首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since terrestrial invertebrates are often consumed by stream fishes, land-use practices that influence the input of terrestrial invertebrates to streams are predicted to have consequences for fish production. We studied the effect of riparian land-use regime on terrestrial invertebrate inputs by estimating the biomass, abundance and taxonomic richness of terrestrial invertebrate drift from 15 streams draining catchments with three different riparian land-use regimes and vegetation types: intensive grazing — exotic pasture grasses (4 streams), extensive grazing — native tussock grasses (6 streams), reserve — native forest (5 streams). Terrestrial invertebrate drift was sampled from replicated stream reaches enclosed by two 1 mm mesh drift nets that spanned the entire channel. The mean biomass of terrestrial invertebrates that entered tussock grassland (12 mg ash-free dry mass m–2 d–1) and forest streams (6 mg AFDM m–2 d–1) was not significantly different (p > 0.05). However, biomass estimated for tussock grassland and forest streams was significantly higher than biomass that entered pasture streams (1 mg AFDM m–2 d–1). Mean abundance and richness of drifting terrestrial invertebrates was not significantly different among land-use types. Winged insects contributed more biomass than wingless invertebrates to both pasture and tussock grassland streams. Winged and wingless invertebrates contributed equally to biomass entering forest streams. Land use was a useful variable explaining landscape-level patterns of terrestrial invertebrate input for New Zealand streams. Evidence from this study suggests that riparian land-use regime will have important influences on the availability of terrestrial invertebrates to stream fishes.  相似文献   

2.
3.
4.
5.
  1. Drying intermittent stream networks often have permanent water refuges that are important for recolonisation. These habitats may be hotspots for interactions between fishes and invertebrates as they become isolated, but densities and diversity of fishes in these refuges can be highly variable across time and space.
  2. Insect emergence from streams provides energy and nutrient subsidies to riparian habitats. The magnitude of such subsidies may be influenced by in-stream predators such as fishes.
  3. We examined whether benthic macroinvertebrate communities, emerging adult insects, and algal biomass in permanent grassland stream pools differed among sites with naturally varying densities of fishes. We also manipulated fish densities in a mesocosm experiment to address how fishes might affect colonisation during recovery from hydrologic disturbance.
  4. Fish biomass had a negative impact on invertebrate abundance, but not biomass or taxa richness, in natural pools. Total fish biomass was not correlated with total insect emergence in natural pools, but orangethroat darter (Etheostoma spectabile) biomass was inversely correlated with emerging Chironomidae biomass and individual midge body size. The interaction in our models between predatory fish biomass and date suggested that fishes may also delay insect emergence from natural pools, altering the timing of aquatic–terrestrial subsidies.
  5. There was an increase over time in algal biomass (chlorophyll-a) in mesocosms, but this did not differ among fish density treatments. Regardless, fish presence in mesocosms reduced the abundance of colonising insects and total invertebrate biomass. Mesocosm invertebrate communities in treatments without fishes were characterised by more Chironomidae, Culicidae, and Corduliidae.
  6. Results suggest that fishes influence invertebrates in habitats that represent important refuges during hydrologic disturbance, hot spots for subsidy exports to riparian food webs, and source areas for colonists during recovery from hydrologic disturbance. Fish effects in these systems include decreasing invertebrate abundance, shifting community structure, and altering patterns of invertebrate emergence and colonisation.
  相似文献   

6.
The densities of two benthic fishes, the Siberian stone loach (Noemacheilus barbatulus) and the wrinklehead sculpin (Cottus nozawae), and the biomass of their food resources (i.e., periphyton and benthic invertebrates) were compared between forest and grassland streams in northern Hokkaido, Japan, to examine whether riparian deforestation had positive effects on the benthic fishes via enhancement of food availability. The comparisons indicated that riparian vegetation had little influence on periphyton, invertebrates, or fishes. Regression analysis indicated that spatial variations in loach and sculpin densities were explained more by substrate heterogeneity, competitor abundance, or both, rather than by food abundance. However, when the two species were combined as benthic insectivores, a strong correlation was found between total benthic fish density and invertebrate biomass. Our results suggest that, although total benthic fish abundance was food limited, riparian vegetation had no positive effects via food availability on the benthic fishes in our streams.  相似文献   

