首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
生境破碎化对动物种群存活的影响   总被引:51,自引:12,他引:39  
武正军  李义明 《生态学报》2003,23(11):2424-2435
生境破碎是生物多样性下降的主要原因之一。通常以岛屿生物地理学、异质种群生物学和景观生态学的理论来解释不同空间尺度中生境破碎化的生态学效应。生境破碎化引起面积效应、隔离效应和边缘效应。这些效应通过影响动物种群的绝灭阈值、分布和多度、种间关系以及生态系统过程,最终影响动物种群的存活。野外研究表明,破碎化对动物的影响,因物种、生境类型和地理区域不同而有所变化,因此,预测物种在破碎生境中的存活比较困难。研究热点集中于:确定生境面积损失和生境斑块的空间格局对破碎景观中物种绝灭的相对影响,破碎景观中物种的适宜生境比例和绝灭阈值,异质种群动态以及生态系统的生态过程。随着3S技术的发展,生境破碎化模型趋于复杂,而发展有效的模型和验证模型将成为一项富有挑战性的任务。  相似文献   

2.
Measures of fitness such as reproductive performance are considered reliable indicators of habitat quality for a species. Such measures are, however, only available in a restricted number of sites, which prevents them from being used to quantify habitat quality across landscapes or regions. Alternatively, species presence records can be used along with environmental variables to build models that predict the distribution of species across larger spatial extents. Model predictions are often used for management purposes as they are assumed to describe the quality of the habitats to support a species. Yet, given that species are often present both in optimal and suboptimal areas, the use of data collected during the breeding season to build these models may potentially result in misleading predictions of habitat quality for the reproduction of the species, with potentially significant conservation consequences. In this study we analysed the relationship between fitness parameters informing on habitat quality for reproduction and predictions of species distribution models at multiple spatial scales using two independent sets of data. For 19 passerine bird species, we compared an indirect measure of reproductive performance (ratio of juveniles‐to‐adults) – obtained from Constant Effort Sites (CES) mist‐netting data in Catalonia – with the predictions of models based on bird presence records collected during the Catalan Breeding Bird Atlas (CBBA). A positive relationship between the predictions derived from species distribution models and the reproductive performance of the species was found for almost half of the species at one or more spatial scales. This result suggests that species distribution models may help to predict habitat quality for some species over some extents. However, caution is needed as this is not consistent for all species at all scales. Further work based on species‐ and scale‐specific approaches is now required to understand in which situations species distribution models provide predictions that are in line with reproductive performance.  相似文献   

3.
In Europe, agricultural practices have progressively evolved towards high productivity leading either to the intensification of productive and accessible areas or to the abandonment of less profitable sites. Both processes have led to the degradation of semi-natural habitats like extensive grasslands, threatening species such as the Eurasian Scops Owl Otus scops that rely on extensively managed agricultural landscapes. In this work, we aimed to assess the habitat preferences of the Scops Owl using habitat suitability models combined with a multi-scale approach. We generated a set of multi-scale predictors, considering both biotic and abiotic variables, built on two newly developed vegetation management and orthopteran abundance models. To select the variables to incorporate in a ‘best multi-scale model’, we chose the best spatial scale for each variable using univariate models and by calculating their relative importance through multi-model inference. Next, we built ensembles of small models (ESMs) at 10 different scales from 50 to 1000 m, and an additional model with each variable at its best scale (‘best multi-scale model’). The latter performed better than most of the other ESMs and allowed the creation of a high-resolution habitat suitability map for the species. Scops Owls showed a preference for dry sites with extensive and well-structured habitats with 30–40% bush cover, and relied strongly on semi-extensive grasslands covering at least 30% of the surface within 300 m of the territory centre and with high orthopteran availability near the centre (50-m radius), revealing a need for good foraging grounds near the nest. At a larger spatial scale within a radius of 1000 m, the habitat suitability of Scops Owls was negatively related to forest cover. The resulting ESM predictions provide valuable tools for conservation planning, highlighting sites in need of particular conservation efforts together with offering estimates of the percentage of habitat types and necessary prey abundance that could be used as targets in future management plans to ensure the persistence of the population.  相似文献   

