首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The isochorismate synthase from Pseudomonas aeruginosa (PchA) catalyzes the conversion of chorismate to isochorismate, which is subsequently converted by a second enzyme (PchB) to salicylate for incorporation into the salicylate-capped siderophore pyochelin. PchA is a member of the MST family of enzymes, which includes the structurally homologous isochorismate synthases from Escherichia coli (EntC and MenF) and salicylate synthases from Yersinia enterocolitica (Irp9) and Mycobacterium tuberculosis (MbtI). The latter enzymes generate isochorismate as an intermediate before generating salicylate and pyruvate. General acid–general base catalysis has been proposed for isochorismate synthesis in all five enzymes, but the residues required for the isomerization are a matter of debate, with both lysine221 and glutamate313 proposed as the general base (PchA numbering). This work includes a classical characterization of PchA with steady state kinetic analysis, solvent kinetic isotope effect analysis and by measuring the effect of viscosogens on catalysis. The results suggest that isochorismate production from chorismate by the MST enzymes is the result of general acid–general base catalysis with a lysine as the base and a glutamic acid as the acid, in reverse protonation states. Chemistry is determined to not be rate limiting, favoring the hypothesis of a conformational or binding step as the slow step.  相似文献   

2.
The enzyme chorismate mutase EcCM from Escherichia coli catalyzes one of the few pericyclic reactions in biology, the transformation of chorismate to prephenate. The isochorismate pyruvate lyase PchB from Pseudomonas aeroginosa catalyzes another pericyclic reaction, the isochorismate to salicylate transformation. Interestingly, PchB possesses weak chorismate mutase activity as well thus being able to catalyze two distinct pericyclic reactions in a single active site. EcCM and PchB possess very similar folds, despite their low sequence identity. Using molecular dynamics simulations of four combinations of the two enzymes (EcCM and PchB) with the two substrates (chorismate and isochorismate) we show that the electrostatic field due to EcCM at atoms of chorismate favors the chorismate to prephenate transition and that, analogously, the electrostatic field due to PchB at atoms of isochorismate favors the isochorismate to salicylate transition. The largest differences between EcCM and PchB in electrostatic field strengths at atoms of the substrates are found to be due to residue side chains at distances between 0.6 and 0.8 nm from particular substrate atoms. Both enzymes tend to bring their non‐native substrate in the same conformation as their native substrate. EcCM and to a lower extent PchB fail in influencing the forces on and conformations of the substrate such as to favor the other chemical reaction (isochorismate pyruvate lyase activity for EcCM and chorismate mutase activity for PchB). These observations might explain the difficulty of engineering isochorismate pyruvate lyase activity in EcCM by solely mutating active site residues.  相似文献   

3.
The isochorismate and salicylate synthases are members of the MST family of enzymes. The isochorismate synthases establish an equilibrium for the conversion chorismate to isochorismate and the reverse reaction. The salicylate synthases convert chorismate to salicylate with an isochorismate intermediate; therefore, the salicylate synthases perform isochorismate synthase and isochorismate-pyruvate lyase activities sequentially. While the active site residues are highly conserved, there are two sites that show trends for lyase-activity and lyase-deficiency. Using steady state kinetics and HPLC progress curves, we tested the “interchange” hypothesis that interconversion of the amino acids at these sites would promote lyase activity in the isochorismate synthases and remove lyase activity from the salicylate synthases. An alternative, “permute” hypothesis, that chorismate-utilizing enzymes are designed to permute the substrate into a variety of products and tampering with the active site may lead to identification of adventitious activities, is tested by more sensitive NMR time course experiments. The latter hypothesis held true. The variant enzymes predominantly catalyzed chorismate mutase–prephenate dehydratase activities, sequentially generating prephenate and phenylpyruvate, augmenting previously debated (mutase) or undocumented (dehydratase) adventitious activities.  相似文献   

