首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To improve the current knowledge about the digestive system in opisthobranchs, light and electron microscopy methods were used to characterize the epithelial cells in the mid‐intestine of Aplysia depilans. This epithelium is mainly formed by columnar cells intermingled with two types of secretory cells, named mucous cells and granular cells. Columnar cells bear microvilli on their apical surface and most of them are ciliated. Mitochondria, multivesicular bodies, lysosomes and lipid droplets are the main components of the cytoplasm in the region above the nucleus of these cells. Peroxisomes are mainly found in middle and basal regions, usually close to mitochondria. Mucous cells are filled with large secretory vesicles containing thin electron‐dense filaments surrounded by electron‐lucent material in which acidic mucopolysaccharides were detected. The basal region includes the nucleus, several Golgi stacks and many dilated rough endoplasmic reticulum cisternae containing tubular structures. The granular cells are characterized by very high amounts of flat rough endoplasmic reticulum cisternae and electron‐dense spherical secretory granules containing glycoproteins. Enteroendocrine cells containing small electron‐dense granules are occasionally present in the basal region of the epithelium. Intraepithelial nerve fibres are abundant and seem to establish contacts with secretory and enteroendocrine cells.  相似文献   

2.
Summary The neurointermediate lobe of the hypophysis in the Chameleon (Chamaeleo dilepis) was examined with light and electron microscopic methods, with special reference to the cytology of the pars intermedia (PI). The PI is the largest lobe of the hypophysis consisting of (1) dark cells with secretory granules ranging from 200–600 nm; (2) light cells, far fewer in number, containing granules 150–300 nm in diameter; (3) stellate, non-secretory cells. The secretory cells abut onto the perivascular basal lamina of the capillary sinusoids while their apical part borders an intercellular space. This surface of the cells often bears a cilium. The granules arise from the Golgi cisternae while small detached vesicles are found between circumscribed sites of the cell membrane and the Golgi apparatus. No nervous elements were found in the pars intermedia and it is assumed that the regulation of this lobe is purely humoral. This is supported by the presence of three types of nerve terminals in the pars nervosa: (a) terminals with large secretory granules and small vesicles; (b) terminals with dense-core vesicles and small vesicles; (c) terminals with small vesicles only. All of these are secretory as indicated by the presence of the synaptic semidesmosomes formed with the perivascular basal lamina.I would like to thank Mr. W.N. Newton for his skill and aid in all aspects of this work, Mr. A. Ansary for expert photographic assistance and the Central Pathology Laboratory, University of Dar es Salaam, for the electron microscopic facilities provided. Research sponsored by the University of Zambia Grants J02-18-00 and Medic 74/6  相似文献   

3.
ECL cells are numerous in the rat stomach. They produce and store histamine and chromogranin-A (CGA)-derived peptides such as pancreastatin and respond to gastrin with secretion of these products. Numerous electron-lucent vesicles of varying size and a few small, dense-cored granules are found in the cytoplasm. Using confocal and electron microscopy, we examined these organelles and their metamorphosis as they underwent intracellular transport from the Golgi area to the cell periphery. ECL-cell histamine was found to occur in both cytosol and secretory vesicles. Histidine decarboxylase, the histamine-forming enzyme, was in the cytosol, while pancreastatin (and possibly other peptide products) was confined to the dense cores of granules and secretory vesicles. Dense-cored granules and small, clear microvesicles were more numerous in the Golgi area than in the docking zone, i.e. close to the plasma membrane. Secretory vesicles were numerous in both Golgi area and docking zone, where they were sometimes seen to be attached to the plasma membrane. Upon acute gastrin stimulation, histamine was mobilized and the compartment size (volume density) of secretory vesicles in the docking zone was decreased, while the compartment size of microvesicles was increased. Based on these findings, we propose the following life cycle of secretory organelles in ECL cells: small, electron-lucent microvesicles (pro-granules) bud off the trans Golgi network, carrying proteins and secretory peptide precursors (such as CGA and an anticipated prohormone). They are transformed into dense-cored granules (approximate profile diameter 100 nm) while still in the trans Golgi area. Pro-granules and granules accumulate histamine, which leads to their metamorphosis into dense-cored secretory vesicles. In the Golgi area the secretory vesicles have an approximate profile diameter of 150 nm. By the time they reach their destination in the docking zone, their profile diameter is between 200 and 500 nm. Exocytosis is coupled with endocytosis (membrane retrieval), and microvesicles in the docking zone are likely to represent membrane retrieval vesicles (endocytotic vesicles).  相似文献   

