte shoots. Previous research showed that P. australis supports a lower density of stem-dwelling epifauna relative to S. alterniflora. We hypothesized that the primary grazer of this community, P. pugio, can forage on P. australis stems more effectively due to structural differences between the two plants, causing the lower abundance of epifauna through top-down effects. We exposed individual shoots inhabited by epifauna to shrimp and compared faunal densities on exposed shoots to densities on control shoots after 18 h. The reduction of epifauna by predation was proportional on the two plant types. Therefore, top-down effects can be ruled out as an explanation for the patchy distribution of epifauna observed in P. australis–S. alterniflora marshes.  相似文献   

18.
Piriformospora indica, a root endophytic fungus, has been reported to promote growth of many plants under normal condition and allow the plants to survive under stress conditions. However, its impact on an important medicinal plant Aloe vera L. has not been well studied. Therefore, this study was undertaken to investigate the effect of P. indica on salinity stress tolerance of A. vera plant. P. indica inoculated and non-inoculated A. vera plantlets were subjected to four levels of salinity treatment- 0, 100, 200 and 300 mM NaCl. The salinity stress decreased the ability of the fungus to colonize roots of A. vera but the interaction of A. vera with P. indica resulted in an overall increase in plant biomass and greater shoot and root length as well as number of shoots and roots. The photosynthetic pigment (Chl a, Chl b and total Chl) and gel content were significantly higher for the fungus inoculated A. vera plantlets, at respective salinity concentrations. Furthermore, the inoculated plantlets had higher phenol, flavonoid, flavonol, aloin contents and radical scavenging activity at all salinity concentrations. The higher phenolic and flavonoid content may help the plants ameliorate oxidative stress resulting from high salinity.  相似文献   

19.
Escherichia coliL-asparaginase, an antileukaemic agent in man1, inhibits in vitro mitogen or antigen-induced blastogenesis in man2,3 and in animals (M. Bennett, E. G. Mayhew and T. Han, unpublished data) and suppresses bone-marrow derived antibody precursor cells in the mouse4. We now report that another L-asparaginase preparation—from Erwinia carotovora—also possesses antileukaemic activity5,6 and has a more pronounced immunosuppressive effect on in vitro blastogenesis than the E. coli enzyme.  相似文献   

20.
Hybrid plants resistant to phosphinothricin (PPT) are obtained as a result of experiments with somatic hybridization between Brassica napus L. cv. Kalinins’kyy and Orychophragmus violaceus L. O.E. Shulz. The hybrids inherited PPT resistance from O. violaceus plants that had been previously transformed by a vector containing the maize transposon system Spm/dSPm with bar gene located within the nonautonomous transposon. The morphologically obtained plants occupy an intermediate position between the initial forms, which is in agreement with the results of isoenzyme analyses (analysis of multiple forms of amylase and esterase) and PCR analysis (presence of the genes bar, gus, and SpmTPase). Inheritance of the plastome occurs from oilseed rape, while that of the mitochondrion, from O. violaceus, which is proved by means of PCR-RFLP analysis. The plant hybrids may be utilized for further selection research with oilseed rape following determination of the edible quality of its oil as well as in experiments with chloroplast transformation, a topic which is of critical importance for oilseed rape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号