首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Xylulose-1,5-bisphosphate in preparations of ribulose-1,5-bisphosphate (ribulose-P2) arises from non-enzymic epimerization and inhibits the enzyme. Another inhibitor, a diketo degradation product from ribulose-P2, is also present. Both compounds simulate the substrate inhibition of ribulose-P2 carboxylase/oxygenase previously reported for ribulose-P2. Freshly prepared ribulose-P2 had little inhibitory activity. The instability of ribulose-P2 may be one reason for a high level of ribulose-P2 carboxylase in chloroplasts where the molarity of active sites exceeds that of ribulose-P2. Because the KD of the enzyme/substrate complex is ≤1 μM, all ribulose-P2 generated in situ may be stored as this complex to prevent decomposition.  相似文献   

2.
When Ribulose- 1,5-bisphosphate carboxylase/oxygenase was purified from spinach leaves (Spinacia oleracea) using precipitation with polyethylene glycol and MgCl2 followed by DEAE cellulose chromatography, 75% of phosphoribulokinase and 7% of phosphoriboisomerase activities copurified with ribulose- 1,5-bisphosphate carboxylase/oxygenase. This enzyme preparation showed ribose-5-phosphate and ribulose-5-phosphate dependent carboxylase and oxygenase activities which were nearly equivalent to its corresponding ribulose- 1,5-bisphosphate dependent activity. The ribose-5-phosphate and ribulose-5-phosphate dependent reaction rates were stable and linear for much longer time periods than the ribulose- 1,5-bisphosphate dependent rates. When sucrose gradients were used to purify ribulose- 1,5-bisphosphate carboxylase/oxygenase from crude stromal extracts, phosphoribulokinase was found to cosediment with ribulose- 1,5-bisphosphate carboxylase. Under these conditions most of the phosphoriboisomerase activity remained with the slower sedimenting proteins. Ammonium sulfate precipitation resulted in separation of the ribulose- 1,5-bisphosphate carboxylase peak from phosphoribulokinase peak. Crude extracts of peas Pisum sativum and spinach contained 0.725 to 0.730 milligram of phosphoribulokinase per milligram of chlorophyll, respectively, based on an enzyme-linked immunosorbent assay.  相似文献   

3.
Ribulose-l,5-bisphosphate carboxylase (E.C. 4.1.1.39) isolated from Chromatium strain D contains 64 free cysteinyl -SH groups per mol (Mr 5.11 × 105) as determined using three different titrants: p-[14C]chloromercuribenzoate, the Ellman reagent, and [14C]iodoacetamide.Distribution of -SH groups in the two constituent subunits (A and B) isolated from spinach and Chromatium ribulose-1,5-bisphosphate carboxylases was determined to be for spinach, 9 in A and 3 in B; and for Chromatium, 7 in A and 1 in B.The relationship between the numbers of -SH groups blocked vs residual activities of both the ribulose-1,5-bisphosphate carboxylase and oxygenase reactions was examined by titration with p-chloromercuribenzoate. In both spinach and Chromatium enzymes, antisigmoidal curves were obtained for the degree of the enzyme activity loss in relation to the numbers of -SH groups masked. However, at alkaline pH the Chromatium enzyme shows a sharp decline in both carboxylase and oxygenase activities, apparently due to the alkali dissociation of the enzyme molecule accompanied by its structural deformation. The functional role of -SH groups in the ribulose-1,5-bisphosphate carboxylase molecule is discussed in relation to two constituent enzyme reactions, and it is concluded that in both enzyme sources the active sites are probably the same for the two reactions.  相似文献   

