首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The success of exotic plants may be due to lower herbivore loads than those on native plants (Enemies Release Hypothesis). Predictions of this hypothesis include lower herbivore abundances, diversity, and damage on introduced plant species compared to native ones. Greater density or diversity of predators and parasitoids on exotic versus native plants may also reduce regulation of exotic plants by herbivores. To test these predictions, we measured arthropod abundance, arthropod diversity, and foliar damage on invasive Chinese tallow tree (Triadica sebifera) and three native tree species: silver maple (Acer saccharinum), sycamore (Platanus occidentalis), and sweetgum (Liquidambar styraciflua). Arthropod samples were collected with canopy sweep nets from six 20 year old monoculture plots of each species at a southeast Texas site. A total of 2,700 individuals and 285 species of arthropods were caught. Overall, the species richness and abundance of arthropods on tallow tree were similar to the natives. But, ordination (NMS) showed community composition differed on tallow tree compared to all three native trees. It supported an arthropod community that had relatively lower herbivore abundance but relatively more predator species compared to the native species examined. Leaves were collected to determine damage. Tallow tree experienced less mining damage than native trees. The results of this study supported the Enemies Release Hypothesis predictions that tallow tree would have low herbivore loads which may contribute to its invasive success. Moreover, a shift in the arthropod community to fewer herbivores without a reduction in predators may further limit regulation of this exotic species by herbivores in its introduced range.  相似文献   

2.
Despite potential interactive effects of plant species and genotypic diversity (SD and GD, respectively) on consumers, studies have usually examined these effects separately. We evaluated the individual and combined effects of tree SD and mahogany (Swietenia macrophylla) GD on the arthropod community associated with mahogany. We conducted this study within the context of a tree diversity experiment consisting of 74 plots with 64 saplings/plot. We sampled 24 of these plots, classified as monocultures of mahogany or polycultures of four species (including mahogany). Within each plot type, mahogany was represented by either one or four maternal families. We surveyed arthropods on mahogany and estimated total arthropod abundance and species richness, as well as abundance and richness separately for herbivorous and predatory arthropods. Overall tree SD and mahogany GD had positive effects on total arthropod species richness and abundance on mahogany, and also exerted interactive effects on total species richness (but not abundance). Analyses conducted by trophic level group showed contrasting patterns; SD positively influenced herbivore species richness but not abundance, and did not affect either predator richness or abundance. GD influenced predator species richness but not abundance, and did not influence herbivore abundance or richness. There were interactive effects of GD and SD only for predator species richness. These results provide evidence that intra‐ and inter‐specific plant diversity exert interactive controls on associated consumer communities, and that the relative importance of SD and GD may vary among higher trophic levels, presumably due to differences in the underlying mechanisms or consumer traits.  相似文献   

3.
Invasive species significantly contribute to biological change and threaten biodiversity, with a growing body of evidence that plant invasions affect higher trophic levels. We explored the relative importance of plant invasion and forest structure on aerial arthropod abundance, diversity, and composition on Robinson Crusoe Island, Chile. We used flight intercept traps to sample aerial arthropods within distinct canopy strata of native and invaded forests over 3-mo periods in 2006 and 2007. Arthropod abundance and diversity were higher in native than invaded forest, and arthropod communities were distinct between forest types. In both forest types, arthropod abundance was highest in the lower canopy, and canopy strata exhibited some differences in arthropod community composition. Several morphospecies were distinctly associated with each forest type. The strong differences in aerial arthropod communities associated with the invasion of native forest by non-native plants may affect other trophic levels, such as insectivorous birds. Steps to stop invasive plant spread and to restore native forest composition and structure are needed to safeguard the integrity of native communities, from plants to higher-level consumers.  相似文献   

