首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.

Aims

Climate change is expected to have profound effects on species' distributions into the future. Freshwater fishes, an important component of freshwater ecosystems, are no exception. Here, we project shifts in suitable conditions for Australian freshwater fishes under different climate change scenarios to identify species that may experience significant declines in habitat suitability.

Location

Australia.

Methods

We use MAXENT bioclimatic models to estimate the effect of climate change on the suitable conditions for 154 species of Australian freshwater fishes, of which 109 are endemic and 29 are threatened with extinction. Suitable conditions for freshwater fish species are modelled using three different Earth System climate models (ESMs) under two different emission scenarios to the year 2100. For each species, we examine potential geographic shifts in the distribution of suitable conditions from the present day to 2100 and quantify how habitat suitability may change at currently occupied sites by the end of this century.

Results

Broadscale poleward shifts in suitable conditions are projected for Australian freshwater fishes by an average of up to 0.38° (~180 km) across all species, depending on the emission scenario. Considerable loss of suitable conditions is forecast to occur within currently recognized distributional extents by 2100, with a mean projected loss of up to 17.5% across species. Predicted geographic range shifts and declines are larger under a high-emission scenario. Threatened species are projected to be more adversely affected than nonthreatened species.

Main Conclusions

Our models identify species and geographic regions that may be vulnerable to climate change, enabling freshwater fish conservation into the future.  相似文献   

7.
8.
  1. Although corridors are frequently regarded as a way to mitigate the negative effects of habitat fragmentation, concerns persist that corridors may facilitate the spread of invasive species to the detriment of native species.
  2. The invasive fire ant, Solenopsis invicta, has two social forms. The polygyne form has limited dispersal abilities relative to the monogyne form. Our previous work in a large-scale corridor experiment showed that in landscapes dominated by the polygyne form, fire ant density was higher and native ant species richness was lower in habitat patches connected by corridors than in unconnected patches.
  3. We expected that these observed corridor effects would be transient, that is, that fire ant density and native ant species richness differences between connected and unconnected patches would diminish over time as fire ants eventually fully established within patches. We tested this prediction by resampling the three landscapes dominated by polygyne fire ants 6 to 11 years after our original study.
  4. Differences in fire ant density between connected and unconnected habitat patches in these landscapes decreased, as expected. Differences in native ant species richness were variable but lowest in the last 2 years of sampling.
  5. These findings support our prediction of transient corridor effects on this invasive ant and stress the importance of temporal dynamics in assessing population and community impacts of habitat connectivity.
  相似文献   

9.
10.
11.
  1. Although extreme hydrological events are a natural component of river ecosystem disturbance regimes, their frequency is predicted to increase with climate change. Anthropogenic activities have the potential to exacerbate the impact of such disturbances but there are few studies on the combined effects of both anthropogenic and extreme hydrological disturbances on stream ecosystems.
  2. We investigated the recovery of stream ecosystems over a 5-year period following the impact of an anthropogenic (forest clear-cut harvesting) and an extreme rainfall disturbance (estimated one-in-100 year average return interval) that generated debris flows in three headwater streams in New Zealand.
  3. Initially, most of the riparian vegetation was eliminated and showed little recovery 1 year later. Subsequent riparian recovery was led by wind-borne, light-demanding, pioneering exotic weed species, lengthening and altering the long-term successional and recovery trajectories to a pre-disturbance composition of indigenous shrubs.
  4. Stream shade, water temperature, and habitat had largely recovered after 5 years. However, the contribution of large wood to channel morphology and in-stream habitat was compromised due to diminished wood supplies in the stream channel and a hiatus in up-slope wood inputs until the riparian vegetation re-establishes and the next crop of trees matures.
  5. After an initial decline, most indigenous fish taxa thrived in the post-disturbance conditions, with significant increases in densities and biomass. The more sensitive fish taxa were scarce or absent, particularly those taxa that prefer pools with overhead and in-stream cover provided by riparian vegetation and wood. Recovery of these taxa was outside the time frame of this study. Riffle dwelling fish communities were more resilient than pool dwelling fish communities.
  6. Invertebrate densities showed a similar response to fish. Post-event invertebrate community composition differed from that typically found in post-harvest headwater streams, comprising comparatively lower proportions of Chironomidae, Oligochaetes, and Mollusca taxa, and higher proportions of Trichoptera taxa. Progression toward pre-event community composition was evident 5 years after the event.
  7. The compounding effect of forest removal from harvesting, along with riparian vegetation and wood removal by debris flows, lengthened the recovery of riparian vegetation and wood supplies with cascading effects on in-stream habitat and biological communities.
  相似文献   

