首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We simulated the presence of an acoustic competitor by broadcasting conspecific playbacks to males of Johnstone's whistling frog, Eleutherodactylus johnstonei, in the field. We broadcast calls that differed in duration (short, typical, and long), dominant frequency (high, typical, and low), and period (short, typical, and long), and analyzed male vocal responses. We tested the hypothesis that males respond by escalating vocally when they are exposed to female‐attractive calls and by ignoring unattractive ones. At the population level, males responded to playbacks in ways that would potentially increase their attractiveness with regard to solo calling: males increased the duration, reduced the dominant frequency, and increased their calling effort (duty cycle), despite an increase in call period. The modification of call duration occurred only in response to playbacks of low‐frequency calls, long calls, and short‐period calls (selective response), while the modification of the dominant frequency was independent of the characteristic of the playback (fixed response). Contrary to the expected, males did not reduce the call period when they were exposed to attractive playbacks. At the ultimate level, the results suggest energy‐saving strategies. In addition, males seem to trade off call period for the avoidance of acoustic interference with attractive calls as calling effort was typically increased by increasing call duration but only rarely by reducing the call period. Interactive playbacks are necessary to better understand the calling strategies of males of E. johnstonei.  相似文献   

2.
Low‐frequency traffic noise that leads to acoustic masking of vocalizations may cause birds to alter the frequencies or other components of their vocalizations in order to be heard by conspecifics and others. Altering parts of a vocalization may result in poorer vocal performance or the message contained in the vocalization being received incorrectly. During the winters of 2011–2012 and 2012–2013, we recorded and measured the ‘chick‐a‐dee’ call of Black‐capped Chickadees (Poecile atricapillus) and the ‘po‐ta‐to‐chip’ call of American Goldfinches (Spinus tristis) to determine whether components of the calls produced in areas of high traffic noise and low traffic noise differed in any way. We found that both chickadee and goldfinch calls had higher minimum frequencies in areas with high traffic‐noise than in low traffic‐noise areas. The maximum frequencies showed no differences in either species' calls. This suggests that chickadees and goldfinches alter the part of their calls that are acoustically masked by traffic noise in effort to better transmit the vocalization. These differences suggest that increasing anthropogenic noise may influence avian communication and that noise management should be included in conservation planning.  相似文献   

3.
Loss of acoustic habitat due to anthropogenic noise is a key environmental stressor for vocal amphibian species, a taxonomic group that is experiencing global population declines. The Pacific chorus frog (Pseudacris regilla) is the most common vocal species of the Pacific Northwest and can occupy human‐dominated habitat types, including agricultural and urban wetlands. This species is exposed to anthropogenic noise, which can interfere with vocalizations during the breeding season. We hypothesized that Pacific chorus frogs would alter the spatial and temporal structure of their breeding vocalizations in response to road noise, a widespread anthropogenic stressor. We compared Pacific chorus frog call structure and ambient road noise levels along a gradient of road noise exposures in the Willamette Valley, Oregon, USA. We used both passive acoustic monitoring and directional recordings to determine source level (i.e., amplitude or volume), dominant frequency (i.e., pitch), call duration, and call rate of individual frogs and to quantify ambient road noise levels. Pacific chorus frogs were unable to change their vocalizations to compensate for road noise. A model of the active space and time (“spatiotemporal communication”) over which a Pacific chorus frog vocalization could be heard revealed that in high‐noise habitats, spatiotemporal communication was drastically reduced for an individual. This may have implications for the reproductive success of this species, which relies on specific call repertoires to portray relative fitness and attract mates. Using the acoustic call parameters defined by this study (frequency, source level, call rate, and call duration), we developed a simplified model of acoustic communication space–time for this species. This model can be used in combination with models that determine the insertion loss for various acoustic barriers to define the impact of anthropogenic noise on the radius of communication in threatened species. Additionally, this model can be applied to other vocal taxonomic groups provided the necessary acoustic parameters are determined, including the frequency parameters and perception thresholds. Reduction in acoustic habitat by anthropogenic noise may emerge as a compounding environmental stressor for an already sensitive taxonomic group.  相似文献   