4.
The functions of His291, His295 and His324 at the active-site of recombinant A. nidulans ribulose-1,5-bisphosphate carboxylase/ oxygenase have been explored by site-directed mutagenesis. Replacement of His291 by K or R resulted in unassembled proteins, while its replacement by E, Q or N resulted in assembled but inactive proteins. These results are in accord with a metal ion-binding role of this residue in the activated ternary complex by analogy to x-ray crystallographic analyses of tobacco and spinach enzymes.His324 (H327 in spinach), which is located within bonding distance of the 5-phosphate of bound bi-substrate analog 2-carboxyarabinitol 1,5-bisphosphate in the crystal structures, has been substituted by A, K, R, Q and N. Again with the exception of the H324K and R variants, these changes resulted in detectable assembled protein. The mutant H324A protein exhibited no detectable carboxylase activity, whereas the H324Q and H324N changes resulted in purifiable holoenzyme with 2.0 and 0.1% of the recombinant wild-type specific carboxylase activity, respectively. These results are consistent with a phosphate binding role for this residue.The replacement of His295, which has been suggested to aid in phosphate binding, with Ala in the A. nidulans enzyme leads to a mutant with 5.8% of the recombinant wild-type carboxylase activity. All other mutations at this position resulted in unassembled proteins. Purified H295A and H324Q enzymes had elevated Km(RuBP) values and unchanged CO2/O2 specificity factors compared to recombinant wild-type.Abbreviations CABP D-2-carboxyarabinitol 1,5 bisphosphate - IPTG isopropyl-b-d-thiogalactopyranoside - L large subunit of rubisco - PAGE polyacrylamide gel electrophoresis - rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-P2, ribulose 1,5 bisphosphate - S small subunit of rubisco - SDS sodium dodecyl sulfate - X-gal 5-bromo-4-chloro-3-indolyl-b-d-galactoside  相似文献   

5.
Purification and Properties of 2-Carboxy-d-Arabinitol 1-Phosphatase   总被引:1,自引:1,他引:0  
Carboxyarabinitol 1-phosphatase (2-carboxy-d-arabinitol 1-phosphate phosphohydrolase), a chloroplast enzyme that metabolizes the naturally occurring inhibitor of ribulose-1,5-bisphosphate carboxylase/oxygenase, was isolated from tobacco (Nicotiana tabacum) leaves. The enzyme was purified more than 3500-fold using a protocol that included ammonium sulfate fractionation and gel filtration, ion-exchange, and hydrophobic interaction chromatography. Analysis of the final preparation by sodium dodecyl sulfate polyacrylamide gel electrophoresis revealed the presence of a single polypeptide with a molecular mass of 53 kilodaltons. The enzyme exhibited an apparent Km (carboxyarabinitol 1-phosphate) of 33 micromolar and a pH optimum of 7.5. Enzyme activity did not require divalent cations and was unaffected by the metal chelators EDTA and cysteine. Carboxyarabinitol 1-phosphatase activity was inhibited by zinc, copper and molybdate and stimulated by sulfate. Chloroplast metabolites that affected activity included inorganic phosphate and ATP, which were inhibitory, and ribulose-1,5-bisphosphate, fructose-1,6-bisphosphate and NADPH which stimulated activity 2.5-fold. Activation of carboxyarabinitol 1-phosphatase activity by these positive effectors, together with the previously reported requirement for dithiothreitol, explain the light/dark modulation of carboxyarabinitol 1-phosphatase activity in vivo.  相似文献   

6.
The exchange properties of the activator CO2 of spinach ribulose-1,5-bisphosphate carboxylase/oxygenase were characterized both in vitro with the purified enzyme, and in situ within isolated chloroplasts. Carboxyarabinitol-1,5-bisphosphate, a proposed reaction intermediate analog for the carboxylase activity of the enzyme, was used to trap the activator CO2 on the enzyme both in vitro and in situ. Modulation of ribulose-1,5-bisphosphate carboxylase/oxygenase activity in intact chloroplasts during a light/dark cycle was associated with a similar modulation in carboxyarabinitol-1,5-bisphosphate-trapped CO2. The exchange kinetics of the activator CO2 were monitored by activation of the enzyme to steady state in the presence of 12CO2, followed by addition of 14CO2 and determination of the amount of labeled CO2 trapped on the enzyme by carboxyarabinitol-1,5-bisphosphate. Rate constants (Kobs) for exchange with both the purified enzyme (0.45 min−1) and in illuminated chloroplasts (0.18 min−1) were comparable to the observed rate constants for enzyme activation under the two conditions. A similar exchange of the activator CO2 was not observed in chloroplasts in the dark. Kinetic analysis of the exchange properties of the purified enzyme were consistent with an equilibrium between active and inactive forms of the enzyme during steady state activation.  相似文献   

