首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  1. Introgressive hybridisation between two invasive species has the potential to contribute to their invasion success and provide genetic resiliency to rapidly adapt to new environments. Additionally, differences in the behaviour of hybrids may lead to deleterious ecosystem effects that compound any negative impacts of the invading parental species.
  2. Invasive silver carp (Hypophthalmichthys molitrix) and bighead carp (Hypophthalmichthys nobilis) provide an opportunity to evaluate how hybridisation may influence the behaviour, dispersal, and spread of an invasive species introgressive complex. In order to investigate the role hybrids may have in the invasion ecology of bigheaded carps, we examined the distribution, movements, and environmental cues for movement of two invasive fishes and their hybrids in the Illinois River (U.S.A.).
  3. Early generation hybrids (e.g. F1,F2, and first-generation backcross individuals) composed a greater proportion of the population at the invasion front where abundances of bigheaded carp were low. A greater proportion of early hybrids passed through dams upstream towards the invasion front than did other hybrids and parental species.
  4. The movements and environmental cues for movement of late-generation backcrosses (more genetically similar to parental genotype) were not different from the parental species with which they shared the most alleles. Although the direction of the relationship between movement and environment was sometimes different for the parental species and associated advanced generation hybrids, these results indicate that management for parental species will also affect most hybrids.
  5. Although early generation hybrids are rare, our results indicate they may disperse towards low-density population zones (i.e. invasion fronts) or are produced at greater frequency in low-density areas. These rare hybrids have the potential to produce a variety of unique genetic combinations that could result in more rapid adaptation of a non-native population to their invaded range potentially facilitating the establishment of invasive species.
  相似文献   

2.
Although the movement of invasive bighead carp (Hypophthalmichthys nobilis) and silver carp (H. molitrix) in the Upper Mississippi River system is dependent on their ability to swim through its numerous lock‐and‐dams, the swimming performance of adults of these species is at present unknown. Using a large (2,935‐L) mobile swim tunnel, the swimming performance of adult bighead and adult silver carp was quantified at water velocities that challenged them to exhibit either prolonged and/or burst swimming (76–244 cm/s) with fatigue times of less than 10 min. Simple log‐linear models best described the relative swim speed to fatigue relationships for both species. Under these conditions, the swimming performances of adult bighead and silver carp were similar to several species of adult fishes native to the Mississippi River system, but relatively low (<3 total body lengths per second, TL/s) compared to previously studied juveniles and sub‐adult bigheaded carps (3–15 TL/s). The decline in endurance with water velocity was three times greater in bighead carp (slope = ?2.98) than in silver carp (slope = ?1.01) and the predictive ability of the bighead model was appreciably better than the silver carp model. The differences in adult swimming performance between the two species were coincident with behavioral differences (e.g. breaching in silver carp but not in bighead carp). The swimming performance data of adult bighead and silver carp can now be used to evaluate whether their passage through manmade river structures including the gates of lock‐and‐dams in the Upper Mississippi River might be reduced.  相似文献   

3.
4.
Bighead and silver carp are well established in the Mississippi River basin following their accidental introduction in the 1980s. Referred to collectively as Asian carp, these species are filter feeders consuming phytoplankton and zooplankton. We examined diet overlap and electivity of Asian carp and three native filter feeding fishes, bigmouth buffalo, gizzard shad, and paddlefish, in backwater lakes of the Illinois and Mississippi rivers. Rotifers, Keratella spp., Brachionus spp., and Trichocerca spp., were the most common prey items consumed by Asian carp and gizzard shad, whereas crustacean zooplankton were the preferred prey of paddlefish. Bigmouth buffalo diet was broad, including both rotifers and crustacean zooplankton. Dietary overlap with Asian carp was greatest for gizzard shad followed by bigmouth buffalo, but we found little diet overlap for paddlefish. Diet similarity based on taxonomy correlated strongly with diet similarity based on size suggesting filtration efficiency influenced the overlap patterns we observed. Although rotifers were the most common prey item consumed by both bighead and silver carp, we found a negative relation between silver carp CPUE and cladoceran density. The competitive effect of Asian carp on native fishes may be forestalled because of the high productivity of Illinois and Mississippi river habitats, yet the potential for negative consequences of Asian carp in less productive ecosystems, including Lake Michigan, should not be underestimated.  相似文献   