7.
Prey intake by Atlantic salmon Salmo salar and brown trout Salmo trutta was measured across different riparian vegetation types: grassland, open canopy deciduous and closed canopy deciduous, in upland streams in County Mayo, Western Ireland. Fishes were collected by electrofishing while invertebrates were sampled from the benthos using a Surber sampler and drifting invertebrates collected in drift traps. Aquatic invertebrates dominated prey numbers in the diets of 0+ year Atlantic salmon and brown trout and 1+ year Atlantic salmon, whereas terrestrial invertebrates were of greater importance for diets of 1+ and 2+ year brown trout. Terrestrial prey biomass was generally greater than aquatic prey for 1+ and 2+ year brown trout across seasons and riparian types. Prey intake was greatest in spring and summer and least in autumn apart from 2+ year brown trout that sustained feeding into autumn. Total prey numbers captured tended to be greater for all age classes in streams with deciduous riparian canopy. Atlantic salmon consumed more aquatic prey and brown trout more terrestrial prey with an ontogenetic increase in prey species richness and diversity. Atlantic salmon and brown trout diets were most similar in summer. Terrestrial invertebrates provided an important energy subsidy particularly for brown trout. In grassland streams, each fish age class was strongly associated with aquatic, mainly benthic invertebrates. In streams with deciduous riparian canopy cover, diet composition partitioned between conspecifics with older brown trout associated with surface drifting terrestrial invertebrates and older Atlantic salmon associated with aquatic invertebrates with a high drift propensity in the water column and 0+ year fish feeding on benthic aquatic invertebrates. Deciduous riparian canopy cover may therefore facilitate vertical partitioning of feeding position within the water column between sympatric Atlantic salmon and brown trout. Implications for riparian management are discussed.  相似文献   

8.
  1. Worldwide, the addition of treated wastewater (i.e. effluent) to streams is becoming more common as urban populations grow and developing countries increase their use of wastewater treatment plants. Release of treated effluent can impair water quality and ecological communities, but also could help restore flow and maintain aquatic habitat in water-stressed regions. To assess this range of potential outcomes, we conducted a global review of studies from effluent-fed streams to examine the impacts of effluent on water quality and aquatic and riparian biota.
  2. We identified 147 quantitative studies of effluent-fed streams, most of which were from the U.S.A. and Europe. Over 85% of the studies identified water quality as a primary study focus, including basic physical and chemical parameters, as well as trace organic contaminants. Nearly 60% of the studies had at least some focus on aquatic or riparian biota, primarily fish, aquatic invertebrates, and basal resources (e.g. algae).
  3. Effluent inputs generally impaired water quality near discharge points, mainly through increased water temperature, nutrients, and concentrations of trace organic contaminants, but also via decreased dissolved oxygen levels. The majority of ecological studies found that basal resources, aquatic invertebrates, and fish were negatively affected in a variety of ways (e.g. biodiversity losses, replacement of sensitive with tolerant species). However, several studies showed the importance of effluent in providing environmental flows to streams that had been dewatered by anthropogenic water withdrawals, especially in semi-arid and arid regions.
  4. Knowledge gaps identified include the abiotic impacts of effluent, such as changes in channel morphology and hydrology (e.g. how nutrient-rich and warmer effluent affects infiltration rates or interactions with groundwater), the effects of effluent on plants and vertebrates (e.g. amphibians, birds), and the impact of effluent-induced perennialisation on naturally intermittent or ephemeral streams.
  5. Although effluent-fed streams often exhibit signs of ecological impairment, there is great potential for these systems to serve as refuges of aquatic biodiversity and corridors of ecological connectivity when wastewater treatment standards are high, especially in semi-arid and arid regions where natural streams have been dewatered.
  相似文献   

