首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
The anterior cervical vertebrae form the skeletal connection between the cranial and postcranial skeletons in higher tetrapods. As a result, the morphology of the atlas‐axis complex is likely to be shaped by selection pressures acting on either the head or neck. The neoceratopsian (Reptilia:Dinosauria) syncervical represents one of the most highly modified atlas‐axis regions in vertebrates, being formed by the complete coalescence of the three most anterior cervical vertebrae. In ceratopsids, the syncervical has been hypothesized to be an adaptation to support a massive skull, or to act as a buttress during intraspecific head‐to‐head combat. Here, we test these functional/adaptive hypotheses within a phylogenetic framework and critically examine the previously proposed methods for quantifying relative head size in the fossil record for the first time. Results indicate that neither the evolution of cranial weaponry nor large head size correlates with the origin of cervical fusion in ceratopsians, and we, therefore, reject both adaptive hypotheses for the origin of the syncervical. Anterior cervical fusion has evolved independently in a number of amniote clades, and further research on extant groups with this peculiar anatomy is needed to understand the evolutionary basis for cervical fusion in Neoceratopsia.  相似文献   

2.
    
Size is among the most important traits of any organism, yet the factors that control its evolution remain poorly understood. In this study, we investigate controls on the evolution of organismal size using a newly compiled database of nearly 25,000 foraminiferan species and subspecies spanning the past 400 million years. We find a transition in the pattern of foraminiferan size evolution from correlation with atmospheric pO2 during the Paleozoic (400–250 million years ago) to long‐term stasis during the post‐Paleozoic (250 million years ago to present). Thus, a dramatic shift in the evolutionary mode coincides with the most severe biotic catastrophe of the Phanerozoic (543 million years ago to present). Paleozoic tracking of pO2 was confined to Order Fusulinida, whereas Paleozoic lagenides, miliolids, and textulariids were best described by the stasis model. Stasis continued to best describe miliolids and textulariids during post‐Paleozoic time, whereas random walk was the best supported mode for the other diverse orders. The shift in evolutionary dynamics thus appears to have resulted primarily from the selective elimination of fusulinids at the end of the Permian Period. These findings illustrate the potential for mass extinction to alter macroevolutionary dynamics for hundreds of millions of years.  相似文献   

3.
Slow vertical climbing and clinging are the dominant positional behaviors of the most convincing reconstruction of the primary spatial niche of Megaladapis, a giant extinct prosimian from Madagascar. The vertical support model of Cartmill ('74) predicts that clawless mammals should exhibit relatively elongated forelimbs in expanded size ranges. The allometric corollaries of this model are tested on closely related interspecific samples of Megaladapis and selected extant prosimians. Megaladapis and indriids (vertical leapers and clingers) conform to the structural predictions of the model, and are clearly distinguished from the more pronograde lemurids and cheirogaleids. Extreme hindlimb reduction (negative allometry) is coupled with moderate forelimb elongation (positive allometry) in Megaladapis. These body proportions effectively optimize pedal friction during vertical climbing and minimize the moment of body weight pulling the animal away from the trunk. Positive forelimb allometry occurs in the indriids, while isometry obtains for the hindlimb. The adaptive significance of these morphological strategies are discussed, as are possible selective mechanisms which effect the extreme hindlimb reduction in Megaladapis. Body weight estimates are also presented for Megaladapis edwardsi and Megaladapis grandidieri (50–100 kg and 40–75 kg, respectively).  相似文献   

4.
    