4.
A simple bottom–up hypothesis predicts that plant responses to nutrient addition should determine the response of consumers: more productive and less diverse plant communities, the usual result of long‐term nutrient addition, should support greater consumer abundances and biomass and less consumer diversity. We tested this hypothesis for the response of an aboveground arthropod community to an uncommonly long‐term (24‐year) nutrient addition experiment in moist acidic tundra in arctic Alaska. This experiment altered plant community composition, decreased plant diversity and increased plant production and biomass as a deciduous shrub, Betula nana, became dominant. Consistent with strong effects on the plant community, nutrient addition altered arthropod community composition, primarily through changes to herbivore taxa in the canopy‐dwelling arthropod assemblage and detritivore taxa in the ground assemblage. Surprisingly, however, the loss of more than half of plant species was accompanied by negligible changes to diversity (rarefied richness) of arthropod taxa (which were primarily identified to family). Similarly, although long‐term nutrient addition in this system roughly doubles plant production and biomass, arthropod abundance was either unchanged or decreased by nutrient addition, and total arthropod biomass was unaffected. Our findings differ markedly from the handful of terrestrial studies that have found bottom‐up diversity cascades and productivity responses by consumers to nutrient addition. This is probably because unlike grasslands and salt marshes (where such studies have historically been conducted), this arctic tundra community becomes less palatable, rather than more so, after many years of nutrient addition due to increased dominance of B. nana. Additionally, by displacing insulating mosses and increasing the cover of shrubs that cool and shade the canopy microenvironment, fertilization may displace arthropods keenly attuned to microclimate. These results indicate that terrestrial arthropod assemblages may be more constrained by producer traits (i.e. palatability, structure) than they are by total primary production or producer diversity.  相似文献   

5.
Plant diversity and the stability of foodwebs   总被引:1,自引:0,他引:1  
Insect outbreaks in forest and agriculture monocultures led Charles Elton to propose, a half-century ago, that higher plant diversity stabilized animal foodweb dynamics in natural ecosystems. We tested this hypothesis by studying arthropod community dynamics in a long-term experimental manipulation of grassland plant species diversity. Over the course of a decade, we found that higher plant diversity increased the stability (i.e. lowered year-to-year variability) of a diverse (>700 species) arthropod community across trophic levels. As the number of plant species increased, the stability of both herbivore and predator species richness and of total herbivore abundance increased. The underlying mechanisms driving these diversity-stability relationships were plant diversity, via effects on primary productivity and plant community stability, and portfolio effects. Taken together, our results show that higher plant diversity provides more temporally consistent food and habitat resources to arthropod foodwebs. Consequently, actively managing for high plant diversity may have stronger than expected benefits for increasing animal diversity and controlling pest outbreaks.  相似文献   

6.
Experimental tests of the dependence of arthropod diversity on plant diversity   总被引:28,自引:0,他引:28  
ABSTRACT Because a diversity of resources should support a diversity of consumers, most models predict that increasing plant diversity increases animal diversity. We report results of a direct experimental test of the dependence of animal diversity on plant diversity. We sampled arthropods in a well-replicated grassland experiment in which plant species richness and plant functional richness were directly manipulated. In simple regressions, both the number of species planted ([Formula: see text] transformed) and the number of functional groups planted significantly increased arthropod species richness but not arthropod abundance. However, the number of species planted was the only significant predictor of arthropod species richness when both predictor variables were included in ANOVAs or a MANOVA. Although highly significant, arthropod species richness regressions had low [Formula: see text] values, high intercepts (24 arthropod species in monocultures), and shallow slopes. Analyses of relations among plants and arthropod trophic groups indicated that herbivore diversity was influenced by plant, parasite, and predator diversity. Furthermore, herbivore diversity was more strongly correlated with parasite and predator diversity than with plant diversity. Together with regression results, this suggests that, although increasing plant diversity significantly increased arthropod diversity, local herbivore diversity is also maintained by, and in turn maintains, a diversity of parasites and predators.  相似文献   