9.
  1. Anadromous fish transport marine-derived nutrients to freshwaters during spawning migrations with potential implications for stream food webs. While many studies have explored the role of marine-derived nutrients instream ecosystems (particularly via Pacific salmonids [Oncorhynchus spp.]), relatively few have examined the spatial distribution and patchiness of non-salmonid fish carcasses or rates of transport to the riparian zone.
  2. We radio-tagged and released 144 mature Pacific lamprey (Entosphenus tridentatus) prior to spawning and tracked the fate of post-spawn carcasses in two inland Columbia River basin streams to characterise spatial distribution of carcasses and marine-derived nutrient deposition. We found that 27 and 40% of lamprey that could be assigned a fate were moved into the riparian zone adjacent to stream segments exhibiting higher velocity conditions with larger substrates. Conversely, lamprey with instream fates were associated with depositional microhabitats and woody debris dams. Estimated carcass loading rates varied by more than an order of magnitude among habitats. These patterns probably reflect a combination of processes influencing the likelihood of carcass removal (e.g. by predators or scavengers, or stranding) and factors affecting the distribution of carcasses remaining within the stream.
  3. Our results demonstrate substantial transport of lamprey carcasses across the stream-riparian ecotone and a non-random distribution of carcasses within streams, patterns which probably influence how resources enter stream and riparian food webs. More broadly, the results suggest local and landscape-scale hydrogeomorphic factors, along with species-specific traits and phenology, affect the distribution and potential roles of fish carrion in stream food webs.
  相似文献   

10.
11.
The aim of this research is to assess the effects of oil palm plantations on stream habitat and their fish assemblage diversity. We hypothesize that streams which drain through oil palm plantations tend to be less heterogeneous, limiting the occurrence of many species, than streams that drain through forest fragments, which support higher fish diversity. A total of 17 streams were sampled; eight in forest fragments and nine in oil palm plantations. Environmental and biological variables were sampled along 150 m stretch in each stream. Of the 242 environmental variables measured, ten were considered important to assess the condition of structural habitat, and out of these variables, four were considered relevant in the distinction between streams in oil palm plantations and forest fragments. A total of 7245 fishes were collected, belonging to 63 species. Unlike our original hypothesis, the species richness did not differ between forest fragment and oil palm plantations streams, showing that it is not a good divert measure in streams disturbance assessment. However, fish assemblages differed in species composition, and 56 species were recorded in oil palm plantation streams, while 44 species were recorded in forest fragments streams. Some species were identified as indicators of either altered (Aequidens tetramerus and Apistogramma agassizii) or undisturbed areas (Helogenes marmoratus). Overall, oil palm plantations were proven to change stream habitat structure and fish species distribution, corroborating other studies that have evidenced changes in patterns of biological community structure due to impacts by different land uses.  相似文献   

12.
We investigated the influence of red alder (Alnus rubra) stand density in upland, riparian forests on invertebrate and detritus transport from fishless headwater streams to downstream, salmonid habitats in southeastern Alaska. Red alder commonly regenerates after soil disturbance (such as from natural landsliding or timber harvesting), and is common along streams in varying densities, but its effect on food delivery from headwater channels to downstream salmonid habitats is not clear. Fluvial transport of invertebrates and detritus was measured at 13 sites in spring, summer and fall during two years (2000–2001). The 13 streams encompassed a riparian red alder density gradient (1–82% canopy cover or 0–53% basal area) growing amongst young-growth conifer (45-yr-old stands that regenerated after forest clearcutting). Sites with more riparian red alder exported significantly more invertebrates than did sites with little alder (mean range across 1–82% alder gradient was about 1–4 invertebrates m?3 water, and 0.1–1 mg invertebrates m?3 water, respectively). Three-quarters of the invertebrates were of aquatic origin; the remainder was of terrestrial origin. Aquatic taxa were positively related to the alder density gradient, while terrestrially-derived taxa were not. Streams with more riparian alder also exported significantly more detritus than streams with less alder (mean range across 1–82% alder gradient was 0.01–0.06 g detritus m?3 water). Based on these data, we predict that headwater streams with more riparian alder will provide more invertebrates and support more downstream fish biomass than those basins with little or no riparian alder, provided these downstream food webs fully utilize this resource subsidy.  相似文献   