4.
We have studied by electron microscopy and immunocytochemistry the formation of secretory granules containing adrenocorticotropic hormone (ACTH) in murine pituitary cells of the AtT20 line. The first compartment in which condensed secretory protein appears is a complex reticular network at the extreme trans side of the Golgi stacks beyond the TPPase-positive cisternae. Condensed secretory protein accumulates in dilated regions of this trans Golgi network. Examination of en face and serial sections revealed that "condensing vacuoles" are in fact dilations of the trans Golgi network and not detached vacuoles. Only after presumptive secretory granules have reached an advanced stage of morphological maturation do they detach from the trans Golgi network. Frequently both the dilations of the trans Golgi network containing condensing secretory protein and the detached immature granules in the peri-Golgi region have surface coats which were identified as clathrin by immunocytochemistry. Moreover both are the site of budding (or fusion) of coated vesicles, some of which contain condensed secretory protein. The mature granules below the plasma membrane do not, however, have surface coats. Immunoperoxidase labeling with an antiserum specific for ACTH and its precursor polypeptide confirmed that many of the coated vesicles associated with the trans Golgi network contain ACTH. The involvement of the trans Golgi network and coated vesicles in the formation of secretory granules is discussed.  相似文献   

5.
Zs. Liposits  W.K. Paull 《Peptides》1985,6(6):1021-1036
The corticotropin releasing factor (CRF)-immunoreactive paraventriculo-infundibular neuronal system of long-term adrenalectomized and adrenalectomized-short term dexamethasone treated rats was analyzed at the ultrastructural level using the preembedding peroxidase anti-peroxidase complex (PAP)-immunohistological method. In both groups of animals, parvocellular neurons located in the medial and dorsal subnuclei of the paraventricular nucleus (PVN) showed CRF-like immunoreactivity. The perikarya contained hypertrophied rough endoplasmic reticulum (rER) with dilated cisternae, active Golgi-complexes and numerous neurosecretory granules. The majority of the neurosecretory granules measured 80–120 nm. Dendrites of CRF-immunoreactive neurons contained labeled vesicles, secretory granules, bundles of microtubules, a well-developed smooth endoplasmic reticulum (sER) complex and free ribosomes. Unlabeled terminal boutons of axons were observed to synapse on dendrites and somata of CRF-neurons. In addition, CRF perikarya were found in direct somato-somatic apposition with both CRF-immunopositive and immunonegative parvocellular cells. Retraction of glial processes and the existence of puncta adherentia between the cell membranes characterized these appositions. Varicose CRF axons within the median eminence contained hypertrophied sER, labeled vesicles and neurosecretory granules. The preterminal portions of the CRF-axons were dilated and possessed many labeled 80–120 nm diameter granules. CRF-terminals were greatly enlarged and established direct neurohemal contacts with the external limiting basal lamina of portal vessels without the interposition of tanycytic ependymal foot-processes. These tanycytes were not CRF immunopositive. CRF positive terminals contained clusters of microvesicles, labeled small vesicles and multivesicular bodies, but fewer granular elements than were observed within the preterminals. Many of the labeled organelles were attached to tubules of sER. Occasionally, CRF-axons were observed within the pericapillary space adjacent to portal vessels. The ultrastructural features of CRF-neurons, obtained from adrenalectomized and adrenalectomized plus short-term dexamethasone treated rats did not differ significantly from each other. The hormone content of the entire CRF-neuron was greater in the steroid treated group. Adrenocorticotrophic hormone (ACTH) synthesizing cells in the pars distalis of adrenalectomized-dexamethasone treated rats also showed increased numbers of immunopositive secretory granules (150–320 nm in diameter). These ultrastructural morphological results provide evidence that the function of the paraventriculo-infundibular CRF-system is adrenal steroid hormone dependent and suggest the participation of glial and ependymal elements in the regulation of the system in this hyperfunctional state. The observed membrane specializations are indicative of ephaptic interactions between CRF-neurons and may serve a synchronizing function in adrenalectomized animals.  相似文献   