4.
Use of non-farmland habitats by species generally perceived as 'farmland birds' is common, yet these habitats are not always considered in conservation strategies aimed at population recovery. At the national scale, many farmland species occur in landscapes not dominated by farmland. An analysis of distribution atlas data coupled with remotely sensed habitat data showed that for 16 out of 28 farmland species, less than half of the breeding range was associated with high cover of lowland farmland. However, with a few exceptions, populations breeding in non-farmland habitats are likely to depend on farmland at some time in the year. Within farmland landscapes, uncropped areas and patches of non-farmland habitat can provide nesting, foraging or roosting resources. Habitats that are scarce on farmland and that provide potential supplementary or complementary resources to those available within the productive areas of farmland include ruderal vegetation, rough grassland and scrub. Enhancing habitat diversity through provision of modest quantities of these habitats will benefit farmland birds. Complete knowledge of year-round habitat requirements and patterns of resource use at all scales is needed if robust national conservation plans are to be developed for farmland species. Similarly, interactions between the farmland and non-farmland sections of populations need to be determined.  相似文献   

5.
Aim Species frequency data have been widely used in nature conservation to aid management decisions. To determine species frequencies, information on habitat occurrence is important: a species with a low frequency is not necessarily rare if it occupies all suitable habitats. Often, information on habitat distribution is available for small geographic areas only. We aim to predict grid‐based habitat occurrence from grid‐based plant species distribution data in a meso‐scale analysis. Location The study was carried out over two spatial extents: Germany and Bavaria. Methods Two simple models were set up to examine the number of characteristic plant species needed per grid cell to predict the occurrence of four selected habitats (species data from FlorKart, http://www.floraweb.de ). Both models were calibrated in Bavaria using available information on habitat distribution, validated for other federal states, and applied to Germany. First, a spatially explicit regression model (generalized linear model (GLM) with assumed binomial error distribution of response variable) was obtained. Second, a spatially independent optimization model was derived that estimated species numbers without using spatial information on habitat distribution. Finally, an additional uncalibrated model was derived that calculated the frequencies of 24 habitats. It was validated using NATURA2000 habitat maps. Results Using the Bavarian models it was possible to predict habitat distribution and frequency from the co‐occurrence of habitat‐specific species per grid cell. As the model validations for other German federal states were successful, the models were applied to all of Germany, and habitat distribution and frequencies could be retrieved for the national scale on the basis of habitat‐specific species co‐occurrences per grid cell. Using the third, uncalibrated model, which includes species distribution data only, it was possible to predict the frequencies of 24 habitats based on the co‐occurrence of 24% of formation‐specific species per grid cell. Predicted habitat frequencies deduced from this third model were strongly related to frequencies of NATURA2000 habitat maps. Main conclusions It was concluded that it is possible to deduce habitat distributions and frequencies from the co‐occurrence of habitat‐specific species. For areas partly covered by habitat mappings, calibrated models can be developed and extrapolated to larger areas. If information on habitat distribution is completely lacking, uncalibrated models can still be applied, providing coarse information on habitat frequencies. Predicted habitat distributions and frequencies can be used as a tool in nature conservation, for example as correction factors for species frequencies, as long as the species of interest is not included in the model set‐up.  相似文献   

6.
土地利用变化是造成栖息地破碎、缺失与退化的重要原因。生态网络能保护重要栖息地,促进栖息地之间的物质与能量流动,对区域土地利用规划和生物多样性保护具有重要意义。以鄂州市为研究区,基于CLUE-S模型预测现状延续、生态保护和城市扩张3种土地利用情景,将生境质量作为遴选生境斑块的依据之一,以鸟类最大迁徙距离为阈值构建生态网络,从连通概率指数PC和斑块重要性指数dPC两方面,探讨土地利用变化对鸟类栖息地连通性的影响。结果表明:(1)不同情景的地类数量和空间结构均有差异,与生态保护相比,城市扩张情景的建设用地增加11603.52 hm~2,林地、耕地和水体减少5041.8 hm~2、2540.16 hm~2、3385.8 hm~2,新城区、山地风景区与水体周边是主要变化区域;(2)现状延续和城市扩张情景的生境斑块降至235块和216块,网络出现破碎化,生态保护情景增至367块,网络结构完整但空间位置改变;(3)2004—2024年PC表现为先上升后下降再上升的趋势,生态保护的PC高于现状延续和城市扩张,且利于保护短距离迁徙鸟类;(4)生态保护情景边缘型和关键小型斑块得到保护,第一等级斑块增加,城...  相似文献   