4.
Anurans emit distress calls when attacked by predators as a defensive mechanism. As distress calls may trigger antipredator behaviour even in individuals that are not under attack, we tested whether this defensive behaviour induced behavioural changes in neighbouring conspecifics. We compared the behavioural responses of two species of Neotropical hylid frogs (genus Boana) to conspecific distress calls and white noise. Individuals of both species interrupted their vocal activity and decreased call rate after hearing the distress call. Natural variation on signal intensity calibrated among the nearest neighbours did not influence the response and we did not observe negative phonotaxis after any acoustic stimulus. Despite the fact that many predators are acoustically oriented, we could not determine if such response (reduced call rate) was induced by risk assessment or by the masking effect on advertisement calls. Boana faber responded similarly to white noise and distress calls, while B. bischoffi responded more intensely to distress calls. Duration of silence after playbacks in B. faber was longer than B. bischoffi. We suggest that, if the signals are interpreted as a risk cue by neighbouring conspecifics, each species may be preyed upon by different predators, as they may have led to distinct defensive strategies and different responses to distress calls. If risk assessment information is included in distress calls, it triggers behavioural responses only in the nearest neighbours, as we did not observe responses on the vocal activity of the interspecific chorus. Our results add relevant data about acoustic communication and interpretations by anurans, highlighting the importance of considering cues within common and widespread signals.  相似文献   

5.
Different mechanisms have been proposed for encoding information into vocalizations: variation of frequency or temporal characteristics, variation in the rate of vocalization production, and use of different vocalization types. We analyze the effect of rate variation on the dual function of chip calls (contact and alarm) produced by White‐eared Ground‐sparrows (Melozone leucotis). We conducted an acoustic playback experiment where we played back 1 min of four chip call rates (12, 36, 60, 84 calls/min). We measured the response of territorial pairs using behavioral responses, and fine structural features of calls produced in response to those playbacks. White‐eared Ground‐sparrows showed more intense behavioral responses to higher than lower call rate playbacks. Both individuals of the pair approached the source of the playback stimulus faster, produced the first vocalization faster, produced more vocalizations, and spent more time close to the stimulus in higher call rate than in lower call rate playbacks. Frequency and duration characteristics of calls (chip and tseet) were similar in response to all call rate playbacks. Our playback experiment elicited different intensity of behavioral responses, suggesting that risk‐based information is encoded in call rate. Our results suggest that variation in the rate of chip call production serves a dual function in this species; calls are used at lower rates for pair contact and at higher rates for alarm/mobbing signals.  相似文献   

6.
According to the acoustic adaptation hypothesis, communication signals are evolutionary shaped in a way that minimizes its degradation and maximizes its contrast against the background noise. To compare the importance for call divergence of acoustic adaptation and hybridization, an evolutionary force allegedly promoting phenotypic variation, we compared the mate recognition signal of two species of poison frogs (Oophaga histrionica and O. lehmanni) at five localities: two (one per species) alongside noisy streams, two away from streams, and one interspecific hybrid. We recorded the calls of 47 males and characterized the microgeographic variation in their spectral and temporal features, measuring ambient noise level, body size, and body temperature as covariates. As predicted, frogs living in noisy habitats uttered high frequency calls and, in one species, were much smaller in size. These results support a previously unconsidered role of noise on streams as a selective force promoting an increase in call frequency and pleiotropic effects in body size. Regarding hybrid frogs, their calls overlapped in the signal space with the calls of one of the parental lineages. Our data support acoustic adaptation following two evolutionary routes but do not support the presumed role of hybridization in promoting phenotypic diversity.  相似文献   

7.
Traffic noise likely reaches a wide range of species and populations throughout the world, but we still know relatively little about how it affects anti-predator behavior of populations. We tested for possible effects of traffic noise on responses to predator acoustic cues in Carolina chickadees (Poecile carolinensis), tufted titmice (Baeolophus bicolor), and white-breasted nuthatches (Sitta carolinensis) near 14 independent feeding stations in eastern Tennessee. We compared anti-predator calling and seed-taking behavior in response to playbacks of predator stimuli (screech owl calls) at sites naturally exposed to traffic noise and at sites that faced relatively little traffic noise. The screech owl call playback was designed to simulate the approach of this dangerous predator to a feeder being used by these small songbirds. We found that chickadees responded consistently to the owl stimuli across different levels of traffic noise. However, titmice, and nuthatches exhibited different behavioral responses to the predator stimulus, suggesting that traffic noise masked these low-frequency predator calls. Overall, chickadees and nuthatches showed the broadest anti-predator behavioral responses in comparison to titmice, corroborating earlier published work with an Indiana population. Finally, populations exposed to traffic noise overall seemed less able to detect predator cues potentially masked by that noise, and future work will need to assess likely seasonal variation in these responses as well as species-level variation in anti-predator responses in mixed-species groups.  相似文献   