6.
Summary The parenchyma of the subfornical organ (SFO) of the Japanese quail was studied by light and electron microscopy. The SFO consists of ependymal, intermediate, and basal (perimeningeal) layers. In the intermediate layer, neurons, glial cells, and their processes are found. Axons containing dense core granules approximately 80 nm in diameter are numerous, some of which make synaptic contact with the neuronal perikarya or dendrites. Synaptic vesicles in some axons contain a dense dot in the interior after treatment with 5-hydroxydopamine. The activity of the SFO, which is probably concerned with elicitation of drinking by angiotensin II, may be regulated at least partly by afferent monoaminergic axons. Capillaries with a non-fenestrated endothelium are occasionally found in the parenchyma. The basal layer is occupied by glial processes abutting on the digitating layer of perivascular connective tissue of meningeal vessels. The endothelium of these vessels is occasionally fenestrated. Trypan blue injected systemically accumulated in the SFO, but not in the deeper areas of the brain. The absence of a blood-brain barrier is suggested in the SFO.  相似文献   

7.
Summary Lacertilian species display a remarkable diversity in the organization of the neural apparatus of their pineal organ (epiphysis cerebri). The occurrence of immunoreactive S-antigen and opsin was investigated in the retina and pineal organ of adult lizards, Uromastix hardwicki. In this species, numerous retinal photoreceptors displayed S-antigen-like immunoreactivity, whereas only very few pinealocytes were labeled. Immunoreactive opsin was found neither in retinal photoreceptors nor in pinealocytes. Electron microscopy showed that all pinealocytes of Uromastix hardwicki resemble modified pineal photoreceptors. A peculiar observation is the existence of a previously undescribed membrane system in the inner segments of these cells. It is evidently derived from the rough endoplasmic reticulum but consists of smooth membranes. The modified pineal photoreceptor cells of Uromastix hardwicki were never seen to establish synaptic contacts with somata or dendrites of intrapineal neurons, which are extremely rare. Vesiclecrowned ribbons are prominent in the basal processes of the receptor cells, facing the basal lamina or establishing receptor-receptor and receptor-interstitial type synaptoid contacts. Dense-core granules (60–250 nm in diameter) speak in favor of a secretory activity of the pinealocytes. Attention is drawn to the existence of receptor-receptor and receptor-interstitial cell contacts indicating intramural cellular relationships that deserve further study.Supported by the Deutsche Forschungsgemeinschaft (Ko 758/31) and the Deutscher Akademischer Austauschdienst (Senior DAAD Research Fellowship to M.A.H.)  相似文献   

8.
The morphological features of boar seminal vesicles were examined by light and transmission microscopy. Boar seminal vesicles consist of glandular tissue arranged in multiple lobules containing a system of ramified secretory tubules. The secretory tubules are composed of a mucosa formed by an epithelium and an underlying lamina propria and, are surrounded by a muscular layer. The epithelium is made up of columnar cells and occasional basal cells. Mast cells are frequently found among epithelial cells. Three types of columnar cells, considered different stages of the secretory cell cycle, are present: principal cells, clear cells and dense cells. Principal cells are functionally differentiated cells characterised by abundant mitochondria, great development of the rough endoplasmic reticulum and presence of secretory granules in their cytoplasm. The apical surface of many principal cells shows apical blebs filled with PAS-positive material. No acid mucosubstances are detected. Microvilli cover the apical surface except in the apical blebs. Dense cells, arranged between principal cells, are also functional differentiated cells but with signs of cellular degeneration. Clear cells are an initial differentiated stage of columnar cells and are characterised by the presence of a poorly developed rough endoplasmic reticulum and by the absence of secretory granules. Proliferating cells are present among columnar cells. Basal cells contain scarce cytoplasm, few organelles and no secretory granules. The lack of mitotic activity in these cells suggests that they do not act as precursors of columnar cells.  相似文献   

