首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Environmental factors strongly influence the ecology and evolution of vector‐borne infectious diseases. However, our understanding of the influence of climatic variation on host–parasite interactions in tropical systems is rudimentary. We studied five species of birds and their haemosporidian parasites (Plasmodium and Haemoproteus) at 16 sampling sites to understand how environmental heterogeneity influences patterns of parasite prevalence, distribution, and diversity across a marked gradient in water availability in northern South America. We used molecular methods to screen for parasite infections and to identify parasite lineages. To characterize spatial heterogeneity in water availability, we used weather‐station and remotely sensed climate data. We estimated parasite prevalence while accounting for spatial autocorrelation, and used a model selection approach to determine the effect of variables related to water availability and host species on prevalence. The prevalence, distribution, and lineage diversity of haemosporidian parasites varied among localities and host species, but we found no support for the hypothesis that the prevalence and diversity of parasites increase with increasing water availability. Host species and host × climate interactions had stronger effects on infection prevalence, and parasite lineages were strongly associated with particular host species. Because climatic variables had little effect on the overall prevalence and lineage diversity of haemosporidian parasites across study sites, our results suggest that independent host–parasite dynamics may influence patterns in parasitism in environmentally heterogeneous landscapes.  相似文献   

2.
Parasite communities of fishes are known to respond directly to the abiotic environment of the host, for example, to water quality and water temperature. Biotic factors are also important as they affect the exposure profile through heterogeneities in parasite distribution in the environment. Parasites in a particular environment may pose a strong selection on fish. For example, ecological differences in selection by parasites have been hypothesized to facilitate evolutionary differentiation of freshwater fish morphs specializing on different food types. However, as parasites may also respond directly to abiotic environment the parasite risk does not depend only on biotic features of the host environment. It is possible that different morphs experience specific selection gradients by parasites but it is not clear how consistent the selection is when abiotic factors change. We examined parasite pressure in sympatric morphs of threespine stickleback (Gasterosteus aculeatus) across a temperature gradient in two large Icelandic lakes, Myvatn and Thingvallavatn. Habitat‐specific temperature gradients in these lakes are opposite. Myvatn lava rock morph lives in a warm environment, while the mud morph lives in the cold. In Thingvallavatn, the lava rock morph lives in a cold environment and the mud morph in a warm habitat. We found more parasites in fish living in higher temperature in both lakes, independent of the fish morph, and this pattern was similar for the two dominating parasite taxa, trematodes and cestodes. However, at the same time, we also found higher parasite abundance in a third morph living in deep cold–water habitat in Thingvallavatn compared to the cold‐water lava morph, indicating strong effect of habitat‐specific biotic factors. Our results suggest complex interactions between water temperature and biotic factors in determining the parasite community structure, a pattern that may have implications for differentiation of stickleback morphs.  相似文献   

3.
Natural variation as well as human impacts can alter the light environment in lakes in ways that affect aquatic host-parasite interactions. In laboratory infection assays, Rogalski and Duffy (2020) determine that the bacterial parasite Pasteuria ramosa adapts to solar radiation by increasing its transmission potential to its zooplankton host, Daphnia dentifera. Local adaptation to light can allow P. ramosa spores to retain their infectivity following light exposure. Future work should determine the underlying drivers of P. ramosa light adaptation and how adaptation might alter ecosystem dynamics.  相似文献   

4.
Locally adapted parasites have higher infectivity and/or fitness on sympatric than on allopatric hosts. We tested local adaptation of a holoparasitic plant, Cuscuta europaea, to its host plant, Urtica dioica. We infected hosts from five sites with holoparasites from the same five sites and measured local adaptation in terms of infectivity and parasite performance (biomass) in a reciprocal cross‐infection experiment. The virulence of the parasite did not differ between sympatric and allopatric hosts. Overall, parasites had higher infectivity on sympatric hosts but infectivity and parasite performance varied among populations. Parasites from one of the populations showed local adaptation in terms of performance, whereas parasites from one of the populations had higher infectivity on allopatric hosts compared with sympatric hosts. This among‐population variation may be explained by random variation in parasite adaptation to host populations or by time‐lagged co‐evolutionary oscillations that lead to fluctuations in the level of local adaptation.  相似文献   