7.
2-Carboxyarabinitol-1-phosphate, the nocturnal inhibitor of ribulose-1,5-bisphosphate carboxylase/oxygenase is identical with d-hamamelonic acid-21-phosphate. Reasoning is based on theoretical considerations as well as on mass spectra and 1H- and 13C-NMR spectra of the phosphate-free compounds. d-Hamamelonic acid-21-phosphate is interpreted as a metabolic derivative of d-hamamelose-21,5-bisphosphate which originates in the chloroplast from fructose-1,6-bisphosphate. A simple method for the synthesis of the inhibitor is suggested.  相似文献   

8.
Ribulose-1,5-bisphosphate carboxylase/oxygenase has been purified from chemolithotrophically grown Rhizobium japonicum SR and ribulose-5-phosphate kinase activity has also been detected in extracts of such cells. Electrophoretically homogeneous ribulosebisphosphate carboxylase/oxygenase purified in the presence of PMSF showed two types of large subunits of 55 000 and 53 000 daltons and small subunits of 14 200 daltons. The heterogeneity of large subunits was not observed when the enzyme was prepared in the presence of PMSF and DIFP. Ribulose-1,5-bisphosphate carboxylase from R. japonicum was inhibited by antibodies to this enzyme and a single precipitin band from the antibody-enzyme interaction was observed on double diffusion plates. Antibodies to R. japonicum enzyme did not cross-react on immunodiffusion plates with the ribulosebisphosphate carboxylase/oxygenases from wheat, spinach, soybean and tobacco.  相似文献   

9.
Ribulose 1,5-diphosphate carboxylase was detected in extracts of germinating castor bean (Ricinus communis var. Hale) endosperms. This is the first report of this enzyme in a nonphotosynthetic (no chlorophyll) plant tissue. Radioactive 3-phosphoglyceric acid has been identified as the principle product resulting from the enzymatic condensation of 14C-bicarbonate and ribulose-1,5-diP in endosperm extracts. The Km values of bicarbonate and ribulose-1,5-diP for the endosperm carboxylase are 1.14 × 10−2m and 7.5 × 10−5m, respectively. The carboxylase activity peaks at 4 days in endosperms of castor beans germinated in the dark. The specific activity of the carboxylase at this stage of germination is 4.3 μmoles of 3-phosphoglycerate formed/mg protein·hr. The presence of ribulose-1,5-diP carboxylase and other enzymes of the reductive pentose phosphate pathway show the potential of this pathway in castor bean endosperms.  相似文献   

10.
Engelbert Weis 《Planta》1981,151(1):33-39
Photosynthetic CO2 fixation rates in leaves and intact chloroplasts of spinach measured at 18°–20° C are substantially decreased by pretreatment at temperatures exceeding 20° C. Mild heating which causes 80% inhibition of CO2 fixation does not affect phosphoglyceroacid reduction and causes increases in the ATP/ADP ratio and the light-induced transthylakoid proton gradient. The inactivation of the CO2 fixation is completely reversible with half-times of recovery in the order of 15–20 min. Comparison of steady-state patterns of 14C labeled Calvin cycle intermediates of heat-treated and control samples reveals a large increase in the ribulose-1,5-bisphosphate/phosphoglyceroacid ratio and a large decrease in the phosphoglyceroacid/triosephosphate ratio. It is concluded that inactivation of CO2 fixation occurring at elevated temperatures is caused by inhibition of the ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39). Measurements of light-induced light scattering changes of thylakoids and of the light-induced electrochromic absorption shift show that these signals are affected by mild heating in a way which is strictly correlated with the inactivation of the CO2 fixation. It is proposed that the function of the ribulose-1,5-bisphosphate carboxylase in vivo requires a form of activation that involves properties of the thylakoid membrane which are affected by the heat treatment. The fact that these changes in thylakoid membrane properties and of ribulose-1,5-bisphosphate carboxylase activity are already affected at elevated temperatures which can still be considered physiological, and the reversible nature of these changes, suggest that they may play a role in temperature regulation of the overall photosynthetic process.Abbreviations 9-AA 9-aminoacridine - DMO 5,5-dimethyloxazolidine-2,4-dione - FBP fructose-1,6-bisphosphate - HEPES N-2-hydroxyethylpiperazine N-2-ethane sulfonic acid - HMP hexose monophosphates - PGA 3-phosphoglycerate - PMP pentose monophosphates - RuBP ribulose-1,5-bisphosphate - SBP seduheptulose-1,7-bisphosphate - TP triose monophosphates  相似文献   