7.
In human-altered environments, organisms may preferentially settle in poor-quality habitats where fitness returns are lower relative to available higher-quality habitats. Such ecological trapping is due to a mismatch between the cues used during habitat selection and the habitat quality. Maladaptive settlement decisions may occur when organisms are time-constrained and have to rapidly evaluate habitat quality based on incomplete knowledge of the resources and conditions that will be available later in the season. During a three-year study, we examined settlement decision-making in the long-distance migratory, open-habitat bird, the Red-backed shrike (Lanius collurio), as a response to recent land-use changes. In Northwest Europe, the shrikes typically breed in open areas under a management regime of extensive farming. In recent decades, Spruce forests have been increasingly managed with large-size cutblocks in even-aged plantations, thereby producing early-successional vegetation areas that are also colonised by the species. Farmland and open areas in forests create mosaics of two different types of habitats that are now occupied by the shrikes. We examined redundant measures of habitat preference (order of settlement after migration and distribution of dominant individuals) and several reproductive performance parameters in both habitat types to investigate whether habitat preference is in line with habitat quality. Territorial males exhibited a clear preference for the recently created open areas in forests with higher-quality males settling in this habitat type earlier. Reproductive performance was, however, higher in farmland, with higher nest success, offspring quantity, and quality compared to open areas in forests. The results showed strong among-year consistency and we can therefore exclude a transient situation. This study demonstrates a case of maladaptive habitat selection in a farmland bird expanding its breeding range to human-created open habitats in plantations. We discuss the reasons that could explain this decision-making and the possible consequences for the population dynamics and persistence.  相似文献   

8.
The conservation and understanding of biodiversity requires development and testing of models that illustrate how climate change and other anthropogenic effects alter habitat and its selection at different spatial scales. Models of fitness along a habitat gradient illustrate the connection between fine‐scale variation in fitness and the selection of habitat as discontinuous patches in the landscape. According to these models, climate change can increase fitness values of static habitats, shift the fitness value of habitat patches along underlying gradients of habitat quality, or alter both fitness and habitat quality. It should be possible to differentiate amongst these scenarios by associating differences in the abundance and distribution of species with metrics of habitat that document the gradient while controlling for changes in density at larger scales of analysis. Comparisons of habitat selection by two species of lemmings, over an interval of 15 years, are consistent with the theory. The pattern of habitat selection at the scale of wet versus dry tundra habitats changed through time. The change in habitat selection was reflected by different, but nevertheless density‐dependent, patterns of association with the structure and composition of habitat. Abundant collared lemmings abandoned stations where altered habitat characteristics caused a shift to new locations along the wet‐to‐dry gradient. The confirmation of scale‐dependent theory provides new insights into how one might begin to forecast future habitat selection under different scenarios of climate and habitat change.  相似文献   

9.
Species that specialize in disturbed habitats may have considerably different dispersal strategies than those adapted to more stable environments. However, little is known of the dispersal patterns and population structure of such species. This information is important for conservation because many postfire specialists are at risk from anthropogenic changes to natural disturbance regimes. We used microsatellite markers to assess the effect of landscape variation and recent disturbance history on dispersal by a small mammal species that occupies the early seral stage of vegetation regeneration in burnt environments. We predicted that a postfire specialist would be able to disperse over multiple habitat types (generalist) and not exhibit sex‐biased dispersal, as such strategies should enable effective colonization of spatially and temporally variable habitat. We found significant differentiation between sites that fitted an isolation‐by‐distance pattern and spatial autocorrelation of multilocus genotypes to a distance of 2–3 km. There was no consistent genetic evidence for sex‐biased dispersal. We tested the influence of different habitat‐ and fire‐specific landscape resistance scenarios on genetic distance between individuals and found a significant effect of fire. Our genetic data supported recently burned vegetation having greater conductance for gene flow than unburnt habitat, but variation in habitat quality between vegetation types and occupied patches had no effect on gene flow. Postfire specialists must evolve an effective dispersal ability to move over distances that would ensure access to early successional stage vegetation. Natural disturbance and natural heterogeneity may therefore not influence population genetic structure as negatively as expected.  相似文献   