5.
The standing crop biomass of different populations or trophic levels reflects patterns of energy flow through an ecosystem. The contribution of parasites to total biomass is often considered negligible; recent evidence suggests otherwise, although it comes from a narrow range of natural systems. Quantifying how local parasite biomass, whether that of a single species or an assemblage of species sharing the same host, varies across localities with host population biomass, is critical to determine what constrains parasite populations. We use an extensive dataset on all free‐living and parasitic metazoan species from multiple sites in New Zealand lakes to measure parasite biomass and test how it covaries with host biomass. In all lakes, trematodes had the highest combined biomass among parasite taxa, ranging from about 0.01 to 0.25 g m?2, surpassing the biomass of minor free‐living taxa. Unlike findings from other studies, the life stage contributing the most to total trematode biomass was the metacercarial stage in the second intermediate host, and not sporocysts or rediae within snail first intermediate hosts, possibly due to low prevalence and small snail sizes. For populations of single parasite species, we found no relationship between host and parasite biomass for either juvenile or adult nematodes. In contrast, all life stages of trematodes had local biomasses that correlated positively with those of their hosts. For assemblages of parasite species sharing the same host, we found strong relationships between local host population biomass and the total biomass of parasites supported. In these host–parasite biomass relationships, the scaling factor (slope in log‐log space) suggests that parasites may not be making full use of available host resources. Host populations appear capable of supporting a little more parasite biomass, and may be open to expansion of existing parasites or invasion by new ones.  相似文献   

6.
Local adaptation is necessary for population survival and depends on the interplay between responses to selective forces and demographic processes that introduce or retain adaptive and maladaptive attributes. Host–parasite systems are dynamic, varying in space and time, where both host and parasites must adapt to their ever‐changing environment in order to survive. We investigated patterns of local adaptation in raccoon populations with varying temporal exposure to the raccoon rabies virus (RRV). RRV infects approximately 85% of the population when epizootic and has been presumed to be completely lethal once contracted; however, disease challenge experiments and varying spatial patterns of RRV spread suggest some level of immunity may exist. We first assessed patterns of local adaptation in raccoon populations along the eastern seaboard of North America by contrasting spatial patterns of neutral (microsatellite loci) and functional, major histocompatibility complex (MHC) genetic diversity and structure. We explored variation of MHC allele frequencies in the light of temporal population exposure to RRV (0–60 years) and specific RRV strains in infected raccoons. Our results revealed high levels of MHC variation (66 DRB exon 2 alleles) and pronounced genetic structure relative to neutral microsatellite loci, indicative of local adaptation. We found a positive association linking MHC genetic diversity and temporal RRV exposure, but no association with susceptibility and resistance to RRV strains. These results have implications for landscape epidemiology studies seeking to predict the spread of RRV and present an example of how population demographics influence the degree to which populations adapt to local selective pressures.  相似文献   

7.
Variation among parasite strains can affect the progression of disease or the effectiveness of treatment. What maintains parasite diversity? Here I argue that competition among parasites within the host is a major cause of variation among parasites. The competitive environment within the host can vary depending on the parasite genotypes present. For example, parasite strategies that target specific competitors, such as bacteriocins, are dependent on the presence and susceptibility of those competitors for success. Accordingly, which parasite traits are favoured by within-host selection can vary from host to host. Given the fluctuating fitness landscape across hosts, genotype by genotype (G×G) interactions among parasites should be prevalent. Moreover, selection should vary in a frequency-dependent manner, as attacking genotypes select for resistance and genotypes producing public goods select for cheaters. I review competitive coexistence theory with regard to parasites and highlight a few key examples where within-host competition promotes diversity. Finally, I discuss how within-host competition affects host health and our ability to successfully treat infectious diseases.  相似文献   