13.
  1. Understanding risks to aquatic systems posed by changing drought regimes is particularly important for the conservation of already threatened taxa. However, little is known about how local environmental conditions, especially those in heavily human‐influenced situations, interact with regional shifts such as droughts to alter realised impacts on aquatic communities, including threatened top predators.
  2. Here, we investigated the combined effects of stream drying intensity and riparian canopy cover on the trophic interactions of critically endangered kōwaro, or Canterbury mudfish (Neochanna burrowsius) in an agricultural area of New Zealand. Fish populations and their potential prey, both terrestrial and aquatic, as well as environmental variables, including riparian canopy cover and drying measured with stage loggers, were sampled over eight visits to 24 sites spanning orthogonal drying and canopy gradients. Stable isotope ratios, 13C/12C and 15N/14N, were used to investigate trophic links between mudfish and their terrestrial and aquatic prey across these gradients.
  3. When non‐native willows (predominantly Salix fragilis) dominated the riparian canopy, increased tree cover led to elevated drying intensity, probably driven by their relatively high water demands compared to other trees. However, in the absence of willows, canopy cover had no effect on drying intensity. Although this was the only direct link between these two environmental factors, they had opposing effects on kōwaro populations, which will be important for management under drought.
  4. Increased drying intensity contributed to elevated abundance of microcrustacea and aquatic Diptera larvae, and an increase in the relative abundance of kōwaro juveniles. However, drying‐affected kōwaro populations also had fewer large reproductive adults and elevated δ15N values, probably driven by physiological limitations and an increase in kōwaro cannibalism, respectively.
  5. By comparison, increased canopy cover enhanced input of terrestrial invertebrates, a food resource for larger kōwaro, leading to elevated kōwaro δ13C values, no effects on δ15N values, and higher relative abundance of large kōwaro in shaded streams compared to unshaded streams. Thus, the riparian canopy cover was able to offset some of the effects of drying.
  6. Overall, we found no interactions between drying intensity and canopy cover affecting kōwaro. However, their opposing effect highlights the important role local conditions such as riparian canopies play on aquatic communities and their potential role as a restoration tool to mitigate the effects of large‐scale shifts such as drought.
  相似文献   

14.
  1. Although extreme hydrological events are a natural component of river ecosystem disturbance regimes, their frequency is predicted to increase with climate change. Anthropogenic activities have the potential to exacerbate the impact of such disturbances but there are few studies on the combined effects of both anthropogenic and extreme hydrological disturbances on stream ecosystems.
  2. We investigated the recovery of stream ecosystems over a 5-year period following the impact of an anthropogenic (forest clear-cut harvesting) and an extreme rainfall disturbance (estimated one-in-100 year average return interval) that generated debris flows in three headwater streams in New Zealand.
  3. Initially, most of the riparian vegetation was eliminated and showed little recovery 1 year later. Subsequent riparian recovery was led by wind-borne, light-demanding, pioneering exotic weed species, lengthening and altering the long-term successional and recovery trajectories to a pre-disturbance composition of indigenous shrubs.
  4. Stream shade, water temperature, and habitat had largely recovered after 5 years. However, the contribution of large wood to channel morphology and in-stream habitat was compromised due to diminished wood supplies in the stream channel and a hiatus in up-slope wood inputs until the riparian vegetation re-establishes and the next crop of trees matures.
  5. After an initial decline, most indigenous fish taxa thrived in the post-disturbance conditions, with significant increases in densities and biomass. The more sensitive fish taxa were scarce or absent, particularly those taxa that prefer pools with overhead and in-stream cover provided by riparian vegetation and wood. Recovery of these taxa was outside the time frame of this study. Riffle dwelling fish communities were more resilient than pool dwelling fish communities.
  6. Invertebrate densities showed a similar response to fish. Post-event invertebrate community composition differed from that typically found in post-harvest headwater streams, comprising comparatively lower proportions of Chironomidae, Oligochaetes, and Mollusca taxa, and higher proportions of Trichoptera taxa. Progression toward pre-event community composition was evident 5 years after the event.
  7. The compounding effect of forest removal from harvesting, along with riparian vegetation and wood removal by debris flows, lengthened the recovery of riparian vegetation and wood supplies with cascading effects on in-stream habitat and biological communities.
  相似文献   