4.
The ability to acquire iron from the extracellular environment is a key determinant of pathogenicity in mycobacteria. Mycobacterium tuberculosis acquires iron exclusively via the siderophore mycobactin T, the biosynthesis of which depends on the production of salicylate from chorismate. Salicylate production in other bacteria is either a two-step process involving an isochorismate synthase (chorismate isomerase) and a pyruvate lyase, as observed for Pseudomonas aeruginosa, or a single-step conversion catalyzed by a salicylate synthase, as with Yersinia enterocolitica. Here we present the structure of the enzyme MbtI (Rv2386c) from M. tuberculosis, solved by multiwavelength anomalous diffraction at a resolution of 1.8 A, and biochemical evidence that it is the salicylate synthase necessary for mycobactin biosynthesis. The enzyme is critically dependent on Mg2+ for activity and produces salicylate via an isochorismate intermediate. MbtI is structurally similar to salicylate synthase (Irp9) from Y. enterocolitica and the large subunit of anthranilate synthase (TrpE) and shares the overall architecture of other chorismate-utilizing enzymes, such as the related aminodeoxychorismate synthase PabB. Like Irp9, but unlike TrpE or PabB, MbtI is neither regulated by nor structurally stabilized by bound tryptophan. The structure of MbtI is the starting point for the design of inhibitors of siderophore biosynthesis, which may make useful lead compounds for the production of new antituberculosis drugs, given the strong dependence of pathogenesis on iron acquisition in M. tuberculosis.  相似文献   

5.
Isochorismate pyruvate-lyase (IPL), the second enzyme of pyochelin biosynthesis and the product of the pchB gene, was purified to homogeneity from Pseudomonas aeruginosa. In the reaction catalyzed by this enzyme, isochorismate --> salicylate + pyruvate, no cofactors appear to be required. At the pH optimum (pH 6.8), the enzyme displayed Michaelis-Menten kinetics, with an apparent K(m) of 12.5 microm for isochorismate and a kcat of 106 min(-1), calculated per monomer. The native enzyme behaved as a homodimer, as judged by molecular sieving chromatography, electrophoresis under nondenaturing conditions, and cross-linking experiments. PchB has approximately 20% amino acid sequence identity with AroQ-class chorismate mutases (CMs). Chorismate was shown to be converted to prephenate by purified PchB in vitro, with an apparent K(m) of 150 microm and a kcat of 7.8 min(-1). An oxabicyclic diacid transition state analog and well characterized inhibitor of CMs competitively inhibited both IPL and CM activities of PchB. Moreover, a CM-deficient Escherichia coli mutant, which is auxotrophic for phenylalanine and tyrosine, was functionally complemented by the cloned P. aeruginosa pchB gene for growth in minimal medium. A mutant form of PchB, in which isoleucine 88 was changed to threonine, had no detectable IPL activity, but retained wild-type CM activity. In conclusion, the 11.5-kDa subunit of PchB appears to contain a single active site involved in both IPL and CM activity.  相似文献   

6.
PchB from Pseudomonas aeruginosa possesses isochorismate pyruvate lyase (IPL) and weak chorismate mutase (CM) activity. Homology modeling based on a structurally characterized CM, coupled with randomization of presumed key active site residues (Arg54, Glu90, Gln91) and in vivo selection for CM activity, was used to derive mechanistic insights into the IPL activity of PchB. Mutation of Arg54 was incompatible with viability, and the CM and IPL activities of an engineered R54K variant were reduced 1,000-fold each. The observation that position 90 was tolerant to substitution but position 91 was essentially confined to Gln or Glu in functional variants rules out involvement of Glu90 in general base catalysis. Counter to the generally accepted mechanistic hypothesis for pyruvate lyases, we propose for PchB a rare [1,5]-sigmatropic reaction mechanism that invokes electrostatic catalysis in analogy to the [3,3]-pericyclic rearrangement of chorismate in CMs. A common catalytic principle for both PchB functions is also supported by the covariance of the catalytic parameters for the CM and IPL activities and the shared functional requirement for a protonated Glu91 in Q91E variants. The experiments demonstrate that focusing directed evolution strategies on the readily accessible surrogate activity of an enzyme can provide valuable insights into the mechanism of the primary reaction.  相似文献   