8.
Abstract.— Coevolution may lead to local adaptation of parasites to their sympatric hosts. Locally adapted parasites are, on average, more infectious to sympatric hosts than to allopatric hosts of the same species or their fitness on the sympatric hosts is superior to that on allopatric hosts. We tested local adaptation of a hemiparasitic plant, Rhinanthus serotinus (Scrophulariaceae), to its host plant, the grass Agrostis capillaris . Using a reciprocal cross-infection experiment, we exposed host plants from four sites to hemiparasites originating from the same four sites in a common environment. The parasites were equally able to establish haustorial connections to sympatric and allopatric hosts, and their performance was similar on both host types. Therefore, these results do not indicate local adaptation of the parasites to their sympatric hosts. However, the parasite populations differed in average biomass and number of flowers per plant and in their effect on host biomass. These results indicate that the virulence of the parasite varied among populations, suggesting genetic variation. Theoretical models suggest that local adaptation is likely to be detected if the host and the parasite have different evolutionary potentials, different migration rates, and the parasite is highly virulent. In the interaction between R. serotinus and A. capillaris all the theoretical prerequisites for local adaptation may not be fulfilled.  相似文献   

9.
Host–parasite co‐evolution can lead to genetic differentiation among isolated host–parasite populations and local adaptation between parasites and their hosts. However, tests of local adaptation rarely consider multiple fitness‐related traits although focus on a single component of fitness can be misleading. Here, we concomitantly examined genetic structure and co‐divergence patterns of the trematode Coitocaecum parvum and its crustacean host Paracalliope fluviatilis among isolated populations using the mitochondrial cytochrome oxidase I gene (COI). We then performed experimental cross‐infections between two genetically divergent host–parasite populations. Both hosts and parasites displayed genetic differentiation among populations, although genetic structure was less pronounced in the parasite. Data also supported a co‐divergence scenario between C. parvum and P. fluviatilis potentially related to local co‐adaptation. Results from cross‐infections indicated that some parasite lineages seemed to be locally adapted to their sympatric (home) hosts in which they achieved higher infection and survival rates than in allopatric (away) amphipods. However, local, intrinsic host and parasite characteristics (host behavioural or immunological resistance to infections, parasite infectivity or growth rate) also influenced patterns of host–parasite interactions. For example, overall host vulnerability to C. parvum varied between populations, regardless of parasite origin (local vs. foreign), potentially swamping apparent local co‐adaptation effects. Furthermore, local adaptation effects seemed trait specific; different components of parasite fitness (infection and survival rates, growth) responded differently to cross‐infections. Overall, data show that genetic differentiation is not inevitably coupled with local adaptation, and that the latter must be interpreted with caution in a multi‐trait context.  相似文献   

10.
The microbial symbionts of eukaryotes influence disease resistance in many host‐parasite systems. Symbionts show substantial variation in both genotype and phenotype, but it is unclear how natural selection maintains this variation. It is also unknown whether variable symbiont genotypes show specificity with the genotypes of hosts or parasites in natural populations. Genotype by genotype interactions are a necessary condition for coevolution between interacting species. Uncovering the patterns of genetic specificity among hosts, symbionts, and parasites is therefore critical for determining the role that symbionts play in host‐parasite coevolution. Here, we show that the strength of protection conferred against a fungal pathogen by a vertically transmitted symbiont of an aphid is influenced by both host‐symbiont and symbiont‐pathogen genotype by genotype interactions. Further, we show that certain symbiont phylogenetic clades have evolved to provide stronger protection against particular pathogen genotypes. However, we found no evidence of reciprocal adaptation of co‐occurring host and symbiont lineages. Our results suggest that genetic variation among symbiont strains may be maintained by antagonistic coevolution with their host and/or their host's parasites.  相似文献   