8.
9.
环境噪声会降低动物声信号可探测性,是动物声信号进化的压力。为了避免人工噪声干扰,多数脊椎动物调整其叫声的频谱-时间结构,如采用延长叫声持续时间、提高频率和增加强度等策略。本研究选择回声定位声波频率范围与交通噪声频率范围相互重叠的东方蝙蝠(Vespertilio sinensis)为研究对象,在自然条件下开展实验,研究交通噪声对蝙蝠回声定位声波的影响。本实验选择交通噪声强度存在差异的两个样点,分别录制东方蝙蝠的回声定位声波,分析其结构参数。在交通噪声强度较高的样点,东方蝙蝠回声定位声波的持续时间、斜率均未显著改变,但起始频率、主频、终止频率及带宽均显著提高。结果表明,东方蝙蝠的回声定位行为在交通噪声干扰下具有明显的可塑性。  相似文献   

10.
We investigated how male cricket frogs Acris crepitans, alter their advertisement calls in response to broadcasts of synthetic calls that were either 'attractive' or 'aggressive'. The stimulus calls differed in temporal but not spectral characteristics. Male cricket frogs produced a more aggressive call when presented with the aggressive stimulus, indicating that they perceived the temporal differences between the two call categories. The direction and degree of temporal and spectral changes depended on the relative dominant frequency of the resident and opponent. If the resident's dominant frequency was initially higher than the stimulus frequency, the pattern of change in dominant frequency mirrored that seen for the temporal call characters. In contrast, if the resident's initial dominant frequency was below that of the stimulus, then the temporal and spectral changes were in opposite directions. Furthermore, stimulus order influenced whether males responded differently to playbacks of aggressive and attractive calls; males that received the aggressive call first produced more aggressive calls during the aggressive stimulus, while males that received the attractive call first produced similar calls in response to the two stimuli. This suggests that experience with different types of signals influences the subsequent calling behaviour of male cricket frogs. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

11.
12.
Males of certain species of fairy-wrens (Aves: Maluridae) emit a unique vocalization, the Type II vocalization, in response to the calls of potential predators. We conducted field observations and playback experiments to identify the contexts in which the Type II vocalization is emitted by splendid fairy-wren ( Malurus splendens ) males, and to examine social and genetic factors that influence its occurrence. In field observations and controlled playback experiments, Type II vocalizations were elicited most consistently by calls of the predatory gray butcherbird ( Cracticus torquatus ). Some vocalizations from other avian species also elicited Type II vocalizations, and the majority of these were vocalizations from avian predators. Splendid fairy-wrens are cooperative breeders, and males that responded with Type II vocalizations to playbacks of butcherbird calls tended to be primary rather than secondary males, had larger cloacal protuberances, and were older than those that did not respond. In addition, secondary males that were sons of resident females were more likely than non-sons to respond with a Type II vocalization. In another playback experiment, females responded similarly to the Type I song and Type II vocalizations of their mates. Although the Type II vocalization is emitted primarily in response to predator calls, it is inconsistent with an alarm call explanation. Patterns of reproductive success among Type II calling males suggest that it does not function as an honest signal of male quality. At present, the function of the vocalization remains anomalous, but indirect fitness benefits may play a role in its explanation.  相似文献   

13.
Sexual selection takes place in complex environments where females evaluating male mating signals are confronted with stimuli from multiple sources and modalities. The pattern of expression of female preferences may be influenced by interactions between modalities, changing the shape of female preference functions, and thus ultimately altering the selective landscape acting on male signal evolution. We tested the hypothesis that the responses of female gray treefrogs, Hyla versicolor, to acoustic male advertisement calls are affected by interactions with visual stimuli. We measured preference functions for several call traits under two experimental conditions: unimodal (only acoustic signals presented), and multimodal (acoustic signals presented along with a video‐animated calling male). We found that females were more responsive to multimodal stimulus presentations and, compared to unimodal playbacks, had weaker preferences for temporal call characteristics. We compared the preference functions obtained in these two treatments to the distribution of male call characteristics to make inferences on the strength and direction of selection expected to act on male calls. Modality interactions have the potential to influence the course of signal evolution and thus are an important consideration in sexual selection studies.  相似文献   