Most extant species are in clades with poor fossil records, and recent studies of comparative methods show they have low power to infer even highly simplified models of trait evolution without fossil data. Birds are a well‐studied radiation, yet their early evolutionary patterns are still contentious. The fossil record suggests that birds underwent a rapid ecological radiation after the end‐Cretaceous mass extinction, and several smaller, subsequent radiations. This hypothesized series of repeated radiations from fossil data is difficult to test using extant data alone. By uniting morphological and phylogenetic data on 604 extant genera of birds with morphological data on 58 species of extinct birds from 50 million years ago, the “halfway point” of avian evolution, I have been able to test how well extant‐only methods predict the diversity of fossil forms. All extant‐only methods underestimate the disparity, although the ratio of within‐ to between‐clade disparity does suggest high early rates. The failure of standard models to predict high early disparity suggests that recent radiations are obscuring deep time patterns in the evolution of birds. Metrics from different models can be used in conjunction to provide more valuable insights than simply finding the model with the highest relative fit.  相似文献   

5.
At the end of the Permian, numerous amphibians and therapsids vanished, creating many empty ecological niches, which were occupied by new creatures. This event brought new trends in animal locomotion thanks to modifications of the skeleton limbs. The newcomers were faster and more dangerous for other families. The prominent ichnogenera were Synaptichnium, Chirotherium, Brachychirotherium, Isochirotherium, and Sphingopus. Their trackmakers were Thecodonts, reptiles having the above-mentioned evolutive characteristics. Dinosaurs, which appeared at the end of the Triassic period, were likely their descendants, which raises the question of when and where the dinosaurs originated. The comparison of the trackways of the Middle and upper Triassic with those of the lower Jurassic leads to the conclusion that the two sets of tridactyl ichnites were similar and were made by the same group of trackmakers, the dinosaurs. We had many passionate discussions on this subject with Bill Sarjeant when studying the discoveries made in Europe the past 40 years.  相似文献   

6.
A comparison of the values of certain temporal and spatial locomotor parameters was made among ten different-aged (sized) vervet monkeys locomoting at nine identical speeds. Cycle and stance durations decreased across speed for all the animals; at any one speed both parameters also varied directly with body size. Stride length increased with speed for all the animals and was greater in the larger animals. Swing duration and hindlimb support length tended to be relatively consistent for each animal across speed, but varied among the animals directly with body size. Hindlimb duty factor decreased with speed for any one animal but showed no direct correlation with size. Hindlimb angular excursion also showed no correlation with size, nor did it show a simple relationship with speed. In terms of gaits and gait transitions, the data indicate that vervets use a very wide variety of gait types, which are not easily correlated with speed or body size. Furthermore, the data suggest the existence of a run–gallop transition zone of speeds for these animals, rather than the existence of a specific transition speed. Finally, the data were used to test intraspecifically the elastic and dynamic similarity models, both of which predict how locomotor parameters will change with size in animals. The results are generally consistent with the dynamic model.  相似文献   

7.
8.
Captorhinids are a speciose clade of sauropsids that are crucial to understand several aspects of basal amniote general biology. Members of the Captorhinidae explored different diets and, amongst basal amniotes, were one of the first groups to demonstrate high‐fibre herbivory. Several papers have been published on the cranial anatomy of captorhinids, but there are relatively few studies which focus on the post‐cranium, especially on the appendicular skeleton and long bones. This contribution presents the first quantitative long bone scaling in Captorhinidae performed through morphometric analyses. From classical biomechanical research, it is well‐established that to accommodate an increase in size, gravity will result in elastic deformation of long bones. This outcome is especially significant in terrestrial tetrapods with a sprawling limb posture such as captorhinids, where great torsional stresses are applied to long bones, both during locomotion and in the resting phase. In this paper, we test whether the consistent evolutionary size increase in captorhinids led to major re‐patterning in long bone structure as theoretically expected, based on the theory of elastic similarity. Morphometric analysis shows that, apart from a small positive allometry in the humerus, captorhinid long bones scale geometrically as body size increases. Thus, the predicted elastic similarity to maintain similar levels in peak stress with an increase in dimensions does not seem not to apply to long bone evolution in captorhinids. We propose that, as already observed experimentally in larger‐bodied varanid lizards, large captorhinids could also mitigate size‐related increases in stress by reducing femur rotation and increasing the percentage of the stride cycle during which the right hindfoot was on the ground (i.e. the duty factor). In this way, large captorhinids could avoid reaching peak stress thresholds by sacrificing speed during locomotion and without a substantial long bone re‐patterning or postural change.  相似文献   