7.
The high tree diversity of subtropical forests is linked to the biodiversity of other trophic levels. Disentangling the effects of tree species richness and composition, forest age, and stand structure on higher trophic levels in a forest landscape is important for understanding the factors that promote biodiversity and ecosystem functioning. Using a plot network spanning gradients of tree diversity and secondary succession in subtropical forest, we tested the effects of tree community characteristics (species richness and composition) and forest succession (stand age) on arthropod community characteristics (morphotype diversity, abundance and composition) of four arthropod functional groups. We posit that these gradients differentially affect the arthropod functional groups, which mediates the diversity, composition, and abundance of arthropods in subtropical forests. We found that herbivore richness was positively related to tree species richness. Furthermore, the composition of herbivore communities was associated with tree species composition. In contrast, detritivore richness and composition was associated with stand age instead of tree diversity. Predator and pollinator richness and abundance were not strongly related to either gradient, although positive trends with tree species richness were found for predators. The weaker effect of tree diversity on predators suggests a cascading diversity effect from trees to herbivores to predators. Our results suggest that arthropod diversity in a subtropical forest reflects the net outcome of complex interactions among variables associated with tree diversity and stand age. Despite this complexity, there are clear linkages between the overall richness and composition of tree and arthropod communities, in particular herbivores, demonstrating that these trophic levels directly impact each other.  相似文献   

8.
Jennifer A. Lau 《Oikos》2013,122(3):474-480
As invasive species become integrated into existing communities, they engage in a wide variety of trophic interactions with other community members. Many of these interactions are direct (e.g. predator–prey interactions or interference competition), but invasive species also can affect native community members indirectly, by influencing the abundances of intermediary species in trophic webs. Observational studies suggest that invasive plant species affect herbivorous arthropod communities and that these effects may flow up trophic webs to influence the abundance of predators. However, few studies have experimentally manipulated the presence of invasive plants to quantify the effects of plant invasion on higher trophic levels. Here, I use comparisons across sites that have or have not been invaded by the invasive plant Medicago polymorpha, combined with experimental removals of Medicago and insect herbivores, to investigate how a plant invasion affects the abundance of predators. Both manipulative and observational experiments showed that Medicago increased the abundance of the exotic herbivore Hypera and predatory spiders, suggesting positive bottom–up effects of plant invasions on higher trophic levels. Path analyses conducted on data from natural habitats revealed that Medicago primarily increased spider abundance through herbivore‐mediated indirect pathways. Specifically, Medicago density was positively correlated with the abundance of the dominant herbivore Hypera, and increased Hypera densities were correlated with increased spider abundance. Smaller‐scale experimental studies confirmed that Medicago may increase spider abundance through herbivore‐mediated indirect pathways, but also showed that the effects of Medicago varied across sites, including having no effect or having direct effects on spider abundance. If effects of invasive species commonly flow through trophic webs, then invasive species have the potential to affect numerous species throughout the community, especially those species whose dynamics are tightly connected to highly‐impacted community members through trophic linkages.  相似文献   

9.
Changes in producer diversity cause multiple changes in consumer communities through various mechanisms. However, past analyses investigating the relationship between plant diversity and arthropod consumers focused only on few aspects of arthropod diversity, e.g. species richness and abundance. Yet, shifts in understudied facets of arthropod diversity like relative abundances or species dominance may have strong effects on arthropod-mediated ecosystem functions. Here we analyze the relationship between plant species richness and arthropod diversity using four complementary diversity indices, namely: abundance, species richness, evenness (equitability of the abundance distribution) and dominance (relative abundance of the dominant species). Along an experimental gradient of plant species richness (1, 2, 4, 8, 16 and 60 plant species), we sampled herbivorous and carnivorous arthropods using pitfall traps and suction sampling during a whole vegetation period. We tested whether plant species richness affects consumer diversity directly (i), or indirectly through increased productivity (ii). Further, we tested the impact of plant community composition on arthropod diversity by testing for the effects of plant functional groups (iii). Abundance and species richness of both herbivores and carnivores increased with increasing plant species richness, but the underlying mechanisms differed between the two trophic groups. While higher species richness in herbivores was caused by an increase in resource diversity, carnivore richness was driven by plant productivity. Evenness of herbivore communities did not change along the gradient in plant species richness, whereas evenness of carnivores declined. The abundance of dominant herbivore species showed no response to changes in plant species richness, but the dominant carnivores were more abundant in species-rich plant communities. The functional composition of plant communities had small impacts on herbivore communities, whereas carnivore communities were affected by forbs of small stature, grasses and legumes. Contrasting patterns in the abundance of dominant species imply different levels of resource specialization for dominant herbivores (narrow food spectrum) and carnivores (broad food spectrum). That in turn could heavily affect ecosystem functions mediated by herbivorous and carnivorous arthropods, such as herbivory or biological pest control.  相似文献   