15.
The food and feeding habits of riparian ground beetles were studied in four alpine floodplains (Bavaria, Germany): a 5th-order stream (the Isar) and three 3rd-order streams. The riparian fauna along the streams mainly consists of predaceous species. Riparian ground beetle densities were much higher along the Isar than along the small streams. Aquatic invertebrates composed 89% of the potential prey for carnivorous terrestrial insects along the Isar. Besides aquatic organisms washed ashore, stoneflies emerging on land are of considerable importance as potential prey for terrestrial predators. In contrast, only 34% of the potential prey organisms collected along the small streams were of aquatic origin. Food abundance was 9 times higher in the shore region of the Isar compared to the small streams. Surface drift in the Isar, a potentially important food source for riparian organisms, was about 106 organisms and exuviae per meter stream width in 24 h. The drift density in the Isar was 59 times higher than that in a small stream. Terrestrial organisms provided only 3% of the drifting particles in the Isar, but 50% in the small stream. Gut content analysis reveals, that riparian ground beetles in the Isar floodplain mainly feed on aquatic organisms washed ashore or emerging on land. While small Bembidion species prefer chironomids (larvae and adults) the larger species Nebria picicornis feeds on emerging stoneflies, terrestrial riparian organisms and aquatic organisms accumulating along the shoreline. The prey of riparian ground beetles in the floodplain of the three small streams mainly consists of terrestrial species some of which may have been washed ashore. Received: 2 September 1996 / Accepted: 26 February 1997  相似文献   

16.
Despite growing recognition of the energetic connections between aquatic and riparian habitats of streams and lakes, there have been few efforts to quantify the importance of terrestrial insect subsidies to fish in lakes. Further, it is unclear whether lakeshore urbanization alters the magnitude of these fluxes. Because lakeshore development has been found to be negatively correlated with riparian vegetation that serves as habitat for terrestrial invertebrates, we expected that shoreline urbanization would reduce the prevalence of terrestrial invertebrates in fish diets. We quantified the effects of lakeshore urbanization on terrestrial insect subsidies to fish at three scales: a focused comparison of annual patterns in four lakes in the Pacific Northwest, a one‐time field survey of 28 Pacific Northwest lakes, and a literature survey of 24 North American lakes. At all geographical scales, terrestrial invertebrate subsidies to fish were negatively correlated with shoreline development. Terrestrial insects comprised up to 100% of fish diet mass in undeveloped lakes, versus an average of 2% of fish diet mass in developed lakes. Trout, Oncorhynchus spp., in undeveloped lakes had an average of 50% greater daily energy intake, up to 50% of which was represented by terrestrial prey. Temporal variability of the terrestrial subsidy suggests that these inputs are distinctly pulsed, and this subsidy is absent or temporally rare in undeveloped lakes.  相似文献   