7.
The salicylate synthase, Irp9, from Yersinia enterocolitica is involved in the biosynthesis of the siderophore yersiniabactin. It is a bifunctional enzyme that forms salicylate and pyruvate from chorismate and water via the intermediate isochorismate. Here we report the first crystal structure of Irp9 and also of its complex with the reaction products salicylate and pyruvate at 1.85 A and 2.1 A resolution, respectively. Like other members of the chorismate-utilizing enzyme family, e.g. the TrpE subunit of anthranilate synthase and the PabB subunit of 4-amino-4-deoxychorismate synthase, Irp9 has a complex alpha/beta fold. The crystal structure of Irp9 contains one molecule each of phosphate and acetate derived from the crystallization buffer. The Irp9-products complex structure was obtained by soaking chorismate into Irp9, demonstrating that the enzyme is still catalytically active in the crystal. Both structures contain Mg(2+) in the active site. There is no evidence of the allosteric tryptophan binding site found in TrpE and PabB. Mutagenesis of Glu240, His321 and Tyr372 provided some insight into the mechanism of the two transformations catalyzed by Irp9. Knowledge of the structure of Irp9 will guide the search for potent inhibitors of salicylate formation, and hence of bacterial iron uptake, which is directly related to the virulence of Yersinia.  相似文献   

8.
EntC, one of two isochorismate synthases in Escherichia coli, is specific to the biosynthesis of the siderophore enterobactin. Here, we report the crystal structure of EntC in complex with isochorismate and Mg2+at 2.3 Å resolution, the first structure of a chorismate-utilizing enzyme with a non-aromatic reaction product. EntC exhibits a complex α+β fold like the other chorismate-utilizing enzymes, such as salicylate synthase and anthranilate synthase. Comparison of active site structures allowed the identification of several residues, not discussed previously, that might be important for the isochorismate activity of the EntC. Although EntC, MenF and Irp9 all convert chorismate to isochorismate, only Irp9 subsequently exhibits isochorismate pyruvate lyase activity resulting in the formation of salicylate and pyruvate as the reaction products. With a view to understanding the roles of these amino acid residues in the conversion of chorismate to isochorismate and to obtaining clues about the pyruvate lyase activity of Irp9, several mutants of EntC were generated in which the selected residues in EntC were substituted for those of Irp9: these included A303T, L304A, F327Y, I346L and F359Q mutations. Biochemical analysis of these mutants indicated that the side chain of A303 in EntC may be crucial in the orientation of the carbonyl to allow formation of a hydrogen bond with isochorismate. Some mutations, such as L304A and F359Q, give rise to a loss of catalytic activity, whereas others, such as F327Y and I346L, show that subtle changes in the otherwise closely similar active sites influence activity. We did not find a combination of these residues that conferred pyruvate lyase activity.  相似文献   

9.
10.
Menaquinone biosynthesis is initiated by the conversion of chorismate to isochorismate, a reaction that is catalyzed by the menaquinone-specific isochorismate synthase, MenF. The catalytic mechanism of MenF has been probed using a combination of structural and biochemical studies, including the 2.5 A structure of the enzyme, and Lys190 has been identified as the base that activates water for nucleophilic attack at the chorismate C2 carbon. MenF is a member of a larger family of Mg2+ dependent chorismate binding enzymes catalyzing distinct chorismate transformations. The studies reported here extend the mechanism recently proposed for this enzyme family by He et al.: He, Z., Stigers Lavoie, K. D., Bartlett, P. A., and Toney, M. D. (2004) J. Am. Chem. Soc. 126, 2378-85.  相似文献   

11.
Enzymatic systems that exploit pericyclic reaction mechanisms are rare. A recent addition to this class is the enzyme PchB, an 11.4-kDa isochorismate pyruvate lyase from Pseudomonas aeruginosa. The apo and pyruvate-bound structures of PchB reveal that the enzyme is a structural homologue of chorismate mutases in the AroQalpha class despite low sequence identity (20%). The enzyme is an intertwined dimer of three helices with connecting loops, and amino acids from each monomer participate in each of two active sites. The apo structure (2.35 A resolution) has one dimer per asymmetric unit with nitrate bound in an open active site. The loop between the first and second helices is disordered, providing a gateway for substrate entry and product exit. The pyruvate-bound structure (1.95 A resolution) has two dimers per asymmetric unit. One has two open active sites like the apo structure, and the other has two closed active sites with the loop between the first and second helices ordered for catalysis. Determining the structure of PchB is part of a larger effort to elucidate protein structures involved in siderophore biosynthesis, as these enzymes are crucial for bacterial iron uptake and virulence and have been identified as antimicrobial drug targets.  相似文献   