11.
The proteolytic degradation of unassembled small subunit polypeptides of ribulose-1,5-bisphosphate carboxylase and of the δ-subunit of the coupling factor of photophosphorylation CF1 were analyzed and compared in vitro in the presence of stroma or membrane preparations from ribosome-deficient plastids isolated from 32°C-grown rye leaves (Secale cereale L.). Extracts obtained from 70S ribosome-deficient rye leaves after radioactive labeling were used as substrate source for the unassembled polypeptides. Soluble stroma as well as membrane preparations from isolated plastids contained proteolytic activities catalyzing the degradation of both the small subunits of ribulose-1,5-bisphosphate carboxylase and CF1in vitro. Maximal in vitro degradation was observed at pH 2–3 for the unassembled small subunits, but at pH 6–7 for the purified holoprotein of ribulose-1,5-bisphosphate carboxylase, and at pH 6.0 for unassembled CF1-δ. Degradation of unassembled small subunits of ribulose-1,5-bisphosphate carboxylase at pH 3.0 was stimulated by Cu2+ but not by Ca2+, Mg2+ or ATP. At pH 3.0 the degradation of unassembled small subunits of ribulose-1,5-bisphosphate carboxylase was not inhibited by various protease inhibitors but was even stimulated. At pH 7.0 its degradation was inhibited by HgCl2 and diazoacetyl nor-leucine methyl ester + Cu-acetate. The degradation of CF1-δ was markedly inhibited by phenylmethylsulphonyl fluoride (PMSF) and to a lesser extent by 1,10-phenanthroline. According to present results different proteolytic systems appear to be involved in the degradation of unassembled small subunits of ribulose-1,5-bisphosphate carboxylase and of unassembled CF1-δ.  相似文献   

12.
Ribulose 1,5-bisphosphate carboxylase (EC.4.1.1.39) has been obtained from Nicotiana tabacum leaf homogenates with specific activites from 0.5 to 0.8 µmol CO2 fixed (mg protein min)-1. These activities are reconciled with much lower, previously reported activities. The results suggest that if the tobacco enzyme is assayed under optimum conditions there is little difference in the intrinsic specific activities of tobacco and spinach ribulose 1,5-bisphosphate carboxylase. Several factors affecting activity measurements were examined.  相似文献   

13.
Carbon isotope fractionation by structurally and catalytically distinct ribulose-1,5-bisphosphate carboxylases from one eucaryotic and four procaryotic organisms has been measured under nitrogen. The average fractionation for 40 experiments was −34.1 ‰ with respect to the δ13C of the dissolved CO2 used, although average fractionations for each enzyme varied slightly: spinach carboxylase, −36.5 ‰; Hydrogenomonas eutropha, −38.7 ‰; Agmenellum quadruplicatum, −32.2 ‰; Rhodospirillum rubrum, −32.1 ‰; Rhodopseudomonas sphaeroides peak I carboxylase, −31.4 ‰; and R. sphaeroides peak II carboxylase, −28.3 ‰. The carbon isotope fractionation value was largely independent of method of enzyme preparation, purity, or reaction temperature, but in the case of spinach ribulose-1,5-bisphosphate carboxylase fractionation, changing the metal cofactor used for enzyme activation had a distinct effect on the fractionation value. The fractionation value of −36.5 ‰ with Mg2+ as activator shifted to −29.9 ‰ with Ni2+ as activator and to −41.7 ‰ with Mn2+ as activator. These dramatic metal effects on carbon isotope fractionation may be useful in examining the catalytic site of the enzyme.  相似文献   