9.
  总被引:1,自引:0,他引:1  
Abstract.  1. Data were compiled from the literature and our own studies on 24 ant species to characterise the effects of body size and temperature on forager running speed.
2. Running speed increases with temperature in a manner consistent with the effects of temperature on metabolic rate and the kinetic properties of muscles.
3. The exponent of the body mass-running speed allometry ranged from 0.14 to 0.34 with a central tendency of approximately 0.25. This body mass scaling is consistent with both the model of elastic similarity, and a model combining dynamic similarity with available metabolic power.
4. Even after controlling for body size or temperature, a substantial amount of inter-specific variation in running speed remains. Species with certain lifestyles [e.g. nomadic group predators, species which forage at extreme (>60 °C) temperatures] may have been selected for faster running speeds.
5. Although ants have a similar scaling exponent to mammals for the running speed allometry, they run slower than predicted compared with a hypothetical mammal of similar size. This may in part reflect physiological differences between invertebrates and vertebrates.  相似文献   

10.
    
Old World monkeys represent one of the most successful adaptive radiations of modern primates, but a sparse fossil record has limited our knowledge about the early evolution of this clade. We report the discovery of two partial skeletons of an early colobine monkey (Microcolobus) from the Nakali Formation (9.8–9.9 Ma) in Kenya that share postcranial synapomorphies with extant colobines in relation to arboreality such as mediolaterally wide distal humeral joint, globular humeral capitulum, distinctly angled zona conoidea, reduced medial trochlear keel, long medial epicondyle with weak retroflexion, narrow and tall olecranon, posteriorly dislocated fovea on the radial head, low projection of the femoral greater trochanter, wide talar head with a greater rotation, and proximodistally short cuboid and ectocuneiform. Microcolobus in Nakali clearly differs from the stem cercopithecoid Victoriapithecus regarding these features, as Victoriapithecus is postcranially similar to extant small‐sized terrestrial cercopithecines. However, degeneration of the thumb, a hallmark of modern colobines, is not observed, suggesting that this was a late event in colobine evolution. This discovery contradicts the prevailing hypothesis that the forest invasion by cercopithecids first occurred in the Plio‐Pleistocene, and shows that this event occurred by the late Miocene at a time when ape diversity declined. Am J Phys Anthropol 143:365‐382, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
Numerous tridactyl dinosaur footprints have been discovered in the Lower Jurassic (Hettangian) of the Causses, France. They exhibit the usual Grallator‐like morphology in which differences seem to be more a result of normal intraspecific variability than of inherent differences between skeletons. However, such subjective conclusions beg an analytical confirmation, which was the principal objective of this study.

For more reliable shape determinations, typical specimens from well‐preserved footprint ichnofaunas of the Connecticut Valley (USA) were used. Statistical methods are necessary to verify the homogeneity of such footprint populations. Determinations of the variability, confidence interval for the mean, and ratios between length characters are particularly important in reducing the influence of the size of each print. By this method, the ichnospecies Anomoepus intermedius, Eubrontes giganteus, and Grallator sillimani are statistically distinct; the equally distinct new ichnospecies from Saint‐Léons (Aveyron) can be designated as Grallator lescurei and the trackways of Saint‐Laurent as G. minusculus.

A problem remains in classifying the trackmaking dinosaurs. Their prior assignment to the theropods apparently should be revised because of the abundance of grallatorid footprints in the Lower Jurassic, which seems to contradict conclusions drawn from paleoecological data.  相似文献   

12.
    