10.
Summary   Modelling for the conservation of koala ( Phascolarctos cinereus ) populations has primarily focused on natural habitat variables (e.g. tree species, soil types and soil moisture). Until recently, limited consideration has been given to modelling the effects of the landscape context (e.g. habitat area, habitat configuration and roads). Yet, the combined influence of natural habitats and anthropogenic impacts at multiple spatial scales are likely to be important determinants of where koala populations occur and remain viable in human-modified landscapes. The study tested the importance of multiscale habitat variables on koala occurrence in Ballarat, Victoria, Australia. The models focused at three spatial scales: site ( <  1 ha), patch (1–100 ha), and landscape (100–1000 s ha). Logistic regression and hierarchical partitioning analyses were used to rank alternative models and key explanatory variables.
The results showed that an increased likelihood of koala presence in fragmented landscapes in the urban–forest interface (as opposed to larger blocks of forest habitat) can best be explained by the positive effects of soil fertility and the presence of preferred koala tree species in these fragmented areas. If koalas are to be effectively conserved in Ballarat, it is critical to (i) protect remaining core areas of high-quality habitat, including regenerating areas; (ii) protect scattered habitat patches which provide connectivity; and (iii) develop and implement habitat restoration programmes to improve habitat connectivity and enhance opportunities for safe koala movement between habitat patches intersected by main roads.  相似文献   

11.
Carabid beetles are common predators of pest insects and weed seeds in agricultural systems. Understanding their dispersal across farmland is important for designing farms and landscapes that support pest and weed biological control. Little is known, however, about the effect of farmland habitat discontinuities on dispersal behaviour and the resulting redistribution of these beetles. We released 1,985 well‐fed and 1,680 food‐deprived individuals of the predatory carabid beetle Pterostichus melanarius (Illiger) (Coleoptera: Carabidae) on a farm in Wageningen, The Netherlands. We recaptured 23.6% of those beetles over a period of 23 days in 2010. The farmland comprised agricultural fields with various crop species and tillage, separated by strips of perennial vegetation. We developed discrete Fokker‐Planck diffusion models to describe dispersal based on motility (m2 day?1) and preferential behaviour at habitat interfaces. We used model selection and Akaike’s information criterion to determine whether movement patterns were driven by variation in motility between habitats, preferential behaviour at habitat interfaces, or both. Model selection revealed differences in motility among habitats and gave strong support for preferential behaviour at habitat interfaces. Behaviour at interfaces between crop and perennial vegetation was asymmetric, with beetles preferentially moving towards the crop. Furthermore, beetles had lower motility in perennial strips than in arable fields. Also between arable habitats movement was asymmetric, with beetles preferentially moving towards the habitat in which motility was lowest. Neither crop type nor tillage explained differences in motility between crop habitats. Recapture data representing dispersal patterns of beetles were best described by a model that accounted for differences in motility between farmland habitats and preferential behaviour at habitat interfaces. Motility in farmland and behaviour at interfaces can also be estimated for other organisms and farmland habitats to support design of farmland conducive to natural pest suppression. Landscape design for early recruitment of carabids into arable fields should take into account the quantity and quality of resource habitats in the landscape, their proximity to crop fields, movement rates, and the possibility of movement responses at interfaces between landscape elements.  相似文献   