12.
The effect of pH on chorismate mutase/prephenate dehydratase (chorismate pyruvate mutase/prephenate hydro-lyase (decarboxylating) EC 5.4.99.5/EC 4.2.1.51) from Escherichia coli K12 has been studied. While the maximum velocity of both activities is independent of pH, Km for chorismate or prephenate shows a complex pH dependence. Differences in mutase activity in acetate/phosphate/borate and citrate/phosphate/borate buffers were traced to inhibition by citrate. When a variety of analogues of citrate were tested as possible inhibitors of the enzyme, several were found to inhibit mutase and dehydratase activities to different extents, and by different mechanisms. Thus citrate competitively inhibits mutase activity, but inhibits dehydratase activity by either a non-competitive or an uncompetitive mechanism. Conversely, cis- and trans-aconitate competitively inhibit dehydratase activity, but are partially competitive inhibitors of mutase activity. The differential effects of these inhibitors on the two activities are consistent with the existence of two distinct active sites, but additionally suggest some degree of interconnection between them. The implications of these results for possible mechanisms of catalysis by chorismate mutase/prephenate dehydratase are discussed.  相似文献   

13.
In some bacteria, salicylate is synthesized using the enzymes isochorismate synthase and isochorismate pyruvate lyase. In contrast, gene inactivation and complementation experiments with Yersinia enterocolitica suggest the synthesis of salicylate in the biosynthesis of the siderophore yersiniabactin involves a single protein, Irp9, which converts chorismate directly into salicylate. In the present study, Irp9 was for the first time heterologously expressed in Escherichia coli as a hexahistidine fusion protein, purified to near homogeneity, and characterized biochemically. The recombinant protein was found to be a dimer, each subunit of which has a molecular mass of 50 kDa. Enzyme assays, reverse-phase high-pressure liquid chromatography and 1H nuclear magnetic resonance (NMR) spectroscopic analyses confirmed that Irp9 is a salicylate synthase and converts chorismate to salicylate with a K(m) for chorismate of 4.2 microM and a k(cat) of 8 min(-1). The reaction was shown to proceed through the intermediate isochorismate, which was detected directly using 1H NMR spectroscopy.  相似文献   

14.
Lamb AL 《Biochemistry》2011,50(35):7476-7483
One of the fundamental questions of enzymology is how catalytic power is derived. This review focuses on recent developments in the structure--function relationships of chorismate-utilizing enzymes involved in siderophore biosynthesis to provide insight into the biocatalysis of pericyclic reactions. Specifically, salicylate synthesis by the two-enzyme pathway in Pseudomonas aeruginosa is examined. The isochorismate-pyruvate lyase is discussed in the context of its homologues, the chorismate mutases, and the isochorismate synthase is compared to its homologues in the MST family (menaquinone, siderophore, or tryptophan biosynthesis) of enzymes. The tentative conclusion is that the activities observed cannot be reconciled by inspection of the active site participants alone. Instead, individual activities must arise from unique dynamic properties of each enzyme that are tuned to promote specific chemistries.  相似文献   

15.
16.
Olucha J  Ouellette AN  Luo Q  Lamb AL 《Biochemistry》2011,50(33):7198-7207
An isochorismate-pyruvate lyase with adventitious chorismate mutase activity from Pseudomonas aerugionsa (PchB) achieves catalysis of both pericyclic reactions in part by the stabilization of reactive conformations and in part by electrostatic transition-state stabilization. When the active site loop Lys42 is mutated to histidine, the enzyme develops a pH dependence corresponding to a loss of catalytic power upon deprotonation of the histidine. Structural data indicate that the change is not due to changes in active site architecture, but due to the difference in charge at this key site. With loss of the positive charge on the K42H side chain at high pH, the enzyme retains lyase activity at ~100-fold lowered catalytic efficiency but loses detectable mutase activity. We propose that both substrate organization and electrostatic transition state stabilization contribute to catalysis. However, the dominant reaction path for catalysis is dependent on reaction conditions, which influence the electrostatic properties of the enzyme active site amino acid side chains.  相似文献   