11.
The evolutionary ecology of multihost parasites is predicted to depend upon patterns of host quality and the dynamics of transmission networks. Depending upon the differences in host quality and transmission asymmetries, as well as the balance between intra‐ and interspecific transmission, the evolution of specialist or generalist strategies is predicted. Using a trypanosome parasite of bumblebees, we ask how host quality and transmission networks relate to parasite population structure across host species, and thus the potential for the evolution of specialist strains adapted to different host species. Host species differed in quality, with parasite growth varying across host species. Highly asymmetric transmission networks, together with differences in host quality, likely explain local population structure of the parasite across host species. However, parasite population structure across years was highly dynamic, with parasite populations varying significantly from one year to the next within individual species at a given site. This suggests that, while host quality and transmission may provide the opportunity for short‐term host specialization by the parasite, repeated bottlenecking of the parasite, in combination with its own reproductive biology, overrides these smaller scale effects, resulting in the evolution of a generalist parasite.  相似文献   

12.
Antagonistic coevolution between hosts and parasites in spatially structured populations can result in local adaptation of parasites. Traditionally parasite local adaptation has been investigated in field transplant experiments or in the laboratory under a constant environment. Despite the conceptual importance of local adaptation in studies of (co)evolution, to date no study has provided a comparative analysis of these two methods. Here, using information on pathogen population dynamics, I tested local adaptation of the specialist phytopathogen, Podosphaera plantaginis, to its host, Plantago lanceolata at three different spatial scales: sympatric host population, sympatric host metapopulation and allopatric host metapopulations. The experiment was carried out as a field transplant experiment with greenhouse-reared host plants from these three different origins introduced into four pathogen populations. In contrast to results of an earlier study performed with these same host and parasite populations under laboratory conditions, I did not find any evidence for parasite local adaptation. For interactions governed by strain-specific resistance, field studies may not be sensitive enough to detect mean parasite population virulence. Given that parasite transmission potential may be mediated by the abiotic environment and genotype-by-environment interactions, I suggest that relevant environmental variation should be incorporated into laboratory studies of parasite local adaptation.  相似文献   

13.
Clément Lagrue  Robert Poulin 《Oikos》2015,124(12):1639-1647
Theory predicts the bottom–up coupling of resource and consumer densities, and epidemiological models make the same prediction for host–parasite interactions. Empirical evidence that spatial variation in local host density drives parasite population density remains scarce, however. We test the coupling of consumer (parasite) and resource (host) populations using data from 310 populations of metazoan parasites infecting invertebrates and fish in New Zealand lakes, spanning a range of transmission modes. Both parasite density (no. parasites per m2) and intensity of infection (no. parasites per infected hosts) were quantified for each parasite population, and related to host density, spatial variability in host density and transmission mode (egg ingestion, contact transmission or trophic transmission). The results show that dense and temporally stable host populations are exploited by denser and more stable parasite populations. For parasites with multi‐host cycles, density of the ‘source’ host did not matter: only density of the current host affected parasite density at a given life stage. For contact‐transmitted parasites, intensity of infection decreased with increasing host density. Our results support the strong bottom–up coupling of consumer and resource densities, but also suggest that intraspecific competition among parasites may be weaker when hosts are abundant: high host density promotes greater parasite population density, but also reduces the number of conspecific parasites per individual host.  相似文献   