14.
Ribulose-1,5-bisphosphate (RuBP) carboxylase in lysed spinach (Spinacia oleracea L. cv virtuosa) chloroplasts that had been partly inactivated at low CO2 and Mg2+ by incubating in darkness with 4 millimolar partially purified RuBP was reactivated by light. If purified RuBP was used to inhibit dark activation of the enzyme, reactivation by light was not observed unless fructose-1,6-bisphosphate, ATP, or ADP plus inorganic phosphate were also added. Presumably, ADP plus inorganic phosphate acted as an ATP-generating system with a requirement for the generation of ΔpH across the thylakoid membrane. When the RuBP obtained from Sigma Chemical Co. was used, light did not reactivate the enzyme. There was no direct correlation between ΔpH and activation. Therefore, thylakoids are required in the ribulose-1,5-bisphosphate carboxylase activase system largely to synthesize ATP. Inactivation of RuBP carboxylase in isolated chloroplasts or in the lysed chloroplast system was not promoted simply by a transition from light to dark conditions but was caused by low CO2 and Mg2+.  相似文献   

15.
When spinach leaf tissue was subjected to evaporative dehydration, photosynthetic capacity at very high (5%) CO2 concentration and saturating irradiance (300 W·m-2), decreased in parallel to the relative water content (RWC). A 50% inhibition was observed at 60–40% RWC. In order to examine whether the inhibition was caused by increased solute concentrations in chloroplasts or cytoplasm, an artificial stroma medium (ASM) was set up containing all major osmotically relevant solutes measured in isolated intact spinach chloroplasts. Subsequently, the response of enzyme activities to normal and to increased concentrations of ASM was examined. Inhibition of enzymes by a concerted increase of all solutes was well correlated to the in-vivo response of photosynthesis to dehydration (60% inhibition at double-strength ASM). Inhibitory solutes were mainly divalent inorganic anions, such as sulfate and phosphate. Inhibition of ribulose-1,5-bisphosphate carboxylase by these ions as studied in more detail. Inhibition of the enzyme by sulfate and phosphate was competitive with respect to ribulose-1,5-bisphosphate, but not with respect to CO2. The KI for sulfate was 2.1 mmol·l-1 and for phosphate 0.57 mmol·l-1. Sugars and amino acids at the concentrations found in spinach chloroplasts did not prevent inhibition of enzymes by anions. The results indicate that increased anion concentrations in cells and organelles are responsible for primary, quickly reversible effects of moderate dehydration on plant tissues.Abbreviations ASM artificial stroma medium - RuBP ribulose 1,5-bisphosphate - RuBPCase ribulose-1,5-bisphosphate-carboxylase/oxygenase - RWC relative water content  相似文献   

16.
The level of 2-carboxyarabinitol 1-phosphate (CA1P) in leaves of 12 species was determined by an isotope dilution assay. 14C-labeled standard was synthesized from [2-14C]carboxyarabinitol 1,5-bisphosphate using acid phosphatase, and was added at the initial point of leaf extraction. Leaf CA1P was purified and its specific activity determined. CA1P was found in dark-treated leaves of all species examined, including spinach (Spinacea oleracea), wheat (Triticum aestivum), Arabidopsis thaliana, and maize (Zea mays). The highest amounts were found in bean (Phaseolus vulgaris) and petunia (Petunia hybrida), which had 1.5 to 1.8 moles CA1P per mole ribulose 1,5-bisphosphate carboxylase catalytic sites. Most species had intermediate amounts of CA1P (0.2 to 0.8 mole CA1P per mole catalytic sites). Such intermediate to high levels of CA1P support the hypothesis that CA1P functions in many species as a light-dependent regulator of ribulose 1,5-bisphosphate carboxylase activity and whole leaf photosynthetic CO2 assimilation. However, CA1P levels in spinach, wheat, and A. thaliana were particularly low (less than 0.09 mole CA1P per mole catalytic sites). In such species, CA1P does not likely have a significant role in regulating ribulose 1,5-bisphosphate carboxylase activity, but could have a different physiological role.  相似文献   