12.
Consequences of large-scale processes for the conservation of bird populations   总被引:17,自引:15,他引:2  
1.  Detailed studies of population ecology are usually carried out in relatively restricted areas in which emigration and immigration play a role. We used a modelling approach to explore the population consequences of such dispersal and applied ideas from our simulations to the conservation of wild birds.
2.  Our spatial model incorporates empirically derived variation in breeding output between habitats, density dependence and dispersal. The outputs indicate that dispersal can have considerable consequences for population abundance and distribution. The abundance of a species within a patch can be markedly affected by the surrounding habitat matrix.
3.  Dispersal between habitats may result in lower population densities at the edge of good quality habitat blocks and could partially explain why some species are restricted to large habitat fragments.
4.  Habitat deterioration may not only lead to population declines within that habitat but also in adjacent habitats of good quality. This may confound studies attempting to diagnose population declines.
5.  Although mobile species have the advantages of colonizing sites within metapopulations, dispersal into poorer quality territories may markedly reduce total populations.
6.  There are two main approaches to conservation: one is to concentrate on establishing and maintaining protected areas, while the other involves conservation of the wider countryside. If dispersal is an important process then protecting only isolated areas may be insufficient to maintain the populations within them.  相似文献   

13.
Conservation measures often rely on habitat management, so knowledge about a species’ habitat use is a prerequisite for effective conservation planning. The Little Bustard Tetrax tetrax, a medium‐sized bird native to the Palaearctic steppes and today found in extensively farmed habitats, is a threatened species. Its population experienced a 94% decline in farmland habitats in France between 1982 and 1996, and populations all over Europe have suffered equally sharp declines. Due to this steep negative trend, this species has been the subject of a number of habitat selection studies in order to develop relevant conservation measures based on its habitat requirements. In this study, we investigated the habitat selection of a range of habitat types by both sexes and at two nested spatial scales: plot scale and landscape scale. In addition, we analysed intra‐specific social interactions by incorporating conspecific density in the statistical models of habitat use. The study was conducted on a very high‐density population, perhaps the highest ever recorded for this species at around 50 Bustards per 100 ha of suitable habitat. Our methodology combined two field approaches (point counts and quadrat counts). The findings showed rather limited sexual dimorphism in terms of habitat selection at a local scale, with only vegetation height differing between sexes at a micro‐habitat scale, no selection at landscape scale, and a prevailing role of social factors at both scales. The implications for future conservation strategies in relation to population density and landscape composition are discussed.  相似文献   

14.
《Global Change Biology》2018,24(1):308-321
Conserving native biodiversity in the face of human‐ and climate‐related impacts is a challenging and globally important ecological problem that requires an understanding of spatially connected, organismal‐habitat relationships. Globally, a suite of disturbances (e.g., agriculture, urbanization, climate change) degrades habitats and threatens biodiversity. A mosaic approach (in which connected, interacting collections of juxtaposed habitat patches are examined) provides a scientific foundation for addressing many disturbance‐related, ecologically based conservation problems. For example, if specific habitat types disproportionately increase biodiversity, these keystones should be incorporated into research and management plans. Our sampling of fish biodiversity and aquatic habitat along ten 3‐km sites within the Upper Neosho River subdrainage, KS, from June‐August 2013 yielded three generalizable ecological insights. First, specific types of mesohabitat patches (i.e., pool, riffle, run, and glide) were physically distinct and created unique mosaics of mesohabitats that varied across sites. Second, species richness was higher in riffle mesohabitats when mesohabitat size reflected field availability. Furthermore, habitat mosaics that included more riffles had greater habitat diversity and more fish species. Thus, riffles (<5% of sampled area) acted as keystone habitats. Third, additional conceptual development, which we initiate here, can broaden the identification of keystone habitats across ecosystems and further operationalize this concept for research and conservation. Thus, adopting a mosaic approach can increase scientific understanding of organismal‐habitat relationships, maintain natural biodiversity, advance spatial ecology, and facilitate effective conservation of native biodiversity in human‐altered ecosystems.  相似文献   