9.
Summary The frontal ganglion, part of the stomatogastric nervous system, contains about 60 to 80 neurons, 25 to 30 m in diameter. A well developed Golgi system, producing dense-core vesicles, lysosomes, multivesicular bodies and dense bodies are abundant. Glia elements are sparsely distributed. Many nerve fibres contain granules of different size and electron density. Five groups of fibres can be distinguished: Fibres with granules of about 200 nm (type A), fibres with granules of about 160 to 170 nm (type B), fibres with granules of about 80 to 100 nm (type C) and those with synaptic vesicles of 50 nm (type D) respectively. A fifth very small type contains neither vesicles nor granules. Special attention was paid to synaptic contacts. The divergent dyad seems to be the main type in the frontal ganglion. Frequently, neurosecretory endings are observed in presynaptic position. Immunocytochemical staining of neurosecretory material closely corresponds to the distribution of type A fibres, as observed electron microscopically. Immunoelectrophoresis of extracts from frontal ganglia with polyspecific anti-neurosecretion-serum reveals a single precipitation line, indicating that the immunocytochemical localization of neurosecretory material is due to reaction with a specific as well as a crossreagent antibody.Supported by the Ministerium für Wissenschaft und Technik der DDRThe authors wish to thank Mrs. B. Cosack and Mrs. A. Schmidt for excellent technical assistance  相似文献   

10.
Neuropeptides are released into the extracellular space from large secretory granules. In order to reach their release sites, these granules are translocated on microtubules and thought to interact with filamentous actin as they approach the cell membrane. We have used a green fluorescent protein-tagged neuropeptide prohormone (prepro-orphanin FQ) to visualize vesicle trafficking dynamics in NS20Y cells and cultures of primary hippocampal neurons. We found that the majority of secretory granules were mobile and accumulated at both the tips of neurites as well as other apparently specialized cellular sites. We also used live-cell imaging to test the notion that peptidergic vesicle mobility was regulated by secretagogues. We show that treatment with forskolin appeared to increase vesicle rates of speed, while depolarization with high K+ had no effect, even though both treatments stimulated neuropeptide secretion. In cultured hippocampal neurons the green fluorescent protein-tagged secretory vesicles were routed to both dendrites and axons, indicating that peptidergic vesicle transport was not polarized. Basal peptidergic vesicle mobility rates in hippocampal neurons were the same as those in NS20Y cells. Taken together, these studies suggest that secretory vesicle mobility is regulated by specific classes of secretagogues and that neuropeptide containing secretory vesicles may be released from dendritic structures.  相似文献   

11.
Neurosecretory reservoirs were found in the head of Ephemera danica. In the region where the nervus corporis cardiaci 1 is leaving the brain, the diameter of this nerve increases considerably. Different types of axons were observed, filled with great amounts of electron opaque secretory granules with mean diameters of 170 nm and 110 nm, respectively. Another neurosecretory reservoir is situated in the rostral part of the corpus cardiacum containing a secretory material of a different kind. Most of the granules have diameters of about 90 nm, and are electron opaque. A relatively small number of axons contains nearly electron lucent vesicles with the same mean diameter.  相似文献   

12.
Summary This paper deals with the fine structure of the abdominal ganglia of several species of arthropods belonging to the classes Arachnida, Crustacea, Myriapoda and Insecta. The tissues were fixed in osmium tetroxide and embedded in n-butyl methacrylate or fixed in potasium permanganate and embedded in a mixture of X 133/2097 and Araldite.A comparative study was made in order to discriminate between those structural characteristics of the nervous system appearing only in determined taxonomic groups and those belonging to a fundamental plan common to the whole Phylum. This work covers the morphology of neurons, glial cells, neuropilic nerve fibers and neuronal connections.Most arthropod neurons are pear-shaped with only one prolongation and the nucleus is located in the center of the soma, enveloped by two membranes showing numerous pores. Cisternae of the ER have frequently been observed in continuity with this nuclear envelope. After osmic fixation the nuclear content appears to consist of small dense granules distributed at random in the nucleoplasm. In addition to these small perticles there are, in some species, large chromatin blocks. The use of Permanganate as fixative introduces important changes in the nuclear aspect; most of the nuclei look washed and the nuclear content acquires an homogeneous appearance.The cytoplasm of the neurons contains a complex system of internal membranes consisting of cisternae and tubuli of the ER system, lamellae of the Golgi complex and invaginations of the plasma membrane. In most species the elements of the ER system are distributed at random in the cytoplasm but in the neurons of Bothriurus bonariensis there are parallel aggregations of membranes similar to the Nissl bodies found in vertebrates.It was found in some of the species studied (Armadillidium vulgare and Lithobius Sp.) that the internal membrane system of the nerve cells is mainly represented by Golgi elements while the ER system seems to be poorly developed.Besides the membranous components, the neuronal cytoplasm contains mitochondria, multivesicular bodies and dense granules of neurosecretory material.Neuroglial cells are mainly characterized by their nuclear structure. After the action of osmium tetroxide, glial nuclei show irregular masses of chromatin inmersed in a nucleoplasm of low electron density. In permanganate fixed material these chromatin blocks appear as blank spaces.In the cytoplasm of these cells there are mitochondria, membranes pertaining to the ER system and elements of the Golgi complex but in some of the species studied gliofibrils and granules of pigment were found.Three main types of neuroglial cells have been recognized in an arthropod ganglia. These are: subcapsular glial cells, neuron satellites and nerve fiber satellites.The neuropile occupies the central region of the ganglion and consists of a great number of nerve fibers intermingled with glial processes. The neuropilic n. fibers consistently show profiles of ER membranes and tubuli pertaining to the ER system. In some of these fibers the ER reaches a high degree of development. In Armadillidium there is a special type of n. fiber containing a regular sequence of transversally oriented cisternae. Arthropod fibers sometimes contain thin parallel filaments as well as typical ER elements.Mitochondria, small vesicles and dense granules are commonly found within the neuroplasm of the neuropilic fibers. It is important to note that in arthropods, microvesicles are not restricted to the terminal region of the nerve fibers but that they may also occur all along the fibers.Arthropod neurons are enveloped by a glial insulating capsule and therefore interneuron contacts may only occur at neuropile level. These contacts are of three different morphological types: cross contacts, longitudinal contacts and end-knob contacts. At the level of longitudinal and cross contacts the neuroplasm shows no increase in the number of microvesicles or mitochondria. In the end-knob contacts, on the contrary, large numbers of microvesicles appear concentrated in the pre-synaptic fiber only, and occasionally in both fibers the pre-synaptic and the post-synaptic.It is maintained that funcional interneuron connections may result not only from contacts between fibers containing vesicles, but also between fibers in which vesicles are absent.  相似文献   