14.
Acoustically active animals may show long- and short-term adaptations in acoustic traits for coping with ambient noise. Given the key role of calls in anurans’ life history, long- and short-term adaptations are expected in species inhabiting noisy habitats. However, to disentangle such adaptations is a difficult task, incipiently addressed for Neotropical frogs. We investigated if males of a stream-breeding frog (Crossodactylus schmidti) adjust call traits according to the background noise, and if the signal-to-noise ratio (SNR) varies between call harmonics and along call notes. We measured sound pressure levels of calls and noise in the field and used a fine-scale acoustic analysis to describe the signal and noise structure and test for noise-related call adjustments. The multi-note harmonic call of C. schmidti greatly varied in the spectral structure, including a trend for increasing note amplitude along the call, a wide frequency bandwidth of the 2nd harmonic, a minor call frequency modulation due to a trend for increasing note frequency within the same harmonic, and a major call frequency modulation due to the variable location of the dominant harmonic along the call. Calls had significantly higher frequencies than the noise at the range of the 1st and the 2nd call harmonics, and significantly louder sound pressure than the noise at the range of all harmonics. Males emitted the majority of call notes showing positive SNR, and though males also emitted some notes with negative SNR, when a given harmonic was negative the other harmonics in the same note did not tend to be SNR-negative. Our results indicate that male C. schmidti show short-term acoustic adjustments that make the advertisement call effective for coping with the interference of the stream-generated noise. We suggest that the call spectral plasticity serves for coping with temporary changes in the background noise, whilst we also discuss the possibility that the redundant, harmonic-structured call may have evolved to diminish masking interference on the acoustic signal by the background noise. This is the first study to uncouple noise-related acoustic adjustments and putative long-term acoustic adaptations for a Hylodidae, providing insights on behavioral plasticity and signal evolution of stream-breeding frogs.  相似文献   

15.
Acoustic signals sometimes act as premating isolating barriers between animal species, but we know little about the circumstances that dictate the presence and strength of these barriers. Among insects, barriers to backcrossing are strengthened by acoustic signals that are under genetic control. Hybrid signals tend to be intermediate to parental signals, and signals are recognized only by like‐types, which results in reinforced species boundaries. This is not typically the case in avian taxa. Instead, acoustic signal transmission is controlled by some combination of genes and learning, and perhaps as a consequence of this variation, vocalizations play a diversity of roles in avian hybrid zones. I used California and Gambel's quail (Callipepla californica and C. gambelii), hybridizing birds that do not learn to vocalize, to explore whether genetically determined vocalizations function as a species barrier. Using spectral analysis, I measured temporal features of calls of uniquely colour‐banded quail that were recorded across one area of the California and Gambel's quail hybrid zone. Species discrimination is known to occur under captive conditions, though its basis is unexplored. Here I show that differences in the calls of parental species are likely great enough to permit species discrimination. Hybrid call components were intermediate to those of the parental species and covaried with genetic traits, as assessed with seven highly polymorphic microsatellite loci. Contrary to expectation, males as frequently called in response to unlike‐ as like‐type females who had initiated antiphonal calling, which is a courtship call between a female and a male. Furthermore, paired males and females did not share like‐type assembly calls, nor was there a correlation between the female's genetic or plumage traits and her mate's advertisement call. Based on these results, I conclude that California and Gambel's quail recognize each other and hybrids as potential mates and backcrossing occurs frequently. Thus, compatible mating signals could contribute to increased mixing of gene pools and slow the rate of speciation. I suggest that selection to respond to wide signal variation within species and imprinting on calls of mixed‐species coveys may cause mating signal compatibility between classes within the area of hybridization. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 86 , 253–264.  相似文献   

16.
Studies on primate vocalisation have revealed different types of alarm call systems ranging from graded signals based on response urgency to functionally referential alarm calls that elicit predator‐specific reactions. In addition, alarm call systems that include both highly specific and other more unspecific calls have been reported. There has been consistent discussion on the possible factors leading to the evolution of different alarm call systems, among which is the need of qualitatively different escape strategies. We studied the alarm calls of free‐ranging saddleback and moustached tamarins (Saguinus fuscicollis and Saguinus mystax) in northeast Peru. Both species have predator‐specific alarm calls and show specific non‐vocal reactions. In response to aerial predators, they look upwards and quickly move downwards, while in response to terrestrial predators, they look downwards and sometimes approach the predator. We conducted playback experiments to test if the predator‐specific reactions could be elicited in the absence of the predator by the tamarins’ alarm calls alone. We found that in response to aerial alarm call playbacks the subjects looked significantly longer upwards, and in response to terrestrial alarm call playbacks they looked significantly longer downwards. Thus, the tamarins reacted as if external referents, i.e. information about the predator type or the appropriate reaction, were encoded in the acoustic features of the calls. In addition, we found no differences in the responses of S. fuscicollis and S. mystax whether the alarm call stimulus was produced by a conspecific or a heterospecific caller. Furthermore, it seems that S. fuscicollis terrestrial alarm calls were less specific than either S. mystax terrestrial predator alarms or either species’ aerial predator alarms, but because of the small sample size it is difficult to draw a final conclusion.  相似文献   