5.
6.
The prevention of non-indigenous aquatic invasive species spreading into new areas is a goal of many resource managers. New techniques have been developed to survey for species that are difficult to capture with conventional gears that involve the detection of their DNA in water samples (eDNA). This technique is currently used to track the invasion of bigheaded carps (silver carp and bighead carp; Hypophthalmichthys molitrix and H. nobilis) in the Chicago Area Waterway System and Upper Mississippi River. In both systems DNA has been detected from silver carp without the capture of a live fish, which has led to some uncertainty about the source of the DNA. The potential contribution to eDNA by vectors and fomites has not been explored. Because barges move from areas with a high abundance of bigheaded carps to areas monitored for the potential presence of silver carp, we used juvenile silver carp to simulate the barge transport of dead bigheaded carp carcasses, slime residue, and predator feces to determine the potential of these sources to supply DNA to uninhabited waters where it could be detected and misinterpreted as indicative of the presence of live bigheaded carp. Our results indicate that all three vectors are feasible sources of detectable eDNA for at least one month after their deposition. This suggests that current monitoring programs must consider alternative vectors of DNA in the environment and consider alternative strategies to minimize the detection of DNA not directly released from live bigheaded carps.  相似文献   

7.
8.

The widespread introduction of non-native fishes has contributed to freshwater ecosystems being considered among the most altered ecosystems globally. Of particular concern are invasive planktivorous fishes (e.g., silver carp Hypophthalmichthys molitrix and bighead carp H. nobilis, collectively known as bigheaded carps) that have the potential to modify basal food web structure and compete for planktonic resources with native planktivores and young-of-year fishes. Bigheaded carps have proliferated throughout the Mississippi River basin, creating an outsized potential for resource competition with native fishes. Studies have showed niche overlap between bigheaded carps and native planktivores is generally high but that overlap varies among rivers. Importantly, niche overlap has not been assessed for density extremes of bigheaded carps within a river to determine whether trophic niches changed as a result of the invasion. The objectives of this study were to determine whether (1) silver and/or bighead carps share a similar isotopic niche with four native planktivores, and (2) that association varies ecologically (i.e., low- and high-densities of bigheaded carps) and spatially (i.e., between rivers). Our results generally show high trophic overlap among species, suggesting potential direct resource competition. Niche overlap was higher in study reaches with low densities of bigheaded carps compared to reaches with high densities, presumably due to intense resource competition and limiting of resources under high densities of bigheaded carps. Across density extremes, trophic reorganization by bigmouth buffalo (Ictiobus cyprinellus) was divergent from other native planktivores. Species-specific responses may be due to subtle differences in feeding strategies, degree of planktivory, food selectivity, and correlated food size distributions.

  相似文献   

9.
10.
1. Bigheaded carp, including both silver (Hypophthalmichthys molitrix) and bighead (H. nobilis) carp, are successful invasive fishes that threaten global freshwater biodiversity. High phenotypic plasticity probably contributes to their success in novel ecosystems, although evidence of plasticity in several spawning traits has hitherto been largely anecdotal or speculative. 2. We collected drifting eggs from a Midwestern U.S.A. river from June to September 2011 and from April to June 2012 to investigate the spawning traits of bigheaded carp in novel ecosystems. 3. Unlike reports from the native range, the presence of drifting bigheaded carp eggs was not related to changes in hydrological regime or mean daily water temperature. Bigheaded carp also exhibited protracted spawning, since we found drifting eggs throughout the summer and as late as 1 September 2011. Finally, we detected bigheaded carp eggs in a river reach where the channel is c. 30 m wide with a catchment area of 4579 km2, the smallest stream in which spawning has yet been documented. 4. Taken with previous observations of spawning traits that depart from those observed within the native ranges of both bighead and silver carp, our findings provide direct evidence that bigheaded carp exhibit plastic spawning traits in novel ecosystems that may facilitate invasion and establishment in a wider range of river conditions than previously envisaged.  相似文献   