13.
The alimentary canal of the spittlebug Lepyronia coleopterata (L.) differentiates into esophagus, filter chamber, midgut (conical segment, tubular midgut), and hindgut (ileum, rectum). The filter chamber is composed of the anterior extremity of the midgut, posterior extremity of the midgut, proximal Malpighian tubules, and proximal ileum; it is externally enveloped by a thin cellular sheath and thick muscle layers. The sac-like anterior extremity of the midgut is coiled around by the posterior extremity of the midgut and proximal Malpighian tubules. The tubular midgut is subdivided into an anterior tubular midgut, mid-midgut, posterior tubular midgut, and distal tubular midgut. Four Malpighian tubules run alongside the ileum, and each terminates in a rod closely attached to the rectum. Ultrastructurally, the esophagus is lined with a cuticle and enveloped by circular muscles; its cytoplasm contains virus-like fine granules of high electron-density. The anterior extremity of the midgut consists of two cellular types: (1) thin epithelia with well-developed and regularly arranged microvilli, and (2) large cuboidal cells with short and sparse microvilli. Cells of the posterior extremity of the midgut have regularly arranged microvilli and shallow basal infoldings devoid of mitochondria. Cells of the proximal Malpighian tubule possess concentric granules of different electron-density. The internal proximal ileum lined with a cuticle facing the lumen and contains secretory vesicles in its cytoplasm. Dense and long microvilli at the apical border of the conical segment cells are coated with abundant electron-dense fine granules. Cells of the anterior tubular midgut contain spherical secretory granules, oval secretory vesicles of different size, and autophagic vacuoles. Ferritin-like granules exist in the mid-midgut cells. The posterior tubular midgut consists of two cellular types: 1) cells with shallow and bulb-shaped basal infoldings containing numerous mitochondria, homocentric secretory granules, and fine electron-dense granules, and 2) cells with well-developed basal infoldings and regularly-arranged apical microvilli containing vesicles filled with fine granular materials. Cells of the distal tubular midgut are similar to those of the conical segment, but lack electron-dense fine granules coating the microvilli apex. Filamentous materials coat the microvilli of the conical segment, anterior and posterior extremities of the midgut, which are possibly the perimicrovillar membrane closely related to the nutrient absorption. The lumen of the hindgut is lined with a cuticle, beneath which are cells with poorly-developed infoldings possessing numerous mitochondria. Single-membraned or double-membraned microorganisms exist in the anterior and posterior extremities of the midgut, proximal Malpighian tubule and ileum; these are probably symbiotic.  相似文献   