10.
1. The colonisation of a new habitat by a community is led by deterministic and stochastic processes at different spatio-temporal scales. Parasitic plants, such as mistletoe, represent a new habitat within forest canopy that is free to be colonised by many organisms. 2. This study investigates how ecological factors operating at forest and plant scales drive changes in both specialist (mistletoe-dwelling) and tourist (transient visitors) arthropod communities inhabiting European mistletoe, Viscum album subsp. austriacum, in a Mediterranean pine forest. The influence of elevation along a broad elevational gradient was tested by sampling arthropod communities dwelling in mistletoe plants and host pine branches and the effects of mistletoe plant size, distances to other mistletoes, and temporal variation in arthropod assemblages inhabiting mistletoes. 3. The diversity of the specialist community remained constant along the elevational gradient and over the summer period, while the tourist and pine-dwelling arthropod communities showed species turnover. Larger mistletoes were occupied by more species and individuals, whereas more isolated mistletoes presented the same equilibrium point as the more aggregated ones. Thus, mistletoe size is key to the composition of the arthropod community. 4. In conclusion, this study's findings indicate contrasting assembly rules for specialised and tourist arthropod communities associated with mistletoe. The specialist community was highly stable and followed a deterministic trophic sequence of colonisation as the assemblage rule: first, colonisation by the main specialist herbivore, Cacopsylla visci, and, second, by its predator Anthocoris visci. Meanwhile, the tourist community, being a subset of the arthropod assemblage of the pine, acts independent of mistletoe presence.  相似文献   

11.
Data collected from three different polluted sites in the vicinity of a phosphate fertilizer factory that was closed in 1990 are used to test with Mantel tests and smoothing techniques whether the rapid increase of plant species richness following cessation of pollution enhanced associated arthropod assemblage diversity. 132 plant species (between 1990 and 1999) and 66 413 individuals of 680 arthropod species (using sweep net sampling between 1990 and 1996) were recorded. Using top soil pH as a representative pollution parameter we detected an increase of plant species richness, effective diversity and evenness of plant community with decreasing pH both in space and time. While the richness of all studied functional groups of herbivores increased with plant species richness, only the richness of one carnivore functional group showed a similar pattern. Plant species richness was significantly correlated to the abundance patterns of two herbivore and two carnivore groups. But contrary to theoretical predictions consumer abundance tended to decrease with increasing plant diversity only between a plant species richness range of 10 to ca 35. Our results support the findings of previous studies that highlight how increased plant species and functional group richness may result in higher herbivore species richness, and that carnivore richness may be influenced by herbivore and detritivore richness. The functional group approach used in this study has enabled us to detected the very individual interaction patterns that occur between different groups within the same trophic level.  相似文献   