12.
13.
14.
Summer air and stream water temperatures are expected to rise in the state of Wisconsin, U.S.A., over the next 50 years. To assess potential climate warming effects on stream fishes, predictive models were developed for 50 common fish species using classification-tree analysis of 69 environmental variables in a geographic information system. Model accuracy was 56·0-93·5% in validation tests. Models were applied to all 86 898 km of stream in the state under four different climate scenarios: current conditions, limited climate warming (summer air temperatures increase 1° C and water 0·8° C), moderate warming (air 3° C and water 2·4° C) and major warming (air 5° C and water 4° C). With climate warming, 23 fishes were predicted to decline in distribution (three to extirpation under the major warming scenario), 23 to increase and four to have no change. Overall, declining species lost substantially more stream length than increasing species gained. All three cold-water and 16 cool-water fishes and four of 31 warm-water fishes were predicted to decline, four warm-water fishes to remain the same and 23 warm-water fishes to increase in distribution. Species changes were predicted to be most dramatic in small streams in northern Wisconsin that currently have cold to cool summer water temperatures and are dominated by cold-water and cool-water fishes, and least in larger and warmer streams and rivers in southern Wisconsin that are currently dominated by warm-water fishes. Results of this study suggest that even small increases in summer air and water temperatures owing to climate warming will have major effects on the distribution of stream fishes in Wisconsin.  相似文献   

15.
Habitat perturbations play a major role in shaping community structure; however, the elements of disturbance-related habitat change that affect diversity are not always apparent. This study examined the effects of habitat disturbances on species richness of coral reef fish assemblages using annual surveys of habitat and 210 fish species from 10 reefs on the Great Barrier Reef (GBR). Over a period of 11 years, major disturbances, including localised outbreaks of crown-of-thorns sea star (Acanthaster planci), severe storms or coral bleaching, resulted in coral decline of 46–96% in all the 10 reefs. Despite declines in coral cover, structural complexity of the reef framework was retained on five and species richness of coral reef fishes maintained on nine of the disturbed reefs. Extensive loss of coral resulted in localised declines of highly specialised coral-dependent species, but this loss of diversity was more than compensated for by increases in the number of species that feed on the epilithic algal matrix (EAM). A unimodal relationship between areal coral cover and species richness indicated species richness was greatest at approximately 20% coral cover declining by 3–4 species (6–8% of average richness) at higher and lower coral cover. Results revealed that declines in coral cover on reefs may have limited short-term impact on the diversity of coral reef fishes, though there may be fundamental changes in the community structure of fishes.  相似文献   

16.
17.
18.
19.
20.
High biodiversity ecosystems are commonly associated with complex habitats. Coral reefs are highly diverse ecosystems, but are under increasing pressure from numerous stressors, many of which reduce live coral cover and habitat complexity with concomitant effects on other organisms such as reef fishes. While previous studies have highlighted the importance of habitat complexity in structuring reef fish communities, they employed gradient or meta-analyses which lacked a controlled experimental design over broad spatial scales to explicitly separate the influence of live coral cover from overall habitat complexity. Here a natural experiment using a long term (20 year), spatially extensive (∼115,000 kms2) dataset from the Great Barrier Reef revealed the fundamental importance of overall habitat complexity for reef fishes. Reductions of both live coral cover and habitat complexity had substantial impacts on fish communities compared to relatively minor impacts after major reductions in coral cover but not habitat complexity. Where habitat complexity was substantially reduced, species abundances broadly declined and a far greater number of fish species were locally extirpated, including economically important fishes. This resulted in decreased species richness and a loss of diversity within functional groups. Our results suggest that the retention of habitat complexity following disturbances can ameliorate the impacts of coral declines on reef fishes, so preserving their capacity to perform important functional roles essential to reef resilience. These results add to a growing body of evidence about the importance of habitat complexity for reef fishes, and represent the first large-scale examination of this question on the Great Barrier Reef.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号