14.
The analysis of serial ultrathin sections of the RPAI bursting neuron of the snail Helix pomatia reveals the presence of axosomatic contacts on its surface membrane. These contacts have a number of specific features: the presynaptic axon contains synaptic vesicles and electron-dense granules, typical of peptidergic terminals; the terminal part of the axon forms many finger-like processes which invaginate the neuronal soma; the width of the cleft (80 nm) in the area of the contact is larger than that in usual synaptic contacts; and there is a system of lacoons in the region of the axosomatic contact; this system is formed by protrusions of the soma and it accompanies the contact along its extent. It is suggested that the system of lacoons which communicates with the space between the terminal and the soma may serve as a ramified synaptic cleft into which the secretion from the terminal is released. This system may contribute to a considerable prolongation of the time of action of the secretory product on the membrane of the RPAI neuron.  相似文献   

15.
Summary Numerous secretory parvocellular perikarya were found in the preoptic region of the domestic fowl (Gallus gallus). The dense-core secretory vesicles belong to two categories: vesicles with a diameter of (i)80–90 nm and (ii) 110–140nm. Scattered magnocellular elements display larger dense-core granules. The parvocellular neurons form unit-like clusters, showing also zones of direct apposition of neuronal membranes. The surrounding neuropil is rich in synaptic structures, formed by at least three types of axon terminals, distinguishable on the basis of vesicular morphology. These observations confirm the findings in other avian species. The hypothetical function of this system of peptidergic neurons in the rostral hypothalamus of birds is discussed.  相似文献   

16.
In the brain, glutamate is an extracellular transmitter that mediates cell-to-cell communication. Prior to synaptic release it is pumped into vesicles by vesicular glutamate transporters (VGLUTs). To inactivate glutamate receptor responses after release, glutamate is taken up into glial cells or neurons by excitatory amino acid transporters (EAATs). In the pancreatic islets of Langerhans, glutamate is proposed to act as an intracellular messenger, regulating insulin secretion from β-cells, but the mechanisms involved are unknown. By immunogold cytochemistry we show that insulin containing secretory granules express VGLUT3. Despite the fact that they have a VGLUT, the levels of glutamate in these granules are low, indicating the presence of a protein that can transport glutamate out of the granules. Surprisingly, in β-cells the glutamate transporter EAAT2 is located, not in the plasma membrane as it is in brain cells, but exclusively in insulin-containing secretory granules, together with VGLUT3. In EAAT2 knock out mice, the content of glutamate in secretory granules is higher than in wild type mice. These data imply a glutamate cycle in which glutamate is carried into the granules by VGLUT3 and carried out by EAAT2. Perturbing this cycle by knocking down EAAT2 expression with a small interfering RNA, or by over-expressing EAAT2 or a VGLUT in insulin granules, significantly reduced the rate of granule exocytosis. Simulations of granule energetics suggest that VGLUT3 and EAAT2 may regulate the pH and membrane potential of the granules and thereby regulate insulin secretion. These data suggest that insulin secretion from β-cells is modulated by the flux of glutamate through the secretory granules.  相似文献   

17.
The ventriculus and the midgut caeca of the fed females of Anystis baccarum (L.) were investigated by using light and electron microscopy. In addition to the main type of polyfunctional digestive cells, special secretory cells were detected in the anterior region of the ventriculus. The shape and the ultrastructure of the digestive cells vary depending on their physiological state. Intracellular digestion, absorption or excretion processes prevail at different stages of the cell cycle. The secretory cells are characterized by the presence of extensive rough endoplasmic reticulum, filling whole space of the cell. These cells do not contain the apical network of pinocytotic canals, which are typical for the digestive cells. Three types of secretory granules were found in the cytoplasm of the secretory cells that probably correspond to three sequential stages of granulogenesis. The primary secretory granules are formed by the fusion of Golgi vesicles. The primary granules fuse to form complex vesicles with heterogeneous contents. These secondary granules aggregate to form very large inclusions of high electron density (tertiary secretory granules), which probably represent the storage of the secretory product. All types of secretory granules were observed close to the apical plasmalemma.  相似文献   