15.
We used the predictions of the ideal free and ideal despoticdistributions (IFD and IDD, respectively) as a basis to evaluatethe link between spatial heterogeneity, behavior, and populationdynamics in a Caribbean coral reef fish. Juvenile three-spotdamselfish (Stegastes planifrons) were more closely aggregatedin patch reef habitat than on continuous back reef. Agonisticinteractions were more frequent but feeding rates were lowerin the patch versus the continuous reef habitat. Growth rateswere lower in patch reef habitat than on the continuous reef,but mortality rates did not differ. A separate experiment usingstandard habitat units demonstrated that the patterns observedin natural habitat were the result of the spatial distributionof the habitat patches rather than resource differences between habitats. Our results do not follow the predictions of simpleIFD or IDD models. This deviation from IFD and IDD predictionsmay be the result of a number of factors, including lack ofperfect information about habitat patches, high movement costs,and higher encounter rates of dispersed patches. Our resultsdemonstrate that behavioral interactions are an integral partof population dynamics and that it is necessary to considerthe spatial organization of the habitat in both behavioraland ecological investigations.  相似文献   

16.
Summary I argue here that, from the perspective of any individual, most landscapes are composed of only three basic types of habitats. These are: (1) source habitat in which reproduction exceeds mortality and the expected per capita growth rate is greater than one; (2) sink habitat, in which limited, reproduction is possible but will not on average, compensate for mortality and the per capita rate of growth is between zero and one; and (3) unusable habitat, which comprises the matrix of all habitats that are never exploited by the species in question, and in which patches of source and sink habitats are embedded. Unlike earlier source-sink models, this model explicitly considers the effects that substituting one type of habitat for another has on the equilibrium size of a population and the interactions between species which can use both source and sink habitats. The model demonstrates that the equilibrium size of a species' population can sometimes be increased by substituting unusable habitat for sink habitat. Thus, even though the average patch quality in the landscape may be decreased, the overall quality of the landscape can increase. For two species with distinct habitat preferences, interactions between species can vary qualitatively as well as quantitatively as a function of the relative abundances of each of the habitat types. The model also shows that the interactions between species are particularly sensitive to the relative costs of moving between patches and sampling patches to determine their quality. Recent fragmentation of natural landscapes may increase the cost of searching for usable (source or sink) patches. Under some conditions, the interspecific interactions may be substantially more negative (competitive) than the interactions that evolved in the original natural landscape, further reducing population sizes and increasing the likelihood of competitive exclusion in fragmented modern landscapes.  相似文献   

17.
The distribution and abundance of reef fishes in relation to habitat structure were studied within Bar Reef Marine Sanctuary (BRMS) and on an adjacent reef, disturbed by destructive fishing techniques, in north-western Sri Lanka, by visually censusing 135 species groups using fifty metre belt-transects. Two types of continental shelf patch-reefs are found in the study area: coral reefs and sandstone reefs, which are divided into distinct habitats, four for the coral reef (shallow reef flat, shallow patch reef, deep reef flat and Porites domes) and two for the sandstone reef (structured sandstone-reef and flat sandstone-reef). Fish assemblages varied in structure between reef types and among habitats within reef types. Functional aspects of habitat structure and composition, such as available food and shelter, seemed to be important factors influencing distribution patterns. The strongest separation in the organisation of fish assemblages in BRMS was between reef types: 19% of all species were confined to the coral-reef patches while 22% were restricted to the sandstone reef patches and 59% were represented on both reef types. In terms of distribution among habitats, 21% of all species were restricted to one habitat while only 1.5% were present in all. The highest density of fish was in the coral reef habitats while highest species diversity was found in the most structurally complex habitat: the structured sandstone-reef. This habitat also had the highest proportion of species with restricted distribution. Planktivores were the most abundant trophic group in BRMS, and the species composition of the group varied among habitats. The comparison of the disturbed reef with BRMS suggested that habitat alteration caused by destructive fishing methods has strongly influenced the fish community. Within the fished area the structure of the fish assemblages was more heterogeneous, fish abundance was lower by an order of magnitude and species numbers were lower than in BRMS.  相似文献   