17.
Beer S  Israel A 《Plant physiology》1986,81(3):937-938
Ulva, a common green seaweed, performs at the biochemical level as a typical C3 plant. Over 90% of label was found in glycerate 3-phosphate following a 3 second 14C pulse in the light, and the label was subsequently transferred to sugars. Also, the level of ribulose-1,5-bisphosphate carboxylase activity in crude extracts was about 10 times higher than that of phosphoenolpyruvate carboxylase. Concerning gas exchange, photosynthetic rates of Ulva showed no O2 sensitivity, indicating that photorespiratory CO2 losses are repressed as in C4 plants. This apparent anomaly could be explained by the efficient HCO3 uptake system of Ulva which might concentrate CO2 to the chloroplasts, thus suppressing the oxygenase activity of ribulose-1,5-bisphosphate carboxylase.  相似文献   

18.
A new method is presented for measurement of the CO2/O2 specificity factor of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). The [14C]3-phosphoglycerate (PGA) from the Rubisco carboxylase reaction and its dilution by the Rubisco oxygenase reaction was monitored by directly measuring the specific radioactivity of PGA. 14CO2 fixation with Rubisco occurred under two reaction conditions: carboxylase with oxygenase with 40 micromolar CO2 in O2-saturated water and carboxylase only with 160 micromolar CO2 under N2. Detection of the specific radioactivity used the amount of PGA as obtained from the peak area, which was determined by pulsed amperometry following separation by high-performance anion exchange chromatography and the radioactive counts of the [14C]PGA in the same peak. The specificity factor of Rubisco from spinach (Spinacia oleracea L.) (93 ± 4), from the green alga Chlamydomonas reinhardtii (66 ± 1), and from the photosynthetic bacterium Rhodospirillum rubrum (13) were comparable with the published values measured by different methods.  相似文献   

19.
The development of a simple method for the isolation of purified carboxysomes from the cyanobacterium Synechococcus PCC7942 has made it possible to identify a specific and inducible, intracellular carbonic anhydrase (CA) activity that is strongly associated with carboxysomes. This was shown, in part, through enzyme recovery experiments that indicated that a clear majority of a CA activity that is sensitive to the CA inhibitor ethoxyzolamide (I50 = 4 μm) copurifies with a majority of the cell's ribulose-1,5-bisphosphate carboxylase/oxygenase activity in a highly purified pelletable fraction. Electron microscopy of this pelletable fraction revealed the presence of carboxysomes that were physically intact. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of carboxysome proteins showed that the large and small subunits of ribulose-1,5-bisphosphate carbosylase/oxygenase were clearly prominent and that several other minor proteins could be distinguished. The specific location of this carboxysomal CA activity is further reinforced by the finding that a previously isolated high CO2-requiring mutant, Type II/No. 68 (G.D. Price, M.R. Badger [1989] Plant Physiol 91: 514-525), displayed a 30-fold reduction in carboxysome-associated CA activity when tested under optimal conditions. Carboxysomal CA has the unusual property of being inactivated by dithiothreitol. The enzyme also requires 20 mm Mg2+ (as MgSO4) for near maximum activity; other divalent cations, such as Ca2+ and Mn2+, also stimulate carboxysomal CA activity, but to a lesser extent than Mg2+. Results are discussed in relation to the role of carboxysomes in the CO2-concentrating mechanism in cyanobacteria and the role that carboxysomal CA activity appears to play in this process.  相似文献   

20.
Spinach leaf (Spinacia oleracea L. var. Kyoho) protoplasts sustain protein-synthesizing activity as measured by the incorporation of [14C]-leucine into the protein fraction both in the light and in the dark. By the immunoprecipitation of ribulose-1,5-bisphosphate (RuP2) carboxylase with rabbit antibody raised against the purified spinach enzyme preparation, it was found that approximately 7% of the total radiocarbon incorporated into the protein fraction in the light was in the carboxylase molecules. However, there was no measurable net increase observed in the content of the enzyme protein in the experimental conditions employed. It was found that both chloramphenicol and cycloheximide inhibited the incorporation of [14C]leucine into RuP2 carboxylase and its constituent subunits, as measured by the immunoprecipitation of the enzyme molecule and its subunits, A and B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号