17.
  1. We investigated how compositional differences in riparian leaf litter derived from burned and undisturbed forests influenced leaf breakdown and macroinvertebrate communities using experimental mixed-species leaf packs in boreal headwater streams. Leaf pack mixtures simulating leaf litter from dominant riparian woody-stem species in burned and undisturbed riparian zones were incubated in two references and two fire-disturbed streams for 5 weeks prior to measuring temperature-corrected breakdown rates and macroinvertebrate community composition, richness, and functional metrics associated with decomposers such as shredder abundance and % shredders.
  2. Leaf litter breakdown rates were higher and had greater variability in streams bordered by reference riparian forests than in streams where riparian forests had been burned during a wildfire. Streams bordered by fire disturbance showed significant effects of litter mixture on decomposition rates, observed as significantly higher decomposition rates of a fire-simulated leaf mixture compared to all other mixtures.
  3. Variation among sites was higher than variation among litter mixtures, especially for macroinvertebrate community composition. In general, fire-simulated leaf mixtures had greater shredder abundances and proportions, but lower overall macroinvertebrate abundance; however, the shredder abundance trend was not consistent across all leaf mixtures at each stream.
  4. These results show that disturbance-driven riparian forest condition and resulting composition of leaf subsidies to streams can influence aquatic invertebrate community composition and their function as decomposers. Therefore, if one of the primary goals of modern forest management is to emulate natural disturbance patterns, boreal forest managers should adapt silvicultural practices to promote leaf litter input that would arise post-fire, thereby supporting stream invertebrate communities and their function.
  相似文献   

18.
19.
SUMMARY.
  • 1 Sources of carbon utilized by invertebrates and fish in four New Zealand streams were investigated using stable carbon isotope analysis. Complementary analyses were made to determine σ13C alteration (fractionation) by fish reared on a known food and to examine the distribution of 13C/12C ratios in different tissues.
  • 2 σ13C values of hatchery-reared rainbow trout (white muscle tissue) were 13C-enriched compared with their food (trout pellets) by an average of 1.7%0. σ13C values of different organs and tissues never differed by more than 1.8%o in any fish species; white muscle always had an intermediate value.
  • 3 σ13C values of invertebrates ranged from-28.4 to –20.4%o– At the more open sites invertebrates were 13C-depleted, reflecting some use of algal carbon. However, invertebrates from the most heavily shaded stream site were unusually enriched in 13C. An undetected carbon source of terrestrial origin, perhaps 13C-enriched dissolved organic carbon in groundwater, may have been contributing indirectly to invertebrate biomass carbon.
  • 4 σ13C values for fish were not closely linked to aquatic invertebrate ratios; instead, at all sites their carbon was isotopically similar to terrestrial organic carbon. The reasons for this apparent anomaly are unclear.
  相似文献   

20.
  1. Species distribution models often fail to predict observed patterns of species diversity, and this is because some species within a regional pool that are tolerant of conditions at a given location may nevertheless be absent from the local community. These missing species have been termed “dark diversity”. In the present study, we investigated which factors explain dark diversity among fish assemblages in Amazonian streams.
  2. We sampled 71 streams in areas with different types of land use within two river basins and estimated dark diversity from patterns of species co-occurrence, using Beals’ index, along environmental gradients. From this procedure, taxa are designated as dark diversity components when they are absent from a given stream, but often co-occur with the local species at other streams, indicating similar ecological requirements. We used generalised linear models both to determine whether environmental or landscape variables, connectivity, instream environmental heterogeneity or some combination of these factors explained dark diversity of fishes, and to evaluate whether ecomorphology is associated with the extent to which a species contributes to dark diversity and which specific traits contribute the most to explaining variation in dark diversity.
  3. Mean local diversity exceeded observed dark diversity. The magnitude of dark diversity was directly associated with the proportion of secondary forest in the immediate catchment and with the index of proximity to anthropogenic impact. Species that have high affinity for environments with higher current velocity, low swimming ability and that capture food mainly on the surface contributed more to dark diversity, which suggests that swimming ability, habitat preference and aspects related to diet are key predictors of the probability that a given species will be present at locations with suitable habitat.
  4. Our findings reinforce the idea that dark diversity results from interactions between species traits and environmental factors, including anthropogenic impacts. Understanding the interplay among environmental factors and species traits that contribute to dark diversity provides targets for improved ecosystem restoration and sustainability of native species assemblages.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号