18.
大型食肉动物对维持生态系统的结构和功能具有重要作用, 但大部分大型食肉动物处在持续的种群数量和分布面积下降之中, 面临着急迫的研究与保护需求。华北豹(Panthera pardus japonensis)是我国特有的豹亚种, 也是部分区域森林生态系统中仅存的大型食肉动物, 面临着生境破碎化等威胁。本研究使用红外相机调查了宁夏六盘山国家级自然保护区华北豹的分布, 通过构建占域模型分析了华北豹的栖息地利用, 预测了华北豹的适宜栖息地, 并评估了其生境破碎化格局。研究发现, 华北豹在六盘山的平均占域率约为0.135。华北豹偏好植被发育成熟、地势崎岖、温度较低、远离农田和公路的栖息地, 对于农田边缘和居民点等人类活动区域未显示出显著回避。研究识别的六盘山华北豹适宜栖息地主要沿六盘山东西两侧山脉分布, 55%的适宜栖息地斑块位于六盘山国家级自然保护区内。栖息地斑块面积平均为16 km2, 最大达214 km2, 约77%的栖息地斑块面积在10 km2以下。研究表明六盘山国家级自然保护区有效地保护了华北豹现有的适宜栖息地, 但仍存在栖息地破碎化和人类活动干扰等关键限制因素。建议通过栖息地改造、人类活动管理等方式增强六盘山华北豹适宜栖息地斑块连通性; 并通过推动华北豹跨省保护工作等举措促进华北豹种群扩散恢复。  相似文献   

19.
Aim Based on a priori hypotheses, we developed predictions about how avian communities might differ at the edges vs. interiors of ecoregions. Specifically, we predicted lower species richness and greater local turnover and extinction probabilities for regional edges. We tested these predictions using North American Breeding Bird Survey (BBS) data across nine ecoregions over a 20‐year time period. Location Data from 2238 BBS routes within nine ecoregions of the United States were used. Methods The estimation methods used accounted for species detection probabilities < 1. Parameter estimates for species richness, local turnover and extinction probabilities were obtained using the program COMDYN. We examined the difference in community‐level parameters estimated from within exterior edges (the habitat interface between ecoregions), interior edges (the habitat interface between two bird conservation regions within the same ecoregion) and interior (habitat excluding interfaces). General linear models were constructed to examine sources of variation in community parameters for five ecoregions (containing all three habitat types) and all nine ecoregions (containing two habitat types). Results Analyses provided evidence that interior habitats and interior edges had on average higher bird species richness than exterior edges, providing some evidence of reduced species richness near habitat edges. Lower average extinction probabilities and turnover rates in interior habitats (five‐region analysis) provided some support for our predictions about these quantities. However, analyses directed at all three response variables, i.e. species richness, local turnover, and local extinction probability, provided evidence of an interaction between habitat and region, indicating that the relationships did not hold in all regions. Main conclusions The overall predictions of lower species richness, higher local turnover and extinction probabilities in regional edge habitats, as opposed to interior habitats, were generally supported. However, these predicted tendencies did not hold in all regions.  相似文献   

20.
1. We studied the relative role of local habitat variables and landscape pattern on vole–plant interactions in a system with grey-sided voles ( Clethrionomys rufocanus (Sund.)) and their favourite winter food plant, bilberry ( Vaccinium myrtillus L.). The study was conducted during a vole peak year (1992–93) in a tundra area in northern Norway.
2. Using Mantel statistics we were able to separate the direct effects of the spatial patterning of habitats and the indirect effects due to spatial aggregations of similar habitats.
3. Results indicate that knowledge about the explicit spatial patterning of patches does not improve our understanding of the system. Instead, two local factors, vegetation height and bilberry biomass, explained more than 50% of the variation in cutting intensity in winter (defined as the proportion of above-ground shoots cut). Increasing vegetation height increased, and increasing bilberry biomass decreased, the cutting intensity.
4. The conclusion that grey-sided voles are able to distribute themselves relative to habitat quality was also partially supported by our estimated over-winter persistence by voles in the various habitats. Vole persistence was uncorrelated with vegetation height, the important predictor of autumn vole density, but tended to correlate with the deviation from the relation between vegetation height and autumn vole density. This conforms to the expectations from the theory of ideal-free habitat distribution.
5. The cue for vole habitat choice, i.e. vegetation height, indicates that either predation or freezing risk is important for voles when selecting over-wintering habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号