12.
Intraspecific diversity can influence the structure of associated communities, though whether litter-based and foliage-based arthropod communities respond to intraspecific diversity in similar ways remains unclear. In this study, we compared the effects of host-plant genotype and genotypic diversity of the perennial plant, Solidago altissima, on the arthropod community associated with living plant tissue (foliage-based community) and microarthropods associated with leaf litter (litter-based community). We found that variation among host-plant genotypes had strong effects on the diversity and composition of foliage-based arthropods, but only weak effects on litter-based microarthropods. Furthermore, host-plant genotypic diversity was positively related to the abundance and diversity of foliage-based arthropods, and within the herbivore and predator trophic levels. In contrast, there were minimal effects of plant genotypic diversity on litter-based microarthropods in any trophic level. Our study illustrates that incorporating communities associated with living foliage and senesced litter into studies of community genetics can lead to very different conclusions about the importance of intraspecific diversity than when only foliage-based community responses are considered in isolation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Shunsuke Utsumi  Takayuki Ohgushi 《Oikos》2009,118(12):1805-1815
It has been widely accepted that herbivory induces morphological, phenological, and chemical changes in a wide variety of terrestrial plants. There is an increasing appreciation that herbivore‐induced plant responses affect the performance and abundance of other arthropods. However, we still have a poor understanding of the effects of induced plant responses on community structures of arthropods. We examined the community‐level effects of willow regrowth in response to damage by larvae of swift moth Endoclita excrescence (Lepidoptera: Hepialidae) on herbivorous and predaceous arthropods on three willow species, Salix gilgiana, S. eriocarpa and S. serissaefolia. The leaves of sprouting lateral shoots induced by moth‐boring had a low C:N ratio. The overall abundance and species richness of herbivorous insects on the lateral shoots were increased on all three willow species. Densities of specialist chewers and sap‐feeders, and leaf miners increased on the newly emerged lateral shoots. In contrast, the densities of generalist chewers and sap‐feeders, and gall makers did not increase. Furthermore, ant and spider densities, and the overall abundance and species richness of predaceous arthropods increased on the lateral shoots on S. gilgiana and S. eriocarpa, but not S. serissaefolia. In addition to finding that effects of moth‐boring on arthropod abundance and species richness varied among willow species, we also found that moth‐boring, willow species, and their interaction differentially affected community composition. Our findings suggest that moth‐boring has community‐wide impacts on arthropod assemblages across three trophic levels via induced shoot regrowth and increase arthropod species diversity in this three willow species system.  相似文献   

14.
Characteristics used to categorize plant species into functional groups for their effects on ecosystem functioning may also be relevant to higher trophic levels. In addition, plant and consumer diversity should be positively related because more diverse plant communities offer a greater variety of resources for the consumers. Thus, the functional group composition and richness of a plant community may affect the composition and diversity of the herbivores and even higher trophic levels associated with that community. We tested this hypothesis by sampling arthropods with a vacuum sampler (34 531 individuals of 494 species) from an experiment in which we manipulated plant functional group richness and composition. Plant manipulations included all combinations of three functional groups (forbs, C3 graminoids, and C4 graminoids) removed zero, one, or two at a time from grassland plots at Cedar Creek Natural History Area, MN. Although total arthropod species richness was unrelated to plant functional group richness or composition, the species richness of some arthropod orders was affected by plant functional group composition. Two plant characteristics explained most of the effects of plant functional groups on arthropod species richness. Nutritional quality, a characteristic related to ecosystem functioning, and taxonomic diversity, a characteristic not used to designate plant functional groups, seemed to affect arthropod species richness both directly and indirectly. Thus, plant functional groups designated for their effects on ecosystem processes will only be partially relevant to consumer diversity and abundance.  相似文献   

15.
Phytochemical traits are a key component of plant defense theory. Chemical ecology has been biased towards studying effects of individual metabolites even though effective plant defenses are comprised of diverse mixtures of metabolites. We tested the phytochemical landscape hypothesis, positing that trophic interactions are contingent upon their spatial location across a phytochemically diverse landscape. Specifically, intraspecific phytochemical changes associated with vertical strata in forests were hypothesised to affect herbivore communities of the neotropical shrub Piper kelleyi Tepe (Piperaceae). Using a field experiment, we found that phytochemical diversity increased with canopy height, and higher levels of phytochemical diversity located near the canopy were characterised by tradeoffs between photoactive and non‐photoactive biosynthetic pathways. For understory plants closer to the ground, phytochemical diversity increased as direct light transmittance decreased, and these plants were characterised by up to 37% reductions in herbivory. Our results suggest that intraspecific phytochemical diversity structures herbivore communities across the landscape, affecting total herbivory.  相似文献   