17.
The apparent extravagance of begging displays is usually attributed to selection for features, such as loud calls, that make the signal costly and hence reliable. An alternative explanation, however, is that these design features are needed for effective signal transmission and reception. Here, we test the latter hypothesis by examining how the begging calls of tree swallow (Tachycineta bicolor) nestlings and the response to these calls by parents are affected by ambient noise. In a field study, we found that call length, amplitude and frequency range all increased with increasing noise levels at nests. In the laboratory, however, only call amplitude increased in response to the playback of noise to nestlings. In field playbacks to parents, similar levels of noise abolished parental preferences for higher call rates, but the preference was restored when call amplitude was increased to the level that nestlings had used in the laboratory study. Our results show that nestling birds, like other acoustic signallers, consistently increase call amplitude in response to ambient noise and this response appears to enhance discrimination by receivers. Thus, selection for signal efficacy may explain some of the seemingly extravagant features of begging displays.  相似文献   

18.
The matched filter hypothesis proposes that the tuning of auditory sensitivity and the spectral character of calls will match in order to maximize auditory processing efficiency during courtship. In this study, we analyzed the acoustic structure of male calls and both male and female hearing sensitivities in the little torrent frog (Amolops torrentis), an anuran species who transmits acoustic signals across streams. The results were in striking contradiction to the matched filter hypothesis. Auditory brainstem response results showed that the best hearing range was 1.6–2 kHz consistent with the best sensitive frequency of most terrestrial lentic taxa, yet completely mismatched with the dominant frequency of conspecific calls (4.3 kHz). Moreover, phonotaxis tests show that females strongly prefer high‐frequency (4.3 kHz) over low‐frequency calls (1.6 kHz) regardless of ambient noise levels, although peripheral auditory sensitivity is highest in the 1.6–2 kHz range. These results are consistent with the idea that A. torrentis evolved from nonstreamside species and that high‐frequency calls evolved under the pressure of stream noise. Our results also suggest that female preferences based on central auditory system characteristics may evolve independently of peripheral auditory system sensitivity in order to maximize communication effectiveness in noisy environments.  相似文献   

19.
Katie M. Schroeder  Susan B. McRae 《Ibis》2020,162(3):1033-1046
Autonomous recording units (ARUs) provide a non-invasive and efficient method for acoustic detection of elusive species across large temporal and spatial scales. However, species with indistinct vocalization structures can be a considerable challenge for automated signal recognizers. We investigated the performance of ARUs and signal recognizers in identifying the broadband, short-syllable, pulsed calls of a secretive, threatened marsh bird, the King Rail Rallus elegans. Other sympatric species in the same habitat also have repetitive calls within the same frequency range that can be difficult to distinguish. Following serial ARU deployments at specified sites in known breeding habitat, we conducted standardized callback surveys and nest searches to provide an independent measure of breeder density. To analyse recordings, we developed a signal recognizer based on user-input training files to detect two common call types, kek and grunt. Detections that remained following manual review of recognizer output revealed a previously undescribed seasonal decline and crepuscular diel pattern in calling rate. The rate of the grunt call also predicted density. These patterns emerged despite the recognizer's low precision and high false-positive rate, which were largely due to misclassification of other species' calls, although ambient noise and effective detection radius also limited the detectability of King Rail calls. We demonstrate that with informed ARU scheduling, improved ability to manipulate user-specified parameters within signal detection software, and attention to quality control, even the simplest call structures can be located consistently in a diverse acoustic landscape. Our behavioural findings will inform improvements to auditory surveys and to management of King Rails across their range.  相似文献   

20.
The period of calling activity ofPolypedates maculatus lies between April and October. Males possess an indistinct subgular vocal sac which turns yellow during the breeding season. Mating calls type I, type II and distress calls have been identified. Mating calls type I and type II consist of a single pulse group. Type I call comprises of 7–22 pulses, whereas type II call consists of 4–6 pulses. Pulses are short. The frequency spectrum is broad and continuous. Distress calls, with 6 hormonics, are given by the females with their mouth open.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号