Medullary bone (MB) is a special endosteal tissue forming in the bones of female birds during egg laying to serve as a labile calcium reservoir for building the hard eggshell. Therefore, the presence of MB reported in multiple nonavian dinosaurs is currently considered as evidence that those specimens were sexually mature females in their reproductive period. This interpretation has led to further inferences on species‐specific growth strategies and related life‐history aspects of these extinct vertebrates. However, a few studies questioned the reproductive significance of fossil MB by either regarding the tissue pathological or attributing alternative functions to it. This study reviews the general inferences on extinct vertebrates and discusses the primary role, distribution, regulation and adaptive significance of avian MB to point out important but largely overlooked uncertainties and inconsistencies in this matter. Emerging discordancy is demonstrated when the presence of MB vs. trade‐off between growth and reproduction is used for interpreting dinosaurian growth curves. Synthesis of these data suggests that fossil MB was related to high calcium turnover rates but not exclusively to egg laying. Furthermore, revised application of Allosaurus growth data by modelling individual‐based growth curves implies a much higher intraspecific variability in growth strategies, including timing of sexual maturation, than usually acknowledged. New hypotheses raised here to resolve these incongruences also propose new directions of research on the origin and functional evolution of this curious bone tissue.  相似文献   

13.
14.
    
A fuller understanding of the role of developmental bias in shaping large‐scale evolutionary patterns requires integrating bias (the probability distribution of variation accessible to an ancestral phenotype) with clade dynamics (the differential survival and production of species and evolutionary lineages). This synthesis could proceed as a two‐way exchange between the developmental data available to neontologists and the strictly phenotypic but richly historical and dynamic data available to paleontologists. Analyses starting in extant populations could aim to predict macroevolution in the fossil record from observed developmental bias, while analyses starting in the fossil record, particularly the record of extant species and lineages, could aim to predict developmental bias from macroevolutionary patterns, including the broad range of extinct phenotypes. Analyses in multivariate morphospaces are especially effective when coupled with phylogeny, theoretical and developmental models, and diversity–disparity plots. This research program will also require assessing the “heritability” of an ancestral bias across phylogeny, and the tendency for bias change in strength and orientation over evolutionary time. Such analyses will help find a set of general rules for the macroevolutionary effects of developmental bias, including its impact on and interactions with the other intrinsic and extrinsic factors governing the movement, expansion, and contraction of clades in morphospace.  相似文献   

15.
A research project on the population biology of ancient Etruscans has recently started. The aim of this multidisciplinary research is the anthropological definition of Etruscan populations, about which little is known. The study of the skeletal remains is expected to lead to the identification of characteristics typical of this group, which will be used to establish affinities and differences with other contemporary Italic populations, as well as with previous and subsequent groups. An outline of the project is presented here, together with an indication of the problems concerning the availability of material. A summary of previous research on Etruscans is also given. In the final section, preliminary results are presented on one aspect of the research presently under way, namely the odontometric study of different groups of Etruscan populations. These results suggest a homogeneity within the groups described under the common label “Etruscans”.  相似文献   

16.
    
Taphonomic information is examined to evaluate the early history of connective tissues in the Crinoidea. The pattern of stalk segmentation of Middle and Late Ordovician crinoids is consistent with the two-ligament (intercolumnal and through-going ligaments) pattern present in living isocrinid crinoids and interpreted for fossil isocrinids, holocrinids, and Lower Mississippian crinoids. A single rhombiferan was also examined; its taphonomic pattern is also indicative of this style of tissue organization. Furthermore, the taphonomy of all Middle and Late Ordovician crinoids may reflect that they lacked discretely organized muscles between arm brachials, which is consistent with the hypothesis that muscles evolved as a connective tissue between plates only once within the Crinoidea, during the Early Devonian. These data indicate that the two-ligament organization of the stalk is a primitive feature among the Crinoidea and perhaps even among stalked echinoderms. Therefore, the autotomy function of this column-tissue organization among living crinoids is an exaptation. On the other hand, discretely organized muscles as connective tissue in crinoid arms is a derived trait that first appeared during the middle Paleozoic; this adaptation proved very successful for the advanced cladid crinoids.  相似文献   

17.
    