14.
Gene flow and the genetic structure of host and parasite populations are critical to the coevolutionary process, including the conditions under which antagonistic coevolution favors sexual reproduction. Here we compare the genetic structures of different populations of a freshwater New Zealand snail (Potamopyrgus antipodarum) with its trematode parasite (Microphallus sp.) using allozyme frequency data. Allozyme variation among snail populations was found to be highly structured among lakes; but for the parasite there was little allozyme structure among lake populations, suggesting much higher levels of parasite gene flow. The overall pattern of variation was confirmed with principal component analysis, which also showed that the organization of genetic differentiation for the snail (but not the parasite) was strongly related to the geographic arrangement of lakes. Some snail populations from different sides of the Alps near mountain passes were more similar to each other than to other snail populations on the same side of the Alps. Furthermore, genetic distances among parasite populations were correlated with the genetic distances among host populations, and genetic distances among both host and parasite populations were correlated with “stepping-stone” distances among lakes. Hence, the host snail and its trematode parasite seem to be dispersing to adjacent lakes in a stepping-stone fashion, although parasite dispersal among lakes is clearly greater. High parasite gene flow should help to continuously reintroduce genetic diversity within local populations where strong selection might otherwise isolate “host races.” Parasite gene flow can thereby facilitate the coevolutionary (Red Queen) dynamics that confer an advantage to sexual reproduction by restoring lost genetic variation.  相似文献   

15.
Both theory and experimental evolution studies predict migration to influence the outcome of antagonistic coevolution between hosts and their parasites, with higher migration rates leading to increased diversity and evolutionary potential. Migration rates are expected to vary in spatially structured natural pathosystems, yet how spatial structure generates variation in coevolutionary trajectories across populations occupying the same landscape has not been tested. Here, we studied the effect of spatial connectivity on host evolutionary potential in a natural pathosystem characterized by a stable Plantago lanceolata host network and a highly dynamic Podosphaera plantaginis parasite metapopulation. We designed a large inoculation experiment to test resistance of five isolated and five well‐connected host populations against sympatric and allopatric pathogen strains, over 4 years. Contrary to our expectations, we did not find consistently higher resistance against sympatric pathogen strains in the well‐connected populations. Instead, host local adaptation varied considerably among populations and through time with greater fluctuations observed in the well‐connected populations. Jointly, our results suggest that in populations where pathogens have successfully established, they have the upper hand in the coevolutionary arms race, but hosts may be better able to respond to pathogen‐imposed selection in the well‐connected than in the isolated populations. Hence, the ongoing and extensive fragmentation of natural habitats may increase vulnerability to diseases.  相似文献   

16.
Parasites may be expected to become locally adapted to their hosts. However, while many empirical studies have demonstrated local parasite adaptation, others have failed to demonstrate it, or have shown local parasite maladaptation. Researchers have suggested that gene flow can swamp local parasite-host dynamics and produce local adaptation only at certain geographical scales; others have argued that evolutionary lags can account for both null and maladaptive results. In this paper, we use item response theory (IRT) to test whether host range influences the likelihood of parasites locally adapting to their hosts. We collated 32 independent experiments testing for local adaptation, where parasites could be assigned as having either broad or narrow host ranges (BHR and NHR, respectively). Twenty-five tests based on BHR parasites had a significantly lower average effect size than seven NHR tests, indicating that studies based on BHR parasites are less likely to demonstrate local parasite adaptation. We argue that this may relate to evolutionary lags during diffuse coevolution of BHR parasites with their hosts, rather than differences in experimental approaches or other confounds between BHR and NHR studies.  相似文献   

17.
Local adaptation of parasites to their sympatric hosts has been investigated on different biological systems through reciprocal transplant experiments. Most of these studies revealed a local adaptation of the parasite. In several cases, however, parasites were found to be locally maladapted or neither adapted nor maladapted. In the present paper, we try to determine the causes of such variability in these results. We analyse a host–parasite metapopulation model and study the effect of several factors on the emergence of local adaptation: population sizes, mutation rates and migration rates for both the host and the parasite, and parasite generation time. We show that all these factors may act on local adaptation through their effects on the evolutionary potential of each species. In particular, we find that higher numbers of mutants or migrants do, in general, promote local adaptation. Interestingly, shorter parasite generation time does not always favour parasite local adaptation. When genetic variability is limiting, shorter generation time, via an increase of the strength of selection, decreases the capacity of the parasite to adapt to an evolving host.  相似文献   