11.
Bighead carp Hypophthalmichthys nobilis and silver carp Hypophthalmichthys molitrix (together, the bigheaded carps) are invasive fishes in North America that have resulted in substantial negative effects on native fish communities and aquatic ecosystems. Movement and behavior of adult bigheaded carps has been studied previously using telemetry, while similar studies with juvenile bigheaded carps have yet to be attempted. Recent technological advances in telemetry transmitters has increased the availability of tags sufficiently small enough to implant in juvenile carps. However, the effects of surgical implantation of telemetry tags on juvenile bigheaded carps have not been evaluated. We determined tag retention and survival associated with surgical implantation of acoustic telemetry tags into juvenile bighead carp (range 128–152 mm total length) at three temperatures (13, 18, and 23°C). In addition, we assessed the effect of surgically implanted transmitters on the fitness, defined as changes in weight or critical swimming speed, of carp implanted with transmitters. Survival was high among tagged fish (85%) with 47% of tags retained at the conclusion of the 45‐day study. No substantial decline in fitness of the fish was observed in tagged fish compared to untagged fish.  相似文献   

12.
13.
Bighead carp were introduced into Arkansas in 1973 to improve water clarity in production ponds. Bighead carp subsequently escaped aquaculture facilities in the early 1980's and dispersed into the Mississippi and Missouri rivers. The first documentation of bighead carp reproduction in the Mississippi River system was in 1989. The population has increased in the Missouri River as is evident in their increased proportion in the commercial harvest since 1990. The effect of this exotic planktivore on native ecosystems of the U.S. has not been examined. Basic biological data on bighead carp Hypophthalmichthys nobilis in the Missouri River are needed to predict potential ecological problems and provide a foundation for manipulative studies. The objectives of this study were to assess age, growth, and gonadal characteristics of bighead carp in the Missouri River. Adult bighead carp in our sample varied from age 3 to age 7 and length varied from 475 to 1050mm. There was a large variation in length at age, and overall bighead carp exhibited fast growth. For example, mean back-calculated length at age 3 was 556mm. The sample was dominated by bighead carp from the 1994 year class. There was no difference in gonad development (i.e., gonadal somatic index, egg diameter) between winter and spring samples. Length of male bighead carp and GSI were not significantly correlated; however, females exhibited a positive linear relationship between length and GSI. In each ovary, egg diameter frequencies exhibited a bimodal distribution, indicating protracted spawning. Mean fecundity was 226213, with a maximum fecundity of 769964. Bighead carp in the Missouri River have similar life history characteristics to Asian and European populations. They have become well established in the Missouri River and it is likely that dispersal and population density will increase.  相似文献   

14.
Water guns have shown the potential to repel nuisance aquatic organisms. This study examines the effects of exposure to a 1966.4 cm3 seismic water gun array (two guns) on the abundance and behavior of Bighead Carp Hypophthalmichthys nobilis, Silver Carp H. molitrix (collectively referred to as bigheaded carp) and native fishes (e.g., Smallmouth Buffalo Ictiobus bubalus). Water guns were deployed in a channel that connects the Illinois River to backwater quarry pits that contained a large transient population of bigheaded carp. To evaluate the effect of water guns, mobile side-looking split-beam hydroacoustic surveys were conducted before, during and between replicated water gun firing periods. Water guns did not affect abundance of bigheaded carp, but abundance of native fish detected during the firing treatment was 43 and 34% lower than the control and water guns off treatments, respectively. The proximity of bigheaded carp to the water gun array was similar between the water guns on and water guns off treatments. In contrast, the closest detected native fish were detected farther from the water guns during the water guns on treatment (mean ± SE, 32.38 ± 3.32 m) than during the water guns off treatment (15.04 ± 1.59 m). The water gun array had a greater impact on native fish species than on bigheaded carp. Caution should be taken to the extrapolation of these results to other fish species and to fish exposed to water guns in different environments (e.g., reduced shoreline interaction) or exposure to a larger array of water guns, or for use of water guns for purposes other than a barrier.  相似文献   