16.
Plant genetic determinants of arthropod community structure and diversity   总被引:15,自引:0,他引:15  
To test the hypothesis that genes have extended phenotypes on the community, we quantified how genetic differences among cottonwoods affect the diversity, abundance, and composition of the dependent arthropod community. Over two years, five major patterns were observed in both field and common-garden studies that focused on two species of cottonwoods and their naturally occurring F1 and backcross hybrids (collectively referred to as four different cross types). We did not find overall significant differences in arthropod species richness or abundance among cottonwood cross types. We found significant differences in arthropod community composition among all cross types except backcross and narrowleaf cottonwoods. Thus, even though we found similar richness among cross types, the species that composed the community were significantly different. Using vector analysis, we found that the shift in arthropod community composition was correlated with percent Fremont alleles in the host plant, which suggests that the arthropod community responds to the underlying genetic differences among trees. We found 13 arthropod species representing different trophic levels that were significant indicators of the four different cross types. Even though arthropod communities changed in species composition from one year to the next, the overall patterns of community differences remained remarkably stable, suggesting that the genetic differences among cross types exert a strong organizing influence on the arthropod community. Together, these results support the extended phenotype concept. Few studies have observationally and experimentally shown that entire arthropod communities can be structured by genetic differences in their host plants. These findings contribute to the developing field of community genetics and suggest a strategy for conserving arthropod diversity by promoting genetic diversity in their host plants.  相似文献   

17.
Changes to primary producer diversity can cascade up to consumers and affect ecosystem processes. Although the effect of producer diversity on higher trophic groups have been studied, these studies often quantify taxonomy‐based measures of biodiversity, like species richness, which do not necessarily reflect the functioning of these communities. In this study, we assess how plant species richness affects the functional composition and diversity of higher trophic levels and discuss how this might affect ecosystem processes, such as herbivory, predation and decomposition. Based on six different consumer traits, we examined the functional composition of arthropod communities sampled in experimental plots that differed in plant species richness. The two components we focused on were functional variation in the consumer community structure (functional structure) and functional diversity, expressed as functional richness, evenness and divergence. We found a consistent positive effect of plant species richness on the functional richness of herbivores, carnivores, and omnivores, but not decomposers, and contrasting patterns for functional evenness and divergence. Increasing plant species richness shifted the omnivore community to more predatory and less mobile species, and the herbivore community to more specialized and smaller species. This was accompanied by a shift towards more species occurring in the vegetation than in the ground layer. Our study shows that plant species richness strongly affects the functional structure and diversity of aboveground arthropod communities. The observed shifts in body size (herbivores), specialization (herbivores), and feeding mode (omnivores) together with changes in the functional diversity may underlie previously observed increases in herbivory and predation in plant communities of higher diversity.  相似文献   

18.
Patch size of forest openings and arthropod populations   总被引:4,自引:0,他引:4  
Summary Five sizes of canopy openings (0.016 ha to 10 ha) were established in the Southern Appalachian Mountains in early 1982 to examine the initial patterns of plant and arthropod establishment across a size range of forest disturbances. Vegetation standing crop after the first growing season was considerably higher in large than small openings in apparent response to greater resource release (e.g., sunlight) in larger openings. Woody stump and root sprouts were the dominant mode of revegetation in each patch size. Forest dominants such as Quercus rubra, Q. prinus and Carya spp. were less important as sprouters in openings than several minor forest components (e.g., Robinia pseudo-acacia, Acer rubrum, Halesia carolina and Cornus florida). Arthropod abundance and community composition varied across the size range of forest openings. Arthropods from the surrounding forest readily utilized the smallest canopy openings (0.016 ha). All feeding guilds were well represented in these small openings and herbivore biomass and load (mg of herbivores/g of foliage) were much higher than in larger patches. In contrast, arthropod abundance and species richness were significantly lower in mid-size than smaller patches. The relatively sparse cover and high sunlight in mid-size openings may have promoted surface heat buildups or soil surface/litter moisture deficits which restricted arthropod entry from the surrounding forest. Arthropod abundance and species richness were higher in large than mid-size patches. The greater vegetation cover in larger openings may have minimized the deleterious effects on arthropod populations. However, the absence of population increases among these arthropod species maintained herbivore loads at very low levels in large patches. Our results suggest that arthropod abundance and diversity in sprout-dominated forest openings are highly dependent on the extent of environmental differences between patch and surrounding forest.  相似文献   