18.
Statistical correlations of biodiversity patterns across multiple trophic levels have received considerable attention in various types of interacting assemblages, forging a universal understanding of patterns and processes in free‐living communities. Host–parasite interactions present an ideal model system for studying congruence of species richness among taxa as obligate parasites are strongly dependent upon the availability of their hosts for survival and reproduction while also having a tight coevolutionary relationship with their hosts. The present meta‐analysis examined 38 case studies on the relationship between species richness of hosts and parasites, and is the first attempt to provide insights into the patterns and causal mechanisms of parasite biodiversity at the community level using meta‐regression models. We tested the distinct role of resource (i.e. host) availability and evolutionary co‐variation on the association between biodiversity of hosts and parasites, while spatial scale of studies was expected to influence the extent of this association. Our results demonstrate that species richness of parasites is tightly correlated with that of their hosts with a strong average effect size (r= 0.55) through both host availability and evolutionary co‐variation. However, we found no effect of the spatial scale of studies, nor of any of the other predictor variables considered, on the correlation. Our findings highlight the tight ecological and evolutionary association between host and parasite species richness and reinforce the fact that host–parasite interactions provide an ideal system to explore congruence of biodiversity patterns across multiple trophic levels.  相似文献   

19.
Aim We investigated how the spatial distribution of parasites, measured as either their geographical range size or their frequency of occurrence among localities, relates to either their average local abundance or the variance in their abundance among localities where they occur. Location We used data on the abundance of 46 metazoan parasite species in 66 populations of threespine sticklebacks, Gasterosteus aculeatus, from Europe and North America. Methods For each parasite species, frequency of occurrence was calculated as the proportion of stickleback populations in which it occurred, and geographical range size as the area within the smallest possible polygon delimited using the coordinates of the localities where it occurred. Generalized linear models were used to assess how these two measures of spatial distribution were influenced by several predictor variables: geographical region (North America or Europe), life cycle (simple or complex), average local abundance, the coefficient of variation in abundance across localities, and median prevalence (proportion of infected hosts within a locality). Results Our analyses uncovered four patterns. First, parasites in North America tend to have higher frequencies of occurrence among surveyed localities, but not broader geographical ranges, than those in Europe. Second, parasite species with simple life cycles have wider geographical ranges than those with complex cycles. Third, there was a positive relationship between average abundance of the different parasite species and their frequency of occurrence, but not between average abundance and geographical range size. Fourth, the coefficient of variation in abundance covaried positively with both the frequency of occurrence and geographical range size across the different parasite species. Thus, all else being equal, parasites showing greater site‐to‐site variability in abundance occur in a greater proportion of localities and over a broader geographical area than those with a more stable abundance among sites. Main conclusions Local infection patterns are linked with large‐scale distributional patterns in fish parasites, independently of host effects, such that local commonness translates into regional commonness. The mechanisms linking parasite success at both scales remain unclear, but may include those that maintain the continuum between specialist and generalist parasites. Regardless, the observed patterns have implications for the predicted changes in the geographical distributions of many parasites in response to climate change.  相似文献   

20.
In spatially structured populations, host–parasite coevolutionary potential depends on the distribution of genetic variation within and among populations. Inoculation experiments using the plant, Silene latifolia, and its fungal pathogen, Microbotryum violaceum, revealed little overall differentiation in infectivity/resistance, latency or spore production among host or pathogen populations. Within populations, fungal strains had similar means, but varied in performance across plant populations. Variation in resistance among seed families indicates the potential for parasite‐mediated selection, whereas there was little evidence for local pathogen genotype × plant genotype interactions assumed by most theoretical coevolution models. Lower spore production on sympatric than allopatric hosts confirmed local fungal maladaptation already observed for infectivity. Correlations between infectivity and latency or spore production suggest a common mechanism for variation in these traits. Our results suggest low variation available to this pathogen for tracking its coevolving host. This may be caused by random drift, breeding system or migration characteristic of metapopulation dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号