15.
Invasive bighead (Hypophthalmichthys nobilis) and silver carp (H. molitrix) are reproductively isolated in their native range, but form a bimodal, multigenerational hybrid swarm within the Mississippi River Basin (MRB). Despite observed F1 hybrid superiority in experimental settings, effects of postzygotic selection on bighead and silver carp hybrids have not been tested in a natural system. Individual parent and hybrid genotypes were resolved at 57 species‐specific loci and used to evaluate postzygotic selection for body condition (Wr) and female reproductive potential (presence of spawning stage gonads and gonadosomatic index [GSI]) in the MRB during 2009–2011. Body condition in the Marseilles Reach, Illinois River declined with a decrease in species‐specific allele frequency from 1.0 to 0.4 for each species and early generation hybrids (F1, F2, and first‐generation backcross) had lower mean Wr than late generation hybrids (2nd+ generation backcrosses) and parentals. Proportions of stage IV and stage V (spawning stage) female gonads differed between bighead and silver carp, but not among parentals and their early and late generation hybrids within the MRB. Mean GSI values did not differ between parentals and hybrids. Because reproductive potential did not differ between hybrids and parentals, our results suggest that early generation hybrids occur in low frequency either as a factor of poor condition (Wr) and postreproductive survival, infrequent reproductive encounters by parental bighead and silver carp, or selection pressures acting on juvenile or immature life stages. Our results suggest that a combination of genetic and environmental factors may contribute to the postzygotic success of bighead and silver carp hybrids in the Mississippi River Basin.  相似文献   

16.
Little is known about the reproductive biology of the exotic bighead carp Hypophthalmichthys nobilis and silver carp Hypophthalmichthys molitrix in the Missouri River. In order to fill this gap in understanding, herein is described the reproductive condition of these Asian carps. Evidence is presented which indicates that bighead and silver carp in the Missouri River have a protracted spawning period that extends from early spring through fall and some individual bighead and silver carp are spawning multiple times during a reproductive season. Although bighead and silver carps are successfully maturing and spawning in the Missouri River some reproductive abnormalities such as intersex, atresia, and sterility were observed. Knowledge of the reproductive activity of these invasive carps may be useful to resource managers tasked with their control. Furthermore, the reproductive abnormalities observed should be considered when evaluating the environmental condition of the Missouri River relative to supporting a healthy fish fauna.  相似文献   

17.
The threat posed by bigheaded carps (Hypophthalmichthys spp.) to novel ecosystems has focused efforts on preventing further range expansion; upstream progression in the Illinois River is a major concern due to its connection with the uninvaded Great Lakes. In addition to an electric barrier system, commercial harvest of silver carp (H. molitrix) and bighead carp (H. nobilis) in the upper river is intended to reduce propagule pressure and prevent range expansion. To quantify demographics and evaluate harvest efficacy, the upper river was sampled between 2012 and 2015 using mobile hydroacoustic methods. Reach-specific densities, size structures and species compositions varied interannually but the advancing population was characterized longitudinally as small-bodied, silver carp-dominated at the highest densities downstream, shifting to large-bodied, bighead carp-dominated at the low-density population front. The use of hydroacoustic sampling for harvest evaluation was validated in backwater lakes; there was a significant positive correlation between density estimates and the corresponding harvest catch-per-unit-effort of bigheaded carps. Localized densities of bigheaded carps were reduced by up to 64.4 % immediately post-harvest but generally rebounded within weeks. However, annual sampling of the entire upper river indicated that density of bigheaded carps decreased by over 40 % (between 2012 and 2013) and subsequently remained stable (between 2013 and 2014). The annual harvest of bigheaded carps increased during this period (from 45,192 to 102,453 individuals), in years of contrasting discharge conditions. At this spatiotemporal scale, harvest appears to have contributed to initial reduction, and subsequent maintenance of, bigheaded carps density levels, but discharge likely plays an important role (e.g., through immigration) in determining the extent of its impact. Mobile hydroacoustic sampling enabled robust quantification of the population over varying spatial scales and density gradients, highlighting the potential of this approach as an assessment tool for invasive fishes in riverine environments.  相似文献   

18.
19.
20.
Invasive bigheaded carp species (Hypophthalmichthys spp.) from Asia have experienced rapid range expansion and population explosions in rivers of the United States resulting in ecosystem damage currently being witnessed and documented by fishery biologists. In addition, silver carp (H. molitrix) present a danger of injury and death to unsuspecting boaters, water skiers or recreational fishers due to their propensity to jump in response to boat motor noise. Fishing‐down bigheaded carp populations for human consumption will reduce environmental damage and potential human injury and mortality until other control measures become available. The name “carp” conveys an extremely negative brand name for purposes of product marketing. We suggest that the silver carp be renamed by the professional scientific community to silverfin (a trademarked name currently used in culinary circles) and the bighead carp (H. nobilis) to bighead. The suggested common names changes represent a simple, albeit small step to reducing bigheaded carp population numbers based on sound product naming strategies developed and used in marketing science.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号