18.
Synapses between neurons with corticotropin-releasing-factor-(CRF)-like immunoreactivities and other immunonegative neurons in the hypothalamus of colchicine-treated rats, especially in the paraventricular nucleus (PVN) and the supraoptic nucleus (SON) were observed by immunocytochemistry using CRF antiserum. The immunoreactive nerve cell bodies and fibers were numerous in both the PVN and the SON. The CRF-containing neurons had synaptic contacts with immunonegative axon terminals containing a large number of clear synaptic vesicles alone or combined with a few dense-cored vesicles. We also found CRF-like immunoreactive axon terminals making synaptic contacts with other immunonegative neuronal cell bodies and fibers. And since some postsynaptic immunonegative neurons contained many large neurosecretory granules, they are considered to be magnocellular neurosecretory cells. These findings suggest that CRF functions as a neurotransmitter and/or modulator in addition to its function as a hormone.  相似文献   

19.
Neuropeptide Y (NPY) functions as a peptide neurotransmitter and as a neuroendocrine hormone. The active NPY peptide is generated in secretory vesicles by proteolytic processing of proNPY. Novel findings from this study show that cathepsin L participates as a key proteolytic enzyme for NPY production in secretory vesicles. Notably, NPY levels in cathepsin L knockout (KO) mice were substantially reduced in brain and adrenal medulla by 80% and 90%, respectively. Participation of cathepsin L in producing NPY predicts their colocalization in secretory vesicles, a primary site of NPY production. Indeed, cathepsin L was colocalized with NPY in brain cortical neurons and in chromaffin cells of adrenal medulla, demonstrated by immunofluorescence confocal microscopy. Immunoelectron microscopy confirmed the localization of cathepsin L with NPY in regulated secretory vesicles of chromaffin cells. Functional studies showed that coexpression of proNPY with cathepsin L in neuroendocrine PC12 cells resulted in increased production of NPY. Furthermore , in vitro processing indicated cathepsin L processing of proNPY at paired basic residues. These findings demonstrate a role for cathepsin L in the production of NPY from its proNPY precursor. These studies illustrate the novel biological role of cathepsin L in the production of NPY, a peptide neurotransmitter, and neuroendocrine hormone.  相似文献   

20.
Cellular organization of the brain renin-angiotensin system   总被引:2,自引:0,他引:2  
R B Moffett  F M Bumpus  A Husain 《Life sciences》1987,41(16):1867-1879
A model of intracellular Ang II formation (Figure 1) implies that angiotensinogen neurons exist and that CNS Ang II acts both as a neurotransmitter as well as a neurohormone. Such a mechanism is consistent with the immunocytochemical localization of a fraction of brain Ang II in neurosecretory vesicles. To date, several dozen peptide neurotransmitters and neurohormones have been studied. Those assigned to peptidergic systems follow the generalized pathway of biosynthesis shown in Figure 1. In peptidergic systems, a prohormone and all of its processing enzymes are synthesized in the rough endoplasmic reticulum of a cell and move into the Golgi apparatus (Figure 1: #1-3). In the Golgi the prohormone and processing enzymes are packaged into the same vesicle (#3). These secretory vesicles then migrate toward the plasma membrane, frequently via axonal or dendritic projections to terminals. Within these cytoplasmic vesicles and prior to release, the processing enzymes are activated (#4) and the prohormone enzymatically processed, yielding the active peptide (#5-6). Only then do the vesicles fuse with the plasma membrane (in a calcium-dependent process), releasing their contents (#7-8). Once released, the active peptide migrates across the extracellular space and interacts with specific cell surface receptors to initiate a response (#9). Finally, receptor-bound peptide degradation is initiated by receptor-mediated endocytosis (#10-11). For angiotensin peptides to be produced intracellularly, the cell must present only one secretory pathway for Golgi packaging of renin and angiotensinogen; otherwise current theories of protein sorting would predict that these two proteins would be segregated even if synthesized within the same cell. Small quantities of co-packaged renin and angiotensinogen occurring via "spill-over" between compartments seems an unsatisfactory process for a regulated hormone system. Figure 2, depicting an extracellular mechanism for producing Ang II in the brain, has also been proposed. The mechanism of extracellular angiotensin formation is consistent with the molecular information encoded within the component proteins, known mechanisms of protein secretio, well-defined systemic renin-angiotensin enzymatic cascades, and demonstration of all the components of the renin-angiotensin system in the extracellular compartments of the brain. This model (Figure 2) allows independently coordinated gene expression and synthesis of renin (#1R), angiotensinogen (#1A), and angiotensin-converting enzyme (# 1C) in the same or different cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号