19.
Both arthropods and large grazing herbivores are important components and drivers of biodiversity in grassland ecosystems, but a synthesis of how arthropod diversity is affected by large herbivores has been largely missing. To fill this gap, we conducted a literature search, which yielded 141 studies on this topic of which 24 simultaneously investigated plant and arthropod diversity. Using the data from these 24 studies, we compared the responses of plant and arthropod diversity to an increase in grazing intensity. This quantitative assessment showed no overall significant effect of increasing grazing intensity on plant diversity, while arthropod diversity was generally negatively affected. To understand these negative effects, we explored the mechanisms by which large herbivores affect arthropod communities: direct effects, changes in vegetation structure, changes in plant community composition, changes in soil conditions, and cascading effects within the arthropod interaction web. We identify three main factors determining the effects of large herbivores on arthropod diversity: (i) unintentional predation and increased disturbance, (ii) decreases in total resource abundance for arthropods (biomass) and (iii) changes in plant diversity, vegetation structure and abiotic conditions. In general, heterogeneity in vegetation structure and abiotic conditions increases at intermediate grazing intensity, but declines at both low and high grazing intensity. We conclude that large herbivores can only increase arthropod diversity if they cause an increase in (a)biotic heterogeneity, and then only if this increase is large enough to compensate for the loss of total resource abundance and the increased mortality rate. This is expected to occur only at low herbivore densities or with spatio‐temporal variation in herbivore densities. As we demonstrate that arthropod diversity is often more negatively affected by grazing than plant diversity, we strongly recommend considering the specific requirements of arthropods when applying grazing management and to include arthropods in monitoring schemes. Conservation strategies aiming at maximizing heterogeneity, including regulation of herbivore densities (through human interventions or top‐down control), maintenance of different types of management in close proximity and rotational grazing regimes, are the most promising options to conserve arthropod diversity.  相似文献   

20.
Interspecific hybridization in plants is known to have ecological effects on associated organisms. We examined the differences in insect herbivore community structure and grazing pressure on tree canopy leaves among natural hybrids and their parental oak species. We measured leaf traits, herbivore community structure, and grazing pressure on leaves of two oak species, Quercus crispula and Q. dentata, and their hybrids. The concentration of nitrogen in canopy leaves was greater in hybrids and in Q. dentata than in Q. crispula. The concentration of total phenolics was lower in hybrids than in Q. crispula. The concentration of condensed tannin was greater in hybrids than in Q. crispula. Relative herbivore abundance and species richness were greater on oak hybrids than on either parental species; herbivore species diversity and composition on hybrids were close to those on Q. crispula. Herbivore grazing pressure was lower on hybrids and Q. dentata than on Q. crispula. There was a negative correlation between herbivore grazing pressure and leaf nitrogen, suggesting that interspecific variation among oak taxa in herbivore pressure may be explained by leaf nitrogen; variation in herbivore community structure among oak taxa is likely to be controlled by polygenic leaf traits. Differing responses of (1) herbivore community structure and (2) herbivore grazing pressure to host plant hybridization may play important roles in regulating herbivore biodiversity in cool‐temperate forest canopies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号