17.
MbtI is the salicylate synthase that catalyzes the first committed step in the synthesis of the iron chelating compound mycobactin in Mycobacterium tuberculosis. We previously developed a series of aromatic inhibitors against MbtI based on the reaction intermediate for this enzyme, isochorismate. The most potent of these inhibitors had hydrophobic substituents, ranging in size from a methyl to a phenyl group, appended to the terminal alkene of the enolpyruvyl group. These compounds exhibited low micromolar inhibition constants against MbtI and were at least an order of magnitude more potent than the parental compound for the series, which carries a native enolpyruvyl group. In this study, we sought to understand how the substituted enolpyruvyl group confers greater potency, by determining cocrystal structures of MbtI with six inhibitors from the series. A switch in binding mode at the MbtI active site is observed for inhibitors carrying a substituted enolpyruvyl group, relative to the parental compound. Computational studies suggest that the change in binding mode, and higher potency, is due to the effect of the substituents on the conformational landscape of the core inhibitor structure. The crystal structures and fluorescence-based thermal shift assays indicate that substituents larger than a methyl group are accommodated in the MbtI active site through significant but localized flexibility in the peptide backbone. These findings have implications for the design of improved inhibitors of MbtI, as well as other chorismate-utilizing enzymes from this family.  相似文献   

18.
The first committed step in the biosynthesis of menaquinone (vitamin K2) is the conversion of chorismate to isochorismate, which is mediated by an isochorismate synthase encoded by the menF gene. This isochorismate synthase (MenF) is distinct from the entC-encoded isochorismate synthase (EntC) involved in enterobactin biosynthesis. MenF has been overexpressed under the influence of the T7 promoter and purified to homogeneity. The purified protein was found to have a molecular mass of 98 kDa as determined by gel filtration column chromatography on Sephacryl S-200. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a molecular mass of 48 kDa. Thus, the enzyme is a homodimer. The purified enzyme showed a pH optimum of 7.5 to 8.0 and a temperature optimum of 37 degrees C. The enzyme carries out the irreversible conversion of chorismate to isochorismate in the presence of Mg2+. The enzyme was found to have a Km of 195 +/- 23 microM and a k(cat) of 80 min(-1). In the presence of 30 mM beta-mercaptoethanol (BME), the k(cat) increased to 176 min(-1). The reducing agents BME and dithiothreitol stimulated the enzymatic activity more than twofold. Treatment of the enzyme with the cysteine-specific modifying reagent N-ethylmaleimide (NEM) resulted in the complete loss of activity. Preincubation of the enzyme with the substrate, chorismate, before NEM treatment resulted in complete protection of the enzyme from inactivation.  相似文献   

19.
The Irp9 protein of Yersinia enterocolitica participates in the synthesis of salicylate, the precursor of the siderophore yersiniabactin. In Pseudomonas species, salicylate synthesis is mediated by two enzymes: isochorismate synthase and isochorismate pyruvate-lyase. Both enzymes are required for complementation of a Yersinia irp9 mutant. However, irp9 is not able to complement Escherichia coli entC for the production of enterobactin, which requires isochorismate as a precursor. These results suggest that Irp9 directly converts chorismate into salicylate.  相似文献   

20.
E Heyde 《Biochemistry》1979,18(13):2766-2775
The relationship between the sites for catalysis of two reactions by the bifunctional enzyme chorismate mutase--prephenate dehydrogenase has been investigated. The results are consistent with the occurrence of both reactions at one active site. Comparisons have been made between experimental data for the time course of the overall reaction and computer simulations, according to various models for the relationship between the mutase and dehydrogenase sites. A model based on a single active site is consistent with the time course data if a minor proportion of the chorismate that reacts can be converted through to (hydroxyphenyl)pyruvate without the intermediate release of prephenate. Consistent with this requirement, some channeling of radioactivity from chorismate to (hydroxyphenyl)pyruvate has been detected. A model based on two separate sites has also been considered; the simulations show that if this model applies there is no need to postulate any channeling of the intermediate, prephenate, between the sites and there must be marked inhibition of the dehydrogenase reaction by chorismate. Since channeling has been observed and chorismate increases the dehydrogenase rate under all conditions, the two-site model appears unlikely. Consistent with the one-site model are the observations that a variety of inactivating conditions cause parallel loss of mutase and dehydrogenase activity and that identical protection against inactivation of both mutase and dehydrogenase by iodoacetamide is afforded by prephenate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号