ABSTRACT

In this issue, we cover an exceptional topic in Vertebrate Paleobiology that has been an enjoyable challenge for scientists and the popular media alike: the life and death of the Pleistocene cave bear (Ursus spelaeus). As an icon of the ice-age, the cave bear inhabited the glacial ecosystems of Eurasia, and it was the inspiration of a popular book written in 1976 by Björn Kurtén, entitled The cave bear story: life and death of a vanished animal. Although ‘The life and death’ was a summary of the knowledge acquired on cave bear biology at that time, four decades later, many aspects of its palaeoecology, extinction and evolution are still a matter of debate. With this volume, we aim to bring together the most recent research on cave bear biology in order to provide an update on the palaeoecology, biogeography, systematics, and phylogeny of this recently extinct ursine bear. We thus organised a symposium on the 1st of August 2017 as part of the three-day Annual Meeting of the European Association of Vertebrate Palaeontologists (EAVP) in Munich, Germany, that was an additional opportunity to announce the volume and to discuss this exciting subject face-to-face among specialists.  相似文献   

18.
19.
We use data from the literature to compare two statistical procedures for estimating mass (or size) of quadrupedal dinosaurs and other extraordinarily large animals in extinct lineages. Both methods entail extrapolation from allometric equations fitted to data for a reference group of contemporary animals having a body form similar to that of the dinosaurs. The first method is the familiar one of fitting a straight line to logarithmic transformations, followed by back-transformation of the resulting equation to a two-parameter power function in the arithmetic scale. The second procedure entails fitting a two-parameter power function directly to arithmetic data for the extant forms by nonlinear regression. In the example presented here, the summed circumferences for humerus plus femur for 33 species of quadrupedal mammals was the predictor variable in the reference sample and body mass was the response variable. The allometric equation obtained by back-transformation from logarithms was not a good fit to the largest species in the reference sample and presumably led to grossly inaccurate estimates for body mass of several large dinosaurs. In contrast, the allometric equation obtained by nonlinear regression described data in the reference sample quite well, and it presumably resulted in better estimates for body mass of the dinosaurs. The problem with the traditional analysis can be traced to change in the relationship between predictor and response variables attending transformation, thereby causing measurements for large animals not to be weighted appropriately in fitting models by least squares regression. Extrapolations from statistical models obtained by back-transformation from lines fitted to logarithms are unlikely to yield reliable predictions for body size in extinct animals. Numerous reports on the biology of dinosaurs, including recent studies of growth, may need to be reconsidered in light of our findings.  相似文献   

20.
This paper aims to test the contribution of ontogenetic scaling to sexual dimorphism of the facial skeleton in the African apes. Specifically, it addresses whether males and females of each species share a common postnatal ontogenetic shape trajectory for the facial skeleton. Where trajectories are found to differ, it is tested whether male and female trajectories: 1) diverge early, or 2) diverge later after sharing a common trajectory earlier in the postnatal period. Where ontogenetic shape trajectories are found to be shared, it is also tested whether males and females are ontogenetically scaled. This study uses geometric morphometric analyses of 28 landmarks from the facial skeletons of 137 G. g. gorilla (62 adults; 75 juveniles), 95 P. paniscus (34 adults; 61 juveniles), and 115 P. t. troglodytes (58 adults; 57 juveniles). On average, males and females share a common ontogenetic shape trajectory until around the eruption of the second permanent molars. In addition, for the same period, males and females in each species share a common ontogenetic scaling trajectory. After this period, males and females diverge both from each other and from the common juvenile ontogenetic shape and scaling trajectories within each species. Thus, the male and female facial skeleton shows ontogenetic scaling until around the point of the eruption of the second molar (i.e., around puberty and the development of secondary sexual characteristics), but subsequent sexual dimorphism occurs via divergent trajectories and not via